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ABSTRACT

Motivation: High-throughput next-generation sequencing technolo-

gies enable increasingly fast and affordable sequencing of genomes

and transcriptomes, with a broad range of applications. The quality of

the sequencing data is crucial for all applications. A significant portion

of the data produced contains errors, and ever more efficient error

correction programs are needed.

Results: We propose RACER (Rapid and Accurate Correction of

Errors in Reads), a new software program for correcting errors in

sequencing data. RACER has better error-correcting performance

than existing programs, is faster and requires less memory. To support

our claims, we performed extensive comparison with the existing lead-

ing programs on a variety of real datasets.

Availability: RACER is freely available for non-commercial use at

www.csd.uwo.ca/�ilie/RACER/.

Contact: ilie@csd.uwo.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The automated Sanger sequencing method (Sanger et al., 1977)

has revolutionized biological research by unveiling the sequence

of the DNA molecule, most prominently that of the human

genome. Limitations of the method created the need for

improved sequencing technologies. Great demand caused the dis-

covery of several so-called next-generation sequencing (NGS)

technologies, such as Illumina/Solexa, Roche/454, Life/APG’s

SOLiD, Helicos BioSciences’ HeliScope, Pacific Biosciences

and Life’s Ion Torrent; the survey of Metzker (2010) gives

detailed descriptions.

These high-throughput technologies produce huge amounts of

data at decreasing costs, thus enabling an ever increasing number

of applications, including de novo genome assembly, genome

resequencing, cancer mutation discovery, metagenomics,

DNA–protein interaction discovery and so forth. The way has

been opened for ambitious projects, such as the 1000 Genomes

Project (Siva, 2008), the first project to sequence the genomes of

a large number of people to provide a comprehensive resource on

human genetic variation, and the Genome 10K Project

(Haussler et al., 2009), aiming at discovering the genomes of

10 000 vertebrate species.

A large number of bioinformatics programs are essential in

analyzing the NGS data. Although their variety is impressive,

they all need high-quality data. Nearly half of the reads produced

by Illumina, the currently dominant technology, contain errors.

Among other problems, they make genome assembly much more

difficult, and genome assemblers, such as Euler-SR (Chaisson

and Pevzner, 2008), ALLPATHS (Butler et al., 2008), ABySS

(Simpson et al., 2009), SOAPdenovo (Li et al., 2010) or SGA

(Simpson and Durbin, 2012), include their own correcting

mechanisms.

The importance of the problem led to the design of many

stand-alone error-correcting programs, such as Euler (Chaisson

et al., 2004), SHREC (Schröder et al., 2009), Reptile (Yang et al.,

2010), Quake (Kelley et al., 2010), CUDA (Shi et al., 2010),

HSHREC (Salmela, 2010), SOAP (Li et al., 2010), HiTEC

(Ilie et al., 2011), Coral (Salmela and Schröder, 2011),

Hammer (Medvedev et al., 2011), ECHO (Kao et al., 2011),

PSAEC (Zhao et al., 2011b) and MyHybrid (Zhao et al.,

2011a); see also the survey of Yang et al. (2013).

The errors present in sequencing data consist of substitutions,

where the correct base has been replaced by an erroneous one,

and indels, where new bases have been inserted or existing ones

deleted. However, due to the domination of the Illumina tech-

nology, which produces mostly substitution errors, the majority

of the existing programs focus on correcting this type of errors.

For the same reason, the current version of our new program

focuses as well on substitution errors.

The main idea of all correcting programs is essentially the

same. High-throughput technologies compensate for short read

length by high coverage, which implies that each position in the

genome is sequenced multiple times, many of which are correct.

Therefore, the correct way will prevail in a careful analysis and

the errors can be corrected. It is the way in which such an ana-

lysis is done that makes the difference between various programs.

