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Quantitative structure activity relationship has been probed for spirosuccinimide-fused tetrahydropyrrolo [1,2- 
a]pyrazine-1,3-dione derivatives acting as aldose reductase inhibitors. While the spirosuccinimide compounds 
contain a chiral center, the aldose reductase inhibition assay was performed with racemic mixtures in the 
published work. As the physicochemical descriptors of the QSAR analysis must be evaluated for a definite 
molecular structure, we devise a new “racemic” descriptor as the arithmetic mean of the (R)-enantiomer 
descriptor and the (S)-enantiomer descriptor. The resultant QSAR model derived from the racemic descriptors 
outperforms the original QSAR models, closely reproducing the observed activity of optically pure 
enantiomers as well as racemic mixtures.
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Modern drug discovery research relies on massive synthesis, 
assay and rational design of compounds to generate de novo 
lead molecular constructs.1,2 The lead compound is further 
optimized to enhance potency and deliverability. Quantitative 
structure activity relationship (QSAR) investigation aids 
lead optimization by analyzing the assay data in terms of 
molecular descriptors. While drug candidate molecules often 
contain chiral centers, the activity assay is rarely performed 
with optically pure enantiomers. In such cases, it is a 
challenging question which molecular structure to employ in 
evaluating the QSAR descriptors. We consider a simple 
arithmetic mean of enantiomeric descriptors as the QSAR 
basis and demonstrate its applicability to the QSAR analysis 
of spirosuccinimide aldose reductase inhibitors.

Aldose reductase (AR) is the first enzyme of the sorbitol 
pathway in which it converts glucose to sorbitol.3 As high 
intracellular sorbitol accumulation causes chronic diabetic 
complications such as retinopathy, neuropathy, nephropathy, 
and cataracts,4 inhibition of AR is an effective treatment for 
long-term diabetic malignity.5 Negoro et al. synthesized 
tetrahydropyrrolo[1,2-a]pyrazine derivatives and performed 
the assay.6 Although the spirosuccinimide cogeners contain 
the chiral center indicated by * in the figure of Table 1, the 
AR inhibition assay is performed with racemic mixtures.

We obtain IC50 values of 30 spirosuccinimide compounds 
from the published data of Negoro et al. The AR inhibitory 
activity is defined as pIC50 = -log(IC5o). The normalized 
pIC50 values of the training set are listed in Table 1. We 
utilize the Cerius2 program package7 and separately build the 
(S)-enantiomer and (R)-enantiomer molecular structures of 
the pyrr이이 1,2-a]pyrazine-4-spiro-3'-pyrrolidine-1,2',3,5'- 
tetrone derivatives. For each enantiomer, thorough confor­
mational search and energy minimization result in the 

optimized molecular geometry. The adopted basis Newton 
Raphson minimization method is used with the Merck 
Molecular Force Field. The optimized geometry is aligned to 
that of the most potent compound, 2-(4-bromo-2-fluoro- 
benzyl)- 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-4-spiro-3'- 
pyrrolidine-1,2',3,5'-tetrone (SX-3030). We used atomic 
charges assigned by the charge equilibration method for 
descriptor evaluation.8

The QSAR+ module of the Cerius2 package generates 78 
physicochemical descriptors for each enantiomer. R-de- 
scriptors, as we define, are based on the optimized structure 
of the (R)-enantiomers and S-descriptors are derived for the 
(S)-enantiomers. We take the respective arithmetic mean 
values of R-descriptors and S-descriptors to generate the new 
set of descriptors, RS-descriptors. In order to warrant evenly 
distributed descriptor basis, descriptors with the standard 
deviation smaller than that of the pIC50 values are removed 
to leave 48 descriptors in each set.

The genetic function approximation method is applied to 
the over-determined QSAR problem of 48 descriptors for 30 
compounds.9 The random selection of both linear and 
quadratic descriptors generates the initial models, which 
evolve through genetic crossover operations. 20,000 genetic 
operations are performed to derive the best QSAR equation.

We drive three sets of QSAR equations: R-equations with 
R-descriptors, S-equations with S-descriptors, and RS- 
equations with RS-descriptors. As detailed QSAR analyses 
will appear somewhere else, here we concentrate on the 
performance comparison among the descriptor sets. The 
genetic function algorithm is applied to each descriptor set 
with successively increasing the number of terms in the 
QSAR equation. This procedure determines the necessary 
and sufficient QSAR equation with parsimony of terms. The 
statistics of the best QSAR equations with one through eight 
terms is summarized in Table 2.

