
Racing and Pacing to Idle: Theoretical and Empirical
Analysis of Energy Optimization Heuristics

David H. K. Kim Connor Imes Henry Hoffmann
Deptartment of Computer Science, University of Chicago
{hongk,ckimes,hankhoffmann}@cs.uchicago.edu

Abstract—The problem of minimizing energy for a perfor-
mance constraint (e.g., real-time deadline or quality-of-service
requirement) has been widely studied, both in theory and in
practice. Theoretical models have indicated large potential energy
savings, but practical concerns have made these savings hard to
realize. Instead, practitioners often rely on heuristic solutions,
which achieve good results in practice but tend to be system-
specific in efficacy. An example is the race-to-idle heuristic, which
makes all resources available until a task completes and then
idles. Theory predicts poor energy savings, but practitioners have
reported good empirical results.

To help bridge the gap between theory and practice, this
paper presents a geometrical framework for analyzing the energy
optimality of resource allocation under performance constraints.
The geometry of the problem allows us to derive an optimal
strategy and three commonly used heuristics: 1) race-to-idle, 2)
pace-to-idle a near-optimal idling strategy, and 3) no-idle which
never idles. We then implement all strategies and test them
empirically for seven benchmarks on four different multicore
systems, including both x86 and ARM. We find that race-to-idle
is near optimal on older systems, but can consume as much as 3×
more energy than the optimal strategy. In contrast, pace-to-idle
is never more than 12% worse than optimal.

I. INTRODUCTION
Many embedded and real-time computing applications have

timing constraints defined by their interaction with the outside
world; e.g., to keep up with a sensor or get timely results
to a human. As energy concerns have grown increasingly
important, an additional goal has arisen: meeting the timing
constraints while minimizing energy consumption.

To support energy minimization, modern multicores come
with configurable components, or resources, which expose
tradeoffs between delivered performance and power consump-
tion. For example, almost all processors now support dynamic
voltage and frequency scaling (DVFS), which permits software
to tune the processor’s clock speed [32]. Additionally, many
processors have aggressive power gating, allowing unused
resources (e.g., cores or cache banks) to be placed in an idle
state, decreasing power consumption [34]. Heterogeneous mul-
ticores expose different cores types where each has different
power and performance tradeoffs [25].

Prior work has performed theoretical and algorithmic anal-
ysis of systems with both DVFS and dyamic power manage-
ment (DPM), or low-power sleep states [1–3, 5, 9, 12, 15,
17, 39]. As noted above, however, modern multicores contain
additional power saving mechanisms (such as heterogeneous

This work was funded by the U.S. Government under the DARPA PER-
FECT program, by the Dept. of Energy under DOE DE-AC02-06CH11357,
and by the NSF under CCF 1439156. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.

core types) and their evaluation has thus far been largely
empirical [6, 11, 14, 16, 18, 19, 21, 26–28, 31].

While theoretical models have long demonstrated the po-
tential energy savings of careful resource orchestration, the
assumptions required to realize these savings often could not
be implemented in practice. For example, in many systems
empirical studies have found that the most energy efficient
resource allocation strategy is simply to race-to-idle [6, 18,
19, 31]. The beauty of this heuristic is its simplicity: it does
not require any runtime optimization calculations. Instead, it
simply makes all resources available when a task enters the
system, and then idles when the task completes.

Recent technology changes, however, have altered the
conditions that make race-to-idle efficient. Several studies have
identified real platforms (including both embedded and server
systems) where racing-to-idle produces suboptimal results [11,
19, 22, 27, 28]. These studies suggest there is a need to revisit
earlier results and better understand when the race-to-idle
strategy is appropriate in practice and how much energy can be
saved using more sophisticated resource allocation schemes.

We address this need by developing an geometrical frame-
work performance-constrained resource allocation strategies
on multicores. We cast this problem as a linear-optimization
and reason about the structure of optimal solutions. The key
insight to this approach is its generality: it can describe DVFS
and DPM based systems, but can also be used to evaluate
multicores with power-gating, heterogeneous core types, and
allocatable un-core resources such as memory.