Some programs count the number of k-mers and those with

counts above a given threshold are deemed correct, whereas the

remaining ones undergo correction; these include SHREC,

HiTEC, HSHREC and PSAEC. Others consider all k-mers

occurring in each read, the k-spectrum (Pevzner et al., 2001),

and try to correct the entire read with minimum edit distance

such that all k-mers have counts above a threshold; CUDA,

Quake, Reptile and Hammer are included here. Finally, Coral,

ECHO and MyHybrid are based on multiple sequence align-

ments. The reader is referred to the survey of Yang et al.

(2013) for details.

We propose a new program, RACER (Rapid and Accurate

Correction of Errors in Reads), that belongs to the first category.

Although SHREC and HSHREC use suffix trees and HiTEC

uses the more efficient suffix arrays, RACER uses completely

different, more efficient data structures. This way, whereas

both SHREC and, to a lesser extent, HiTEC, have high space*To whom correspondence should be addressed.
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consumption, RACER is space efficient. It is also faster and

more effective at correcting errors than the existing programs.

We have performed extensive comparison with the leading

programs on a variety of real datasets. RACER is freely avail-

able for non-commercial use at www.csd.uwo.ca/�ilie/RACER/.

2 RESULTS

2.1 Datasets

We have performed extensive testing on a wide variety of data-

sets with difference read length, genome size and coverage.

Comparison has been performed exclusively on real datasets be-

cause, in our experience, simulated datasets do not offer a good

indication of real-life performance. In addition, they are easy to

correct and the correcting programs often exhibit unrealistically

high performance.

Fifteen real datasets were considered, some of which have

been previously used either for correcting purposes or assembly:

Escherichia coli 36, E.coli 47 (the numbers following the name

represent read length and are used to distinguish them),

Staphylococcus aureus, Saccharomyces cerevisiae and

Drosophila melanogaster have been used in the survey of Yang

et al. (2013), and Caenorhabditis elegans was used for comparing

SGA with other genome assemblers by Simpson and Durbin

(2012). The remaining datasets are new. The accession numbers

and details of the datasets, together with the corresponding in-

formation concerning the reference genomes, are given in

Table 1. Full organism names are provided in Supplementary

Table S4.

2.2 Evaluation

We have compared RACER with the programs tested by Yang

et al. (2013), namely, HiTEC, SHREC, Reptile, Quake, Coral,

SOAP and ECHO. (We have tested SHREC instead of

HSHREC, as we consider only substitution errors.) Of these,

SOAP and ECHO were unable to run most of the datasets be-

cause of high space or time requirements and are left out of the

comparison.

All programs tested were evaluated on the raw datasets in

Table 1 for their ability to correct errors as well as the time

and space required. Error-correcting performance was evaluated

as the percentage of errors corrected. Our evaluation method has

the advantage of avoiding the interference of mapping or assem-

bling programs and is described in detail in Section 3.2 of

Methods.

To have a uniform comparison, we have normalized the time

and space values by dividing them by the total number of base

pairs in the dataset. The actual time and space values are given in

the Supplementary Material.

We have run all programs on the same Hewlett–Packard com-

puter with 24 cores AMD Opteron at 2.1GHz and 98GB of

random access memory running Linux Red Hat, CentOS

5.5m. Because HiTEC and Reptile do not run in parallel, we

performed the testing in both serial and parallel modes, to in-

clude all programs in the comparison. We have used 24 cores in

parallel mode.

The results are presented in Table 2, which contains the

error-correcting performance in the top part in percentage of

errors corrected, the time in the middle part in seconds per mega-

byte of input base pairs and space in the bottom part in mega-

bytes required per megabyte of input base pairs. Some programs

could not run all datasets and the reasons are indicated by letters

explained in the caption of the table. The last row in each part

represents the average of the entries for those datasets for which

all programs could run. To improve the visualization of the

tables, we have used color intensities with darker color represent-

ing better performance.