The QSAR equations fit the training data set more closely
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Table 1. Predicted and observed aldose reductase inhibitory activity data of 2,6,7-Substituted-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-4- 
spiro-3'-pyrrolidine-1,2',3,5'-tetronesa，

o o

^The observed in vitro activity values are obtained from Negoro et al.6 "The chiral center is denoted by ‘*’. The pyrollo[1,2-a]pyrazine ring is placed in 
the yz-plane and the CN bond of the five membered aromatic ring is aligned to the z-axis. cpIC50 = -log (IC50) is normalized for the QSAR analyses. 
IC50 value in #M.

Compd R1 R2 R3 R4
pIC5(U

observed R-eqn S-eqn RS-eqn
1 — H H CH3- 0.201 0.430 0.343 0.330
2 — H H 0.553 0.489 0.426 0.365
3 — H H C6H5- 0.699 0.581 0.531 0.611
4 — H H C6H5-(CH2)2- 0.569 0.591 0.801 0.584
5 H H H C6H4-CH2- 1.004 1.018 1.267 1.203
6 2-F H H C6H4-CH2- 1.215 1.230 1.170 1.259
7 4-F H H C6H4-CH2- 0.921 1.050 1.090 1.209
8 2-Cl H H C6H4-CH2- 1.432 1.140 1.348 1.188
9 3-Cl H H C6H4-CH2- 1.456 1.472 1.481 1.519
10 4-Cl H H C6H4-CH2- 1.420 1.216 1.373 1.308
11 2-Br H H C6H4-CH2- 1.284 1.134 1.184 1.193
12 3-Br H H C6H4-CH2- 1.432 1.540 1.345 1.475
13 4-Br H H C6H4-CH2- 1.328 1.319 1.245 1.376
14 4-CH3 H H C6H4-CH2- 1.284 1.278 1.317 1.149
15 4-OCH3 H H C6H4-CH2- 1.337 1.248 1.107 1.159
16 4-CF3 H H C6H4-CH2- 1.097 0.996 1.104 1.116
17 4-NO2 H H C6H4-CH2- 0.959 0.897 1.143 0.994
18 4-NH2 H H C6H4-CH2- 0.854 0.790 0.961 0.786
19 2,4-(OCH3)2 H H C6H3-CH2- 0.456 0.492 0.492 0.578
20 3,4-(OCH3)2 H H C6H3-CH2- 0.959 0.915 0.900 1.000
21 2,4-F2 H H C6H3-CH2- 1.143 1.252 1.032 1.253
22 3,4-Cl2 H H C6H3-CH2- 1.638 1.538 1.689 1.559
23 2-F, 4-Cl H H C6H3-CH2- 1.387 1.377 1.285 1.291
24 2-F, 4-Br H H C6H3-CH2- 1.347 1.491 1.189 1.337
25 2-F, 4-Br H Cl C6H3-CH2- 1.301 1.262 1.355 1.168
26 2-F, 4-Br H Br C6H3-CH2- 1.000 1.338 1.364 1.239
27 2-F, 4-Br H CH3CO C6H3-CH2- 0.678 1.041 0.776 0.835
28 2-F, 4-Br Cl H C6H3-CH2- 1.456 1.304 1.338 1.372
29 2-F, 4-Br Br H C6H3-CH2- 1.398 1.317 1.170 1.458
30 2-F, 4-Br Br Br C6H3-CH2- 1.284 1.342 1.264 1.174

Table 2. Statistical Evaluation of QSAR Models*

Number 
of Terms

R-Equations S-Equations RS-Equations
r s Fs r s Fs r s Fs

1 0.730 0.247 0.730 0.247 0.730 0.247
2 0.816 0.213 10.743 0.858 0.189 20.801 0.840 0.200 15.839
3 0.848 0.199 4.929 0.877 0.180 3.712 0.889 0.171 10.505
4 0.874 0.186 4.740 0.891 0.174 3.022 0.908 0.161 4.863
5 0.914 0.158 10.428 0.912 0.161 5,401 0.930 0.144 7.183
6 0.937 0.140 8.024 0.935 0.142 7.768 0.933 0.144 0.993
7 0.947 0.130 4.017 0.944 0134 3.417 0.937 0.142 1.349
8 0.954 0.125 3.109 0.952 0.128 3.400 0.949 0.132 4.781