Specifically, the geometric interpretation indicates that for
any application and performance constraint, there is an energy-
minimal solution which uses at most two configurations out
of the entire configuration space (including all core types,
speeds, un-core resources, etc). This realization motivates the
definition of a family of solutions to the resource allocation
problem. Each solution differs in how it selects the two states
used to meet the performance constraint. The well-known race-
to-idle strategy is simply a heuristic solution that uses the idle
configuration and the configuration that allocates all resources
to an application. In addition, we derive an optimal idling
strategy, called pace-to-idle, which is the best possible strategy
that uses the low-power idle state (i.e., DPM) as one of its
configurations. We also derive a no-idle strategy that never
uses the idle state. Finally, we derive an optimal strategy that
selects two states with a minimal energy allocation.

Weimplement these strategies on four different multicore
platforms, including three x86 and one ARM big.LITTLE
system. We test each strategy on each platform with seven
different parallel benchmark applications. Our empirical results
confirm that the pace-to-idle strategy always beats race-to-idle

– by as much as 20% on x86 and 3× on ARM.
This paper makes the following contributions:

1) Proposing a geometric interpretation for allocating differ-
ent resources to meet a timing constraint with minimal
energy consumption. (See Section III-B.)

2) Deriving an optimal resource allocation algorithm and for-
mal definitions of 3 common heuristics. (See Section IV.)

3) Deriving conditions under which processor idling (i.e.,
DPM) will result in optimal energy consumption. Impor-
tantly, this analysis also indicates when systems should
not be idled. (See Section VI, Observation 6.1.)

4) Showing that the conditions where race-to-idle is opti-
mal are degenerate, and thus, may not persist in future
machines. (See Section VI, Observation 6.6.)

5) Proving that there is a near-optimal idling strategy, called
pace-to-idle that is analytically and empirically better than
race-to-idle. (See Theorem 6.4 and Section VII.)

6) Validating pace-to-idle empirically by demonstrating it
achieves a 20% energy savings compared to race-to-idle
on x86 and 3× energy reduction on ARM. Additionally,
results indicate that pace-to-idle’s energy consumption
is never more than 12% greater than the true optimal
strategy (See Section VII-C).

7) Empirical demonstration that the proposed technique out-
performs DVFS and DPM based optimizations on modern
systems. On our newest server system, solutions using
only DVFS and DPM consume an average of 30%
more energy than the proposed technique. On the ARM
system, DVFS and DPM consume an average of 2.3×
more energy than the proposed approach. Our proposed
approach saves energy because it is general enough to
combine DVFS and DPM with reduced core usage and
heterogeneous core scheduling. (See Section VII-C).

The rest of this paper is organized as follows. Sec-
tion II discusses related work (both theoretical and empiri-
cal) in energy-aware resource allocation under performance
constraints. Section III formalizes resource allocation as a
linear program and presents a geometric interpretation of
this problem. Section IV derives the race-to-idle, pace-to-
idle, no-idle, and optimal resource allocation strategies from
this geometrical interpretation. Section V describes how to
construct a convex function describing available performance
and power tradeoffs. Section VI observes several practical
implications of the proposed problem formulation. Section VII
presents our empirical evaluation. Section VIII concludes the
paper.

II. RELATED WORK
This section discusses related work minimizing energy for

a performance constraint. We begin by reviewing theoretical
and algorithmic contributions. We then discuss some practical
concerns and empirical studies.

A. Scheduling Algorithms and Theoretical Results
There has been considerable research optimizing energy

consumption under performance constraints for variable-speed
processors. Such processors are equipped with dynamic voltage
and frequency scaling (DVFS), which allows to dynamically
set the speed/frequency depending on the current workload
[24, 32]. A processor may execute tasks in higher performance
states for higher energy consumption or trade performance for
energy savings[1]. Some systems are further equipped with a

sleep state, in which a system can be placed in a low-power
state at a constant cost of waking up later [24].