Table 1. The datasets used for evaluation, sorted increasingly by total number of base pairs

Dataset Accession

number

Reference

genome

Genome

length

Read

length

Number

of reads

Number

of base pairs

Coverage

Lactococcus lactis SRR088759 NC_013656.1 2 598 144 36 4 370050 157321 800 60.55

Treponema pallidum SRR361468 CP002376.1 1 139 417 35 7 133663 249678 205 219.13

E.coli 75a SRR396536 NC_000913.2 4 639 675 75 3 454048 259053 600 55.83

Bacillus subtilis DRR000852 NC_000964.3 4 215 606 75 3 519504 263962 800 62.62

E.coli 75b SRR396532 NC_000913.2 4 639 675 75 4 341061 325579 575 70.17

Pseudomonas aeruginosa SRR396641 NC_002516.2 6 264 404 36 9 306557 335036 052 53.48

E.coli 47 SRR022918 NC_000913.1 4 771 872 47 14 408630 677205 610 141.92

Leptospira interrogans L SRR353563 NC_004342.2 4 338 762 100 7 066162 706616 200 162.86

L.interrogans C SRR397962 NC_005823.1 4 277 185 100 7 127250 712725 000 166.63

E.coli 36 SRX000429 NC_000913.1 4 771 872 36 20 816448 749392 128 157.04

Haemophilus influenzae SRR065202 NC_000907.1 1 830 138 42 23 935272 1 005281 424 549.29

S.aureus SRR022866 NC_003923.1 2 901 156 76 25 551716 1 941930 416 669.36

S.cerevisiae SRX100885 PRJNA128 12416 363 76 52 061664 3 956686 464 318.67

C.elegans SRR065390 wormbase.org 102291 899 100 67 617092 6 761709 200 66.10

D.melanogaster SRX006151 flybase.org 120220 296 45 75 95 101 548652 6 903898 304 57.43

SRX006152

SRX023452

Note: All datasets and reference genome sequences are obtained from National Center for Biotechnology Information except C.elegans from www.wormbase.org and

D.melanogaster from flybase.org.
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2.3 Comparison

As far as error-correcting performance is concerned, only HiTEC

comes close to RACER. However, HiTEC requires the second

highest space and, therefore, cannot run the largest datasets. For

D.melanogaster, HiTEC did not attempt to run it because of

different read lengths. Note also HiTEC’s poor performance

on some of the datasets that were not included in the average.

Direct comparison shows a significant difference.

Concerning time, RACER was the fastest in both serial and

parallel modes, twice faster than second-placed Quake in serial

and about one order of magnitude faster than all the others in

parallel mode. RACER is also more memory efficient than the

other programs. Quake is again second best and uses 450%

more space than RACER in parallel mode.

RACER and Reptile were the only programs able to run all

datasets. Quake came second in time and space, except serial

space where it is third, but its error-correcting performance

was second last in serial and last in parallel, about half of the

performance of RACER. This is in part because Quake trims

reads when unable to correct. The evaluation counts the number

of base pairs in all correct reads. Reptile came third in time and

second in space (serial mode) but its accuracy was last. SHREC

required clearly the highest space and for that reason it was able

to run the fewest datasets on our machine. On the other hand, it

came consistently in third place for correcting performance.

Coral was the slowest in serial mode but had the best speedup

among all programs, and its parallel performance was close to

that of Quake and SHREC. The 15� speedup came at the cost of

increasing the space 12 times. RACER’s speedup was 11� with a

small increase in space.

3 METHODS

3.1 RACER

RACER belongs to the class of k-mer counting programs. It uses 2-bit

encoding of nucleotides and random replacement of the unknown pos-

itions. Each k-mer is represented as a 64-bit integer. The k-mers are stored

in a hash table. For each k-mer, eight counters, corresponding to the eight

possible nucleotides on both sides, are computed. A threshold t is used to

distinguish correct from erroneous positions. A k-mer followed by a nu-

cleotide a is assumed correct if the count is higher than t and erroneous

otherwise. In the latter case, assuming there is exactly one letter b that

follows the same k-mer and has count higher than t, a is replaced by b.