*r is the regression coefficient. s is the standard deviation. Fs is the sequential F value. Fs = (r； - r2) - (n - k? - 1)/(k： - k。- (1 - r2) where k is the 
number of terms (k1 < k2)and n is the number of compounds.
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as the number of terms increases. While all three series of 
QSAR equations perform at the similar level of confidence 
and reach the regression coefficient over 0.9 with five terms, 
the RS-equations converge more rapidly. The outstanding 
convergence of the RS-equations is indicated by the Fs value, 
which compares two successive regression models. The 
large Fs value strongly justifies the addition of the new term. 
While the Fs values in Table 2 justify the sixth and the 
seventh terms of R- and S-equations, they manifest no 
requirement for those terms beyond the fifth of the RS- 
equations. Among the five term QSAR equations, the RS- 
equation best fits the inhibitory data as indicated by the 
smallest standard deviation.

In terms of the normalized descriptors, the five term 
QSAR equations are as follows.

PIC50 = 2.961 TASA - 0.642 Vncos2 + 0.428 ］丄X

+ 2.108 TPSA2 - 1.700 DPSA22 (R-Equation)
PIC50 = 0.603 AlogP - 0.573 Vncos2 + 0.276 内

+ 0.453 財-0.276 PPSA3 (S-Equation)
PIC50 = 0.869 TASA - 0.442 Vncos2 - 0.274 個

-0.252 Sy2 - 0.712 DPSA1 (RS-Equation)

The Predicted PIC50 values of are listed in Table 1 for each 
QSAR equation. AlogP is the logarithm of the Partition 
coefficient, Vncos is the non-common overlap volume,］丄 is 
the dipole moment, ^pol is the sum of atomic polarizability, 
Sy is the length in the y-direction, and the other descriPtors 
are surface areas incorporating atomic charges. TASA and 
AlogP strongly correlate each other with the correlation 
coefficient over 0.8. Both represent the hydrophobicity and 
positively contribute to the inhibitory activity. The negative 
coefficient of Vncos2 indicates that the molecular shape 
needs to be similar to that of the reference compound for 
strong interaction with AR. The above QSAR equations 
suggest that the hydrophobic interaction plays important role 
in tight binding to AR and the interaction is modulated by 
atomic charge distribution. The correlation matrix of the 
descriptors in the RS-equation has the absolute value average 
of 0.225 with the maximum 0.427. The RS-descriptors in the 
QSAR equation substantially less correlate with each other 
than those in the R-equation (the corresponding values are 
0.285 and 0.443, respectively) and the S-equation (0.266 and 
0.585, respectively). The correlation matrix is another 
indicator showing that the RS-descriptors yield the QSAR

Table 3. pIC50 values predicted by five term QSAR Equations

QSAR model AS-3201 SX-3202 SX-3030
R-Equation 1.491 2.670 1.900
S-Equation 1.517 1.189 1.353
RS-Equation 1.715 0.958 1.337
Observed activity 1.824 0.721 1.347

equation in better quality.
We further demonstrate superiority of the RS-equation 

against its R- and S-counterparts by predicting the inhibitory 
activity of enantiomers. While the racemic mixture SX-3030 
has the AR inhibitory activity 0.045 //M, the (S)-(+)- 
enantiomer (SX-3202) and (R)-(-)-enantiomer (AS-3201) 
do 0.19 and 0.015 /M, respectively. Table 3 presents the 
predicted activity of each five term QSAR equation. The 
five term R-equation predicts the observed pIc50 values of 
the enantiomers and the racemate with the standard 
deviation of 1.452 and the S-equation does with the standard 
deviation of 0.369. The RS-equation predicts those activity 
values with the standard deviation of 0.185.

The RS-equation is the most robust and stable QSAR 
equation. It stands with the largest regression coefficient 
with relatively small number of terms that intercorrelate less 
than those of R- and S-equations. It closely reproduces the 
observed activity of either optically pure enantiomers or 
racemic mixtures. The arithmetic mean RS-descriptors are 
suitable to probe QSAR of the activity data assayed with 
racemates.
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