In this framework, theoretical models formulate the opti-
mization problem as a deadline-based job scheduling problem
incorporating DVFS [1, 3–5, 9, 17, 24, 33, 39]. A single
variable-speed processor is given a set of jobs, each specified
by its release time, deadline, and workload. In the offline
setting, all jobs are known in advance, while in the online
setting, a job is known to the processor only when it arrives
at its release time. In both cases, a job may be executed at
any point during the time interval defined by its release time
and deadline and requires the given amount of workload to be
processed for completion. At any point in time, the processor
must choose both the job to execute and the processing speed.
The goal is to create a feasible schedule such that all jobs are
processed while minimizing total energy consumption.

While various online/offline algorithms have been designed
for different versions of the problem, their efficacy is largely
determined by the power-performance tradeoff space, or the
power function of an implemented system. Simply put, it is the
space of all feasible speed/power consumption states that the
computing device may utilize. On modern multicore systems
with power-gating (e.g., Intel’s SandyBridge and later [34]),
these computation states include not only processor speed but
also the active cores. This state space is usually modeled by
a convex power function, P (·), where a computing device
processing at a work rate of s has power consumption of P (s).

B. Practical Concerns and Empirical Studies
Algorithms based on theoretically-founded models are of-

ten not applicable in practice. In fact, researchers have found
that on real machines energy can often be reduced by racing-
to-idle; i.e., completing any set of jobs as fast as possible and
then idling the system[6, 31]. Part of the reason is that CMOS
voltage and frequency scaling for combinational logic (that
gives P ∝ v2f) does not apply to tradition SRAM circuits, as
reducing the voltage in these circuits leads to unacceptable
error rates [7]. As SRAM circuits are used to implement
caches, this means significant portions of a processor do not
obey the cube-root law. In addition, other essential system
components (main memory, disks, network cards, and fans)
consume significant energy making the energy savings due to
DVFS in the processor small in comparison to total energy
[6, 18] and accounting for these other components has a
dramatic effect on performance-constrained systems [13, 38,
40]. Finally, most of the theoretical approaches assume that
idle power is negligible, but in practice commercial systems
have not brought idle power that low (see Section VII).

Several empirical studies investigate the practical con-
straints of minimizing energy for a performance bound. Studies
done in the early and middle part of the 2000’s reinforce the
notion that theoretical results are hard to realize in practice
and race-to-idle is often near-optimal [6, 28, 31, 35]. More
recent studies suggest that this trend is starting to reverse and
they call into question the efficacy of the race-to-idle heuristic
[11, 16, 19, 22, 27, 30]. These contradictory results suggest
that it is time to re-evaluate resource allocation approaches and
re-examine the potential energy savings of more sophisticated
algorithms, while keeping in mind practical implications.

This paper focuses on the energy optimization of a variable-
speed multicores (both homo- and heterogeneous) with a focus
on idling heuristics. We give an in-depth analysis of the

comparison of idling heuristics and the optimal solution based
on our geometric interpretation of the problem. We then verify
the practical usefulness of this interpretation by implementing
these heuristics on real machines and allocating resources to
real applications and measuring their effect on full system
energy consumption.

III. THE OPTIMIZATION PROBLEM
This section formalizes the problem of completing a task by

a deadline while minimizing energy consumption. We consider
a single task where the workload is W , and the deadline t.
This formulation is broadly applicable to many such tasks on
systems with differing configurations. We first formulate the
problem as a linear program (LP). We then formulate the dual
LP, allowing a geometric interpretation of the problem and
simple construction of the optimal solution.