The approximate size of the sequenced genome is required as input,

from which RACER automatically computes the k-mer size k and thresh-

old t used in the correction part. The combination of parameters used has

been experimentally determined. Like HiTEC, the thresholds are varied

to achieve higher correcting performance.

A significant space advantage over SHREC and HiTEC is given by the

avoidance of full text indexes, such as suffix trees and suffix arrays. The

same reason creates a speed advantage because the k-mers and counters,

once computed, can be used multiple times for correction.

RACER corrects reads of varying length, from both fasta and fastq

data. It has been implemented in Cþþ and OpenMP and no other soft-

ware is necessary to run it.

3.2 Evaluation details

To obtain the most accurate evaluation, we have avoided the use of

mapping programs or performance of corrected data for other applica-

tions, such as genome assembly. Mapping programs are used for evalu-

ation to know where the errors are and how they should be corrected.

However, many reads cannot be mapped uniquely and even more cannot

be mapped at all. Such reads are discarded and, therefore, the obtained

datasets are significantly different from the original. In particular, all

programs have artificially increased performance because the reads that

are the most difficult to correct have been eliminated by mapping. On the

other hand, genome assemblers have their own implicit or explicit cor-

rection procedure, and the interaction between the two correction meth-

ods cannot be predicted.

Reads are classified as correct or erroneous depending on whether they

can be found or not, respectively, in the reference genome by an exact

search algorithm. Denoting the number of base pairs in erroneous reads

before and after correction by eb and ea, respectively, the error-correcting

Table. 2. Comparison of the error correction programs on the datasets in

Table 1, in serial and parallel (24 cores) modes, with respect to error-

correcting performance, time and space usage

Error

correction

Serial Parallel (24 cores)

Average

Average

Average

Time (s/MB)

Space (MB/MB)

Note: Letters are used in place of numbers whenever a program failed to run a dataset

as follows: (a) insufficient memory, (b) java.lang.NegativeArraySizeException, (c)

reads of different length exist and (d) k-mer cutoff failed. The average in the

bottom row of each section includes only the datasets run by all programs.
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performance was computed as ðeb � eaÞ=eb. Because we have

eb ¼ TPþ FN, ea ¼ FPþ FN (Ilie et al., 2011), we have that
eb�ea
eb

¼ TP�FP
TPþFN

, which is the same as the formula used by Yang et al.

(2013). By considering whole-read correction, as explained above, instead

of individual-based correction, similar performance is expected; however,

the problems associated with read mapping are avoided.

Nevertheless, because in some articles the comparison is performed on

mapped datasets, we provide, for completeness, such a comparison in the

Supplementary Material where the datasets have been mapped using

BWA (Li and Durbin, 2009) with high error rate, so that a high

number of reads are kept and bias is minimized. The comparison on

the mapped datasets is similar with the one on the raw datasets except

that, as expected, the percentage of errors corrected increases.

All programs have been run according to the instructions given by the

authors in the corresponding articles, Web sites or readme files. We have

not tuned the parameters of any of the programs to improve perform-

ance, as this would be unrealistic. The commands used to run all pro-

grams are given in the Supplementary Material.

4 DISCUSSION

Extensive testing shows that RACER is superior to the existing

programs in all aspects: error-correcting performance, time and

space. It corrects about three-quarters of the errors in52min for

a bacterial dataset and 30–40min for a larger organism such as a

worm or fly. RACER does not require any additional software

to run.

5 CONCLUSION

We have presented a new tool, RACER, for correcting errors in

NGS data. The current version of RACER targets Illumina data,

thus correcting substitution error. Future versions will be able to

handle indel errors to enable correction of data from other

sequencing platforms as well as mixed data.
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Salmela,L. and Schröder,J. (2011) Correcting errors in short reads by multiple

alignments. Bioinformatics, 27, 1455–1461.

Sanger,F. et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc.

Natl Acad. Sci. USA, 74, 5463–5467.
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