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Racial differences in 3-D nuclear chromatin patterns of prostate cancer

ABSTRACT

There is a significant difference in prostate cancer incidence and stage corrected mortality 
between African-American (AA) and Caucasian American (CA) men. Variations in 
prostate cancer related gene expression has been found previously. As previously shown, 
the distribution of nuclear chromatin in prostate cancer cells is related to differentiation 
grade. So, the aim of the present study was to analyze whether the observed differences 
between AA and CA men are also reflected in the 3-D chromatin distribution patterns in 
prostate cancer cells.
14 µm Thick prostatectomy sections from 21 prostate cancer patients (10 AA and 11 CA) 
were cut and nuclear DNA was stained with TO-PRO-3. 3-D Image stacks of selected 
malignant areas were obtained by confocal laser scanning microscopy. Image analysis 
was performed off-line using in-house developed software for 3-D semi-automated 
segmentation and computation of DNA content and our previously developed 3-D 
nuclear texture features. The power of these features to discriminate between AA and CA 
patients was established by univariate ROC and linear discriminant analyses, stratifying 
for prognosis.
There are indeed differences in the 3-D nuclear chromatin distribution between AA and 
CA men with a similar prognosis. This is evidence that the differences of prostate cancer 
in Afro-American and Caucasian are not only caused by socioeconomic differences, but 
also by genomic differences.
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INTRODUCTION

There is a significant difference in prostate cancer incidence and mortality between 
African-American (AA) and Caucasian American (CA) men. Death rates from prostate 
cancer among AA men are more than twice the rates in CA men, even when diagnosed 
at the same clinical stage1. AA men having prostate cancer generally show higher PSA 
blood levels at a younger age and more extensive disease2,3. These differences have 
usually been associated with differences in social-economic environment. However, 
it remains controversial if the higher mortality rates in AA men are explained only by 
these differences, because genetic differences have been found as well4. For example, a 
higher frequency of mutations in the EphB2 gene was found in tumors from AA patients 
compared to tumors from CA men5. Another study showed that the epidermal growth 
factor receptor gene, known to be of importance in the oncogenesis of prostate cancer6, 
is significantly more often overexpressed in AA patients7. 
These genomic differences are reflected in morphological differences, used by pathologists 
in daily practice to diagnose malignancy, like increased nuclear size, presence of and 
increased size of nucleoli and aberrant chromatin distribution patterns8-10. The nuclear 
chromatin distribution in genetically altered cells is generally coarsely-clumped with 
multiple chromacenters and larger nucleoli, as opposed to finely granular with few 
chromacenters and no or small nucleoli in normal cells. These changes are often rather 
subtle or even subvisible, and are referred to as “malignancy associated changes” as 
they may be detected in morphologically benign cells as well10-12. They are therefore best 
not visually assessed but mathematically quantified by computerized image analysis as 
“texture features” that are very sensitive and not prone to observer subjectivity.
A number of papers have been published on the clinical value of the assessment of DNA 
content and nuclear texture features by image analysis, using conventional 3-4µm thick 
prostate tissue sections has been produced13-15. However, imaging thin tissue slices 
obviously may result in loss of valuable 3-D texture information. This can be avoided by 
preparing cytospins from cell suspensions, but this introduces artifacts by the flattening of 
nuclei while spinning them down. Furthermore, the morphological context of the analyzed 
nuclei is completely lost. These drawbacks can be completely avoided by imaging thick 
sections (typical 10-50 µm) by Confocal Laser Scanning Microscopy (CLSM). Thin optical 
slices are acquired at high resolution by confocal imaging, and these are subsequently 
reconstructed in 3-D16. In previous studies we described 3-D segmentation procedures to 
obtain individual nuclei from an acquired image stack17, established the required nuclear 
sample size to achieve proper 3-D DNA histogram quality18, developed an optimal tissue 
processing technique for 3-D Confocal Laser Scanning Microscopy (CLSM)19, described 
the successful software implementation of 3-D nuclear texture features20 and performed 
a pilot study on the clinical value of the assessment of DNA content and nuclear texture 
features by CLSM10. The aim of the present study was to analyze whether the racial 
differences in clinical presentation and genomics between prostate cancer in AA and 
CA men are reflected in the 3-D distribution patterns of nuclear chromatin in prostate 
cancer cells.
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MATERIALS AND METHODS

Tissue preparation
Prostatectomy tissue sections from 10 AA 
men and 11 CA men having prostate cancer 
were selected by a pathologist (WEG) 
from the archives of the Department 
of Pathology, University of Alabama 
at Birmingham, USA. Twelve of these 
patients had a good prognosis (AA n=8, 
CA n=4) and 9 had a bad prognosis (AA 
n=2, CA n=7). The patients included in 
this study were approximately matched on 
age (range: 50-71 years, average 63 years, 
standard deviation: 6 years), stage and Gleason score (Table I).
Fourteen micron thick sections were cut from representative paraffin-embedded tissue 
blocks. Our previously developed protocol19 was used for staining: incubation with 
RNase-A for 1 hour and staining with TO-PRO-3 (Molecular Probes, Eugene, OR, USA) in 
a concentration of 1:2,200 for 2 hours at room temperature21. After rinsing with distilled 
water the samples were mounted in Vectashield (Vector Laboratories, Burlingame, CA, 
USA). The coverslip was sealed with nail polish.