A. LP Formulation
Assume the task starts at time 0 and must complete W

units of work by time t. The system supports C configurations
c ∈ {0, . . . , C − 1}, each of which has a computation rate sc
and a power consumption of pc. These configurations represent
settings for all configurable components in the system (e.g.,
DRAM speed, processor speed, and number of active cores).
The system has a unique idle configuration c = 0 with
s0 = 0 and p0 = pidle, where pidle is a system dependent
(and application independent) value representing the system’s
power consumption when not executing a computation. We
assume configuration C − 1 represents making all resources
available to a task. The goal is to assign a time 0 ≤ tc ≤ t
to each machine configuration. Note that configuration c will
contribute tc·sc work at a cost of pc·tc energy. This formulation
is similar to others that appear in the literature, indicating
this is a broadly applicable problem [3, 20, 37]. Thus, the
problem of minimizing energy while completing the work can
be expressed as:

minimize
∑
c

tc · pc (1)

subject to ∑
c

tc · sc = W (2)∑
c

tc = t (3)

0 ≤ tc ≤ t, for c = 0, . . . , C − 1 (4)

Equations 1–4 assign values for all tc to minimize total
energy consumption (Equation 1) subject to the constraints
that the total work accomplished is equal to the required work
W (Equation 2) and the deadline is met (Equation 3). The
final constraint (Equation 4) ensures that the time spent in any
configuration is non-negative.

B. Dual LP
By standard techniques in LP optimizations, we form the

dual of the linear program. Simply put, we assign a variable
for each constraint in (2) and (3), and a constraint for each
variable in the original LP and form a new minimization
problem which upper bounds the objective of the primal LP.
By the duality theorems of LP, any feasible solution to the
dual linear program (minimization) is an upper-bound on the
primal optimal (maximization). Furthermore, the optimal value

Fig. 1. (1) race, pace, and idle configurations in the dual space and (2)
optimization in the convex hull formed by all configurations

for the dual program is exactly the optimal value of the primal,
given that the primal has an optimal.

Since our primal LP had 2 constraints and C variables
forming a convex polytope in a C-dimensional space, the
dual program gives us C constraints in a 2-dimensional space,
where the value of the optimal of the dual is exactly the value
of the primal optimal. The significance of the dual program is
in its low dimension - the geometric abstraction is meant only
to find and describe the optimal solution and characterize it.

The dual LP of the primal (given in Equations 1–4) is:

maximize W · x+ t · y (5)
subject to

sc · x+ y ≤ pc, ∀c = 0, . . . , C − 1 (6)
x, y unconstrained (7)

In the above LP, x is the new variable assigned for con-
straint (2) in the primal, and y is the new variable for constraint
(3). There are C constraints in (6), each corresponding to a
variable c in the primal LP. (5) is the new objective function
formed with x and y.

Note that each inequality of (6) defines an area under a line
in the 2D plane. The line corresponding to a configuration c
has slope −sc, y-intercept pc and x-intercept pc/sc = 1/ec.

The intersection of the areas below the C lines in (6)
define a convex hull, consisting of the feasible solutions. A
given constraint may be discarded, in the sense that some
other constraint is strictly stronger, defining an area entirely
contained in the area of the given constraint.

We define three configurations of particular interest and
describe their relationship to the convex hull. The race con-
figuration is that with the highest performance. The pace
configuration is that with the highest energy efficiency (race
and pace may be equivalent, but often are not). The idle
configuration is that in which the processor performs no work
at all (this can correspond to a low-power sleep state). Figure 1
illustrates the interpretation of these constraints in the dual
space. The race configuration corresponds to the steepest line,
the pace configuration is the line with the smallest x-intercept,
and the idle configuration is a horizontal line.

Observation 3.1: The configurations race, pace, and idle
always appear on the convex hull of the feasible space.
This observation easily follows from the fact that these con-
figurations represent extreme behaviors and thus can never be
discarded by tighter constraints.

The convex hull is precisely the search space for the dual
LP, where we find the point (x, y) which maximizes the

Algorithm 1 The Race-to-Idle Heuristic.
Require: W ← a workload
Require: t← a deadline
Require: C ← a set of C system configurations

race = C − 1
idle = 0

trace =
W

rrace
tidle = t− tC−1

tc = 0, ∀c 6= C − 1, idle

objective function, W ·x+ t · y. Given the convex hull formed
by the C constraints, finding the optimal point is simple as
illustrated in Figure 1. Take the line −W/t ·x passing through
the origin, and increase its y-intercept as much as possible,
such that the line contains a feasible point, consisting of a
single vertex of the convex hull (or an edge, in which case we
can choose one vertex on it).

C. Properties of the Optimal
The objective function will eventually meet a single vertex

or an edge of the convex hull when its y-intercept is max-
imized. In the case of an edge, all points on it are optimal
solutions. In any case, there is a vertex which achieves the
optimal value, which is defined by two constraints (edges) that
meet to form the vertex.

Observation 3.2: Optimal solutions use ≤ 2 configs.
From standard polyhedral theory, one can argue directly

that a basic solution has number of non-zero values at most the
number of constraints, which is two in our dual LP. Formally,
let (x∗, y∗) be the optimal vertex. By complementary slackness
conditions of LP theory, if t∗ = (t∗1, . . . , t

∗
C−1) is an optimal

solution for the primal, the binding constraints (lines forming
the vertex) where the objective function line meets the convex
hull correspond to the non-zero variables in the primal, and
the non-binding constraints to variables that are zero [10].

Observation 3.2 is the key to understanding the rest of
the paper. Practically, this observation states that any energy
optimal resource allocation will spend time in at most two
configurations. Thus, we can derive a series of solutions –
from heuristics to the true optimal – that consider only two
configurations. Further, we can combine observations 3.1 and
3.2 to develop a sound basis for deriving heuristic solutions to
the optimization problem. In the next section, we derive both
these heuristic solutions and the true optimal.

IV. RESOURCE ALLOCATION STRATEGIES
In this section we use Observations 3.1 and 3.2 to derive a

family of algorithms for resource allocation. We first derive the
race-to-idle algorithm, then an optimal idling strategy (called
pace-to-idle), a strategy that never idles, and finally a true
optimal (i.e., minimal energy solution). For each algorithm,
we describe how we select the two states that will comprise
the solution, how we set the times to spend in each state,
and then describe the computational complexity as well as
implementation concerns.

A. Race-to-idle
This well-know heuristic provides all resources (i.e., use

C−1) until the task completes and then idles the system until
the next task is ready. We list the algorithm as Algorithm 1.

This solution is easy to implement in practice since it
does not require any analysis of the characteristics of different
configurations. That is, it can be implemented without actually

Algorithm 2 The Pace-to-Idle Heuristic.
Require: W ← a workload
Require: t← a deadline
Require: C ← a set of C system configurations

pace = argmaxc∈C{sc/pc : sc ≥W/t}
idle = 0

tpace =
W

space
tidle = t− tC−1

tc = 0, ∀c 6= C − 1, idle

Algorithm 3 The No-Idle Heuristic.
Require: W ← a workload
Require: t← a deadline
Require: C ← a set of C system configurations

hi = argminc{pc : sc ≥W/t}
lo = argmaxc{sc/pc : sc ≤W/t}
thi =

W − slo · t
shi − slo

tlo =
shi · t−W

shi − slo

knowing the values of sc and pc. In practice this heuristic is
implemented by just waiting for the task to complete and then
transitioning to the idle state. It thus requires O(1) operations.

B. Pace-to-idle
This heuristic (Algorithm 2) runs in the most energy

efficient configuration, pace, until the task is complete and
then idles. In the case that pace cannot complete the workload
in the given deadline, it chooses the most energy efficient
configuration from those which have high enough work rates.

For small enough workloads, pace is fixed at the glob-
ally most energy efficient state. For higher workloads, this
requires finding the local pace configuration. This requires
scanning the configuration space for the pace configuration.
A straightforward approach would search all configurations
(O(C) operations).

C. No-idle
This heuristic (Algorithm 3) completes the task at the

deadline and never enters the idle state. It first forms two sets
of configurations, one with work rates above the target and the
second with work rates below. From the first set, it chooses
hi the configuration from the first set with the lowest power.
Note that this does not imply energy efficiency, as there may
be other configurations using more power with even greater
work rates increases. From the second set of configurations,
this heuristic chooses lo, the most energy efficient state with
work rate lower than the minimum required to complete the
workload in the deadline.