Image acquisition and analysis
Image stacks were acquired with a confocal microscope (TCS SP2 AOBS, Leica 
Microsystems, Heidelberg, Germany) using the ×40/1.25 NA oil immersion objective with 
a zoom factor of 2.0 (total magnification of ×80). To obtain measurements for at least 300 
nuclei as previously established18, between the 10 and 15 image stacks were acquired, 
depending on the number of nuclei per image stack. The different microscopic fields 
were selected approximately 3.0 mm apart from each other to avoid potential bleaching 
of neighboring fields during image acquisition. The x-y coordinates of each field were 
stored using in-house developed add-on software for the confocal microscope10. These 
coordinates were used for automated acquisition of the defined fields. Subsequently, the 
bottom and top of the defined fields were identified interactively as the slices where hardly 
any signal was detectable17. Stacks of approximately 120 2-D digital images (512x512 
pixels) were obtained, depending on the effective thickness of the tissue. Resolution at 
the specimen level was 0.292x0.292x0.285 µm3 and the dynamic range was 12 bits. The 
image stacks were segmented and analyzed off-line using in-house developed software, 
as described previously18. Segmentation was stopped when 300 nuclei were collected.

Texture feature computation
Our in-house developed software for the computation of 35, 3-D texture features was 
used as described previously20. In short, the selected texture features are from three 
different classes: discrete features, Markovian features and fractal features. General 
descriptive statistical features of the grey-value distribution were computed as well22. 

Table I: Patient characteristics.
AA CA
good bad good bad

Gleason 6-7 8 1 3 6
Gleason 8-10 1
Gleason unknown 1 1
Stage T2 5 3
Stage T3 3 2 1 5
Stage Unknown 2

Distribution of Gleason scores and stage among the 
African-American (AA) and Caucasian American (CA) 
patients studied.
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Discrete texture features summarize several general statistics for the different chromatin 
condensation states in the nucleus, corresponding to different ranges of grey-values. 
The Markovian features involve second order grey level statistics and are computed 
from co-occurrence matrices, representing the joint probability that pairs of grey-level 
combinations co-occur together. Several statistics can be computed from those matrices: 
heuristic features, statistical features and features taken from information theory23. 
Fractals are mathematical objects which have similar details on every scale. Fractals 
have a strong correlation with human judgment of texture roughness24. Fractal texture 
features are used to describe the fractal properties of the nuclei.

Data analysis
First, Receiver Operating Characteristic (ROC) curves were plotted for each feature as 
a graphical representation of the trade off between the false negative and false positive 
rates, and the area under curve (AUC) was calculated as a measure of discriminative 
power. ROC computation was performed for the complete dataset (AA versus CA men) 
as well as on the nuclei grouped by prognosis group (AA good versus CA good; AA bad 
versus CA bad). Discriminative texture features had an Area Under the Curve (AUC) 
of 0.5-1, and features with an AUC ≥ 0.70 were arbitrarily considered to have good 
discriminative power.
Further, multivariate linear discriminant analysis with step-wise addition of new 
variables was applied, minimizing Wilks’ lambda statistic. Leave-one-out was used as 
cross validation technique. The five most 
discriminative texture features were selected 
according to the steepest descent in Wilks’ 
lambda statistic. This approach was used to 
discriminate between the pooled AA and CA 
nuclei as well as between the pooled AA and 
CA nuclei within the good and bad prognosis 
subgroups. Finally, the pooled nuclei of good 
and bad prognosis patients were discriminated, 
irrespective of race.

RESULTS

The number of patients per prognosis group 
and some tumor characteristics are given in 
Table I. The number of segmented nuclei per 
prognosis group is given in Table II for both 
races. AUC values for the 35, 3-D nuclear 
texture features for discriminating between 
pooled nuclei from AA men versus CA men 
are shown in the second column of Table III. 
Five features yielded AUC values above 0.7. 
The second and third columns show the AUC 

Figure 1: Examples of maximum intensity 
projections of nuclei from AA (left) and CA men 
(right) of the good prognosis (top row) and bad 
prognosis (bottom row) subgroups, showing that 
also visually there are differences in nuclear 
texture. These nuclei are obtained from a stack 
of prostate tissue stained with TO-PRO-3, 
acquired by CLSM, imaged with a ×40/1.25 NA 
oil immersion objective with a zoom factor of 2.0 
(total magnification of ×80).