The heuristic alternates between hi and lo such that the
system never idles, and finishes exactly at the deadline using
the two states. This requires scanning the configuration space
to compute the hi and lo configurations, O(C) operations .

D. Optimal
Observation 3.2 tells us an optimal solution can be ob-

tained using only two configurations. In fact, we can exactly
characterize the two configurations as the two corresponding
constraints on the convex hull which have the closest slopes
to −W/t of the objective function from above and below, as
in Figure 2.

Algorithm 4 The Minimal Energy Resource Allocation.
Require: W ← a workload
Require: t← a deadline
Require: C ← a set of C system configurations

C′ = the set of configurations on the convex hull of the dual space
over = argminc∈C′{sc : sc ≥W/t}
under = argmaxc{sc : sc ≤W/t}
tover =

W − shi · t
shi − slo

tunder =
shi · t−W

shi − slo

Fig. 2. Maximizing the objective function in the dual space

If C ′ is the set of configurations that comprise the convex
hull in the dual space, then we have the following optimal
configurations:

over = arg min
c∈C′
{sc : sc ≥W/t} (8)

under = argmax
c∈C′
{sc : sc ≤W/t} (9)

The optimal algorithm (Algorithm 4) computes the set of con-
figurations forming the convex hull, then finds over and under.
Once the two configurations have been found, it allocates time
to the two configurations to get the work done exactly at the
deadline. The times allocated to each configuration satisfy

tover · sover + tunder · sunder = W (10)
tover + tunder = t (11)

which gives us

tover =
W − sunder · t
sover − sunder

(12)

tunder =
sover · t−W

sover − sunder
. (13)

For implementation, one can precompute the convex hull
C ′ in |C| log |C| time and for each instance of a workload
and a deadline iterate through C ′ to find the over and under
configurations.

V. THE CONVEX HULL AND THE POWER FUNCTION
We denote the power-performance tradeoff space as the

plot of the configurations as points in the 2-dimensional plane,
with the x-axis for performance and the y-axis for power. Intu-
itively, the best set of configurations in the power-performance
tradeoff space is those forming a convex boundary in this
space. It is shown in the Appendix that the configurations
(constraints/edges) forming the convex hull in the dual space is
equivalent to the configurations forming the convex boundary
in the tradeoff space.

Thus, when analyzing heuristics, we may assume a convex,
piecewise-linear power function whose range is bounded by
the idle and race configurations. Note that we are assuming

no switching costs for the system to alternate between differ-
ent configurations: for any desired configuration in the line
between two others in the tradeoff space, we may obtain the
same outcome by taking the convex combination of the two.

Observation 5.1: Let P (·) be the convex, piecewise-linear
power function, equivalent to the convex hull of the dual space.
Then equations (12) and (13) directly imply that given W
and t, the optimal energy consumption is P (savg) · t, where
savg = W/t.

VI. PRACTICAL IMPLICATIONS: IDLING HEURISTICS
This section gives an in-depth analysis of idling heuristics

for the single task optimization problem. By an idling heuris-
tic, we mean a heuristic which always employs a c-to-idle
mechanism for a fixed or well-defined configuration c; e.g.,
race-to-idle and pace-to-idle. We first investigate the conditions
under which an idling heuristic is optimal and also show how
race-to-idle and pace-to-idle may deviate far from the optimal.
Then we give a simple condition to compare idling heuristics
and show that pace-to-idle will always consume less energy
than race-to-idle.

A. Optimal vs an idling heuristic
Let P (s) be the power function, and suppose we are given

a total workload of W with time t as in the LP formulation.
Let OPT denote both the optimal solution and the value of
its total energy consumption.

Then by observation 5.1, we have OPT = P (savg) · t,
where the system possibly achieves minimal energy consump-
tion with a combination of two states. On the other hand, a c-
to-idle heuristic would complete W at c for time tc = (W/sc)
and idle for the remaining time. The total energy consumption
of c-to-idle is therefore ALG = P (sc) · (W/sc) + Pidle · (t−
W/sc), where ALG is the energy consumption of c-to-idle,
Pidle is the power consumption of the idle configuration, and
sc is the work rate of c. Rearranging the terms, we have

OPT = Pidle · t+ (P (savg)− Pidle) · t (14)
ALG = Pidle · t+ (P (sc)− Pidle) · (W/sc). (15)

This directly gives the condition for optimality of an idling
heuristic.

Observation 6.1 (Optimality condition): c-to-idle heuristic
is optimal iff:

P (sc)− Pidle

sc
=

P (savg)− Pidle

savg
(16)

i.e., (savg, P (savg)) and (sc, P (sc)) are on a line from
(0, Pidle) in the power-performance space.

Observation 6.2 (Optimality of Idling Heuristics): Let
savg = W/t and eavg = savg/P (savg). Using (Equation 14)
and (Equation 15), we get:

ALG

OPT
=

Pidle

P (savg)

(
1− savg

sc

)
+

eavg
ec

. (17)

The first term on the right-hand side of (Equation 17)
can be interpreted as the penalty of ALG for using the idle
configuration when Pidle > 0. The second term represents
the penalty/gain coming from c having a worse/better energy
efficiency compared to the optimal configuration.

Theorem 6.3 (Non-optimality of Idling Heuristics):
Unless the power function of a given machine is a straight

line originating from the idle state, (0, Pidle), an idling
heuristic is never optimal for all instances.

Simply put, unless the optimal configuration is a convex
combination of c and idle, c-to-idle cannot be optimal.

B. Race-to-Idle and Pace-to-idle
Recall the definition of pace-to-idle: it processes the work-

load at the most energy efficient configuration that can com-
plete the given workload in the deadline, then idles. The pace
configuration is characterized by having the highest energy
efficiency, i.e., epace ≥ ec for all feasible c with sc ≥ savg .
The race configuration is the unique state with the highest
work rate, i.e., srace has the maximum work rate over all
configurations.

From the optimality of idling heuristics in (Equation 17),
we can directly compute and compare the optimality of two
idling heuristics, in particular race-to-idle and pace-to-idle:

Theorem 6.4: Pace-to-idle is always better than race-to-
idle.

Proof. By definition of race and pace, the penalty of using
the idle configuration in the first term of the right-hand side in
(Equation 17) is larger for race-to-idle than pace-to-idle. For
the second term of the right-hand side in (Equation 17), by
definition epace ≥ erace. �

We make observations of some special cases.
Observation 6.5: If Pidle = 0, pace-to-idle is the best

idling strategy, but may still not be the optimal.
Proof. Clearly, (Equation 17) tells us that only the power effi-
ciency, ec, matters when Pidle = 0. pace was defined to be the
configuration which achieves the best power efficiency, so the
first part of the claim follows. Also, if pace is not the globally
most energy efficient configuration, then (savg, P (savg)) will
not be a convex combination of (0, Pidle) and (space, Ppace),
and pace-to-idle will not be optimal, despite being the best
idling heuristic. �

Observation 6.6: Unless the power function is linear or
close-to-linear, race-to-idle will be very far from the optimal,
especially for workload and deadlines requiring a small aver-
age work rate. Thus, low idle power does not necessarily imply
that race-to-idle is close to optimal. Rather, the optimality
of racing is determined by the performance target and the
convexity of the power function.

Simply put, with high convexity in the power function
and a small, required average work rate, it is a bad strategy
to complete the work so fast and transition to an idle state.
Rather, as shown by OPT , it is better to alternate in two
states which stay close to the average work rate required and
steadily process the workload.

VII. EMPIRICAL STUDY
This section evaluates the algorithms derived in Section IV

on 4 real hardware platforms with 7 different applications.