André Huisman (2006) - 3-D Nuclear chromatin texture analysis using confocal laser scanning microscopy



76

Racial differences in 3-D nuclear chromatin patterns of prostate cancer

values after performing an ROC analysis on the pooled nuclei within the subgroups of 
good and bad prognosis. For the subgroup of patients with bad prognosis, 27 features 
yielded AUC values above 0.7 when discriminating nuclei from AA and CA men. For 
the subgroup of patients with good prognosis, 8 features yielded AUC values above 0.7 
when discriminating nuclei from AA and CA men. In figure 1, examples are given of 
nuclei from AA and CA men of the bad and good prognosis subgroups, showing that also 
visually there are differences in nuclear texture.

ROC analysis for discriminating between patients having a good and bad prognosis 
without grouping by race revealed 6 well discriminative features (AUC ≥ 0.70): Grey 
skewness, Grey kurtosis, Average extinction ratio of low density region, Low versus 
medium average extinction ratio, Low versus medium high average extinction ratio, and 
Low versus high average extinction ratio, but none of these had values above 0.8. 
In Table IV, the nuclear texture features that were selected in multivariate linear 
discriminant analysis are presented, together with the absolute values of their 
discriminant function coefficients that indicate their importance in discriminating 
between nuclei from AA men and CA men. The discriminant analysis was separately 
applied on all pooled nuclei of AA and CA men (complete dataset), as well as on the 
pooled nuclei of AA and CA men of the good and bad prognosis subgroups. Table V 
shows the performance of the classification functions in terms of the relative amounts 
of correctly classified nuclei. For the complete dataset, 67% of the nuclei were correctly 
identified as being of AA or CA origin. The nuclei from patients having a good prognosis 
were classified correctly as being from an AA or a CA man in 80% of the cases, and 89% 
of nuclei from patients having a bad prognosis were classified correctly.

DISCUSSION

The aim of this study was to establish the differences in nuclear chromatin texture 
between AA and CA patients having prostate cancer. Although technically challenging, 
we did this in 3-D, as theoretically this should yield more information than conventional 
2-D analysis, which we indeed proved in a previous study20. Since previous studies 
showed that 2-D texture have prognostic value in prostate cancer13,14, we stratified for 
prognosis. In univariate ROC analysis, five 3-D texture features could discriminate well 
between the nuclear chromatin from AA patients and that of CA patients (Table 3). 
These were all from the class of discrete texture features. Being from the same class, 
these features are to some extent correlated as well; however, when taking prognosis 

Table II: Number of segmented nuclei.
Prognosis AA men (10 patients) CA men (11 patients)

#patients #nuclei #patients #nuclei
Good 8 1621*, 180** 4 637*, 159**

Bad 2 307*, 154** 7 1619*, 179**

Totals 10 1928*, 175** 11 2256*, 174**

Summary of the number of segmented nuclei per race and prognosis group is 
depicted*, as well as the average number of segmented nuclei per image stack**.
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Table IV: Discriminant function coefficients
Complete dataset Good prognosis cases Bad prognosis cases
Texture feature coefficient Texture feature coefficient Texture feature coefficient
Grey kurtosis 0.50 Grey mean 1.09 Grey sum 1.22
Compactness 
of low region

0.75 Grey variance 0.81 Inverse difference 
moment

0.59

Inertia 0.75 Inertia 1.58 Entropy (of co-
occurrence matrix)

0.20

Volume of low 
density area

0.53 Asymetry w.r.t. nuclear 
center of high region

0.49 Fractal dimension 0.34

Discriminant function coefficients of different 3-D nuclear texture features selected in linear discriminant 
analysis separating pooled nuclei from AA and CA men. The discriminant analysis was applied on the 
complete dataset, as well as on the subgroups of nuclei from bad and good prognosis cases.

Table III: AUC values for the 35 3-D nuclear texture features
Feature all cases Subgroup with 

bad prognosis
Subgroup with 
good prognosis

Grey sum 0.56 0.79 0.79
Grey mean 0.53 0.56 0.67
Grey variance 0.67 0.72 0.68
Grey skewness 0.65 0.76 0.57
Grey kurtosis 0.61 0.74 0.66
Energy 0.65 0.79 0.61
Entropy 0.54 0.58 0.60
Inverse difference moment 0.61 0.92 0.66
Inertia 0.68 0.93 0.53
Correlation 0.57 0.55 0.67
Cluster shade 0.67 0.71 0.65
Cluster prominence 0.65 0.66 0.67
Volume (pixels) of low density region 0.51 0.85 0.74
Volume (pixels) of medium density region 0.52 0.85 0.69
Volume (pixels) of highdensity region 0.51 0.87 0.73
Average extinction ratio of low dens. region 0.74 0.86 0.56
Average extinction ratio of med. dens. region 0.67 0.74 0.65
Average extinction ratio of high dens. region 0.73 0.83 0.64
Low vs. medium average extinction ratio 0.77 0.89 0.61
Low vs. med-high average extinction ratio 0.77 0.89 0.60
Low vs. high average extinction ratio 0.77 0.89 0.60
Number of unconnected low areas 0.55 0.79 0.71
Number of unconn. Medium areas 0.51 0.60 0.53
Number of unconn. high areas 0.55 0.77 0.68
Low compactnes 0.52 0.53 0.56
Med compactnes 0.52 0.80 0.74
High compactnes 0.52 0.69 0.69
Low avg. distance to geo-center 0.52 0.72 0.57
Med avg. dist. geo-center 0.52 0.75 0.54
High avg.dist. geo-center 0.59 0.85 0.54
Asymetry of low region w.r.t. to nuclear center 0.60 0.84 0.84
med asym.nuc.cntr 0.61 0.83 0.79
high asym. nuc. Cntr 0.60 0.85 0.83
Lacunarity 0.53 0.59 0.54
Fractal dimension 0.52 0.84 0.66
#features having AUC ≥ 0.7 5 27 8 

AUC values for the 35, 3-D nuclear texture features for discriminating between pooled nuclei from all AA men 
and CA men independent of prognosis (second column), as well as for the subgroups with bad prognosis 
(third column) and good prognosis (fourth column). Strongly discriminating features (having an AUC value 
greater than or equal to 0.7) are depicted in bold.
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into account, the classification rates improved significantly. This confirms the idea that 
prognosis is indeed an important stratification factor. For the subgroup of patients with 
bad prognosis, no fewer than 27 features (from different classes) yielded AUC values 
above 0.70 when discriminating nuclei from AA and CA men, with many features having 
AUC values around or above 0.90. For the subgroup of patients with good prognosis, 
8 features yielded AUC values above 0.7 when discriminating nuclei from AA and 
CA men. Therefore, although there are apparently clear differences in 3-D nuclear 
chromatin patterns of prostate cancer nuclei from AA and CA men, these differences 
are most prominent within the subgroup of patients with bad prognoses. Because the 
differences between AA and CA men having a bad prognosis are the most outstanding, 
this is an indication that although these patients have the same prognosis, there are 
large differences in the genomic processes related to the progress of the disease. These 
differences might account for the high mortality rate of AA men. The actual underlying 
genetic events that may explain the differences in nuclear chromatin patterns between 
AA and CA men are not known, but deserve to be further studied by e.g. correlating data 
from genomic arrays and microarray expression analysis with nuclear texture features.
It was interesting to note that irrespective of grade, many of the nuclear texture features 
could discriminate between patients with good and bad prognosis. This implies that our 
3-D features may have prognostic value. It will be interesting to evaluate the comparative 
prognostic value of 2-D and 3-D features in a subsequent study.
Using the current status of our technology we are able to correctly classify a high percentage 
of nuclei from AA and CA men. However, further improvements can be expected by 
implementing more features, but also from better image quality. Better image quality 
can be obtained by deconvolving the images25 or by using 4-Pi microscopy26. 
In conclusion, this is the first study describing that 3-D nuclear chromatin texture features 
obtained by quantitative confocal laser scanning microscopy reveal racial differences 
between prostate cancer nuclei from AA and CA men, underline the hypothesis that 
there are not only socioeconomic but also genomic differences between prostate cancer 
in AA and CA men.

Table V: Cross validated classification results.

Actual group 
membership**

Predicted Group Membership*

AA men (%) CA men (%) % correctly 
classified

Complete dataset AA men 65 35
67%CA men 31 69

Good prognosis cases AA men 76 24
80%CA men 18 82

Bad prognosis cases AA men 87 13
89%CA men 4 96

Cross validated classification results of the 3-D nuclear texture features selected in linear discriminant 
analysis shown in Table 3. The discriminant analysis was applied on the complete dataset, as well as on the 
nuclei grouped by prognosis. The percentages indicate the relative amount of classified nuclei as being from 
a specified group*, given the actual group membership**. The features in bold indicate the percentage of 
correctly classified nuclei.
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