A. Machines and Applications
We use four hardware platforms, summarized in Table I. On

Server1, idling consumes 69% of the lowest measured active
power (90 W idle, 131 W lowest active power). On Desktop,
idling consumes 85% of the lowest active power (85W to
100W). On Server2, idling consumes 75% of the lowest power
(75W to 100W). On Mobile idling consumes 70% of the
lowest power (0.12W to 0.17W). The highest measured power
consumption for these machines are 225W, 235W, 430W, and

Server1

N
or

m
a

li
ze

d
P

ow
er

Desktop

Server2 Mobile
0

.2

.4

.6

.8

1.0
All Configurations Convex Hull

0

.2

.4

.6

.8

1.0

0 .2 .4 .6 .8 1.0
0

.2

.4

.6

.8

1.0

NormalizedSpeedup
0 .2 .4 .6 .8 1.0

0

.2

.4

.6

.8

1.0

Fig. 3. Power functions for x264 on different machines.

6W respectively. To measure power consumption, all machines
are connected to power meters which report total system power
consumption.

We evaluate seven applications: blackscholes, bodytrack,
facesim, ferret, swaptions, vips, and x264 from PARSEC [8].
These benchmarks are broadly representative of performance
sensitive applications. blackscholes and swaptions price fi-
nancial instruments and represent computations with latency
constraints. bodytrack and x264 process video data and must
meet a camera’ throughput and latency constraints. facesim
must render graphics at a predictable frame rate. ferret is a
search engine for media (images, rather than text) and must
meet latency constraints to satisfy users. vips is a high-end
printing application which has a latency requirement.

B. Power Functions
The geometric representation relates to empirical measure-

ments taken on these platforms. This section uses the x264
application as an example, but results follow similar trends for
other applications (they are omitted to save space).

For x264, we measure the performance and power con-
sumption in all possible configurations on each machine. These
results are illustrated in Figure 3. The figure consists of a
plot for each machine showing speedup on a normalized
scale on the x-axis and normalized power consumption on
the y-axis. These plots are normalized so that unity represents
maximum speedup or maximum power, allowing comparison
of geometries across platforms. The points represent each
possible configuration. The solid lines represent the convex
hull of optimal solutions to resource allocation problems.

The geometric structure of these figures immediately sug-
gests which algorithms will perform well on each machine.
Server1 has a nearly linear convex hull, so Observation 6.6
suggests that Algorithm 1 will be near-optimal. Desktop and
Server2 have greater convexity, suggesting that Algorithm 3
will be the better heuristic approach. Interestingly, Mobile has
both very low idle power and a highly convex power function
and demonstrates a case where Observation 6.5 holds and pace-
to-idle is not optimal despite low idle power.

We evaluate these tradeoffs analytically using Equa-
tions 16–17. Table II shows the points that make up the

TABLE I. HARDWARE PLATFORMS USED IN EMPIRICAL EVALUATION.
Name Processor Big Cores Little Cores Mem. Controllers Speeds (GHz) TurboBoost HyperThreads Idle Power (W) Configs.
Server1 Xeon E5520 8 0 2 1.596–2.395 yes yes 90 57
Desktop Xeon E5-1650 6 0 1 1.2–3.2 yes yes 85 145
Server2 Xeon E5-2690 16 0 2 1.2–2.9 yes yes 75 1025
Mobile Exynos5 Octa 4 4 1 .8–1.6 (A15) .5-1.2(A7) no yes 0.12 69

TABLE II. POINTS ON THE CONVEX HULL FOR EACH MACHINE.
System Points on the Convex Hull
Server1 (0, 90.0), (8.4, 173.2), (10.5, 195.1)
Desktop (0, 85.0), (10.1, 126.5), (11.4, 131.8), (13.8, 144.0), (16.2, 159.7), (18.7, 177.7), (19.8, 187.1), (21.7, 109.1)
Server2 (0.0, 75.0), (24.4, 141.3), (31.4, 163.5), (36.9, 183.4), (41.8, 207.6), (48.4, 246.3), (51.0, 267.5), (58.4, 339.6)
Mobile (0.0, 0.12), (0.18, 0.43), (0.21, 0.49), (0.23, 0.57), (0.26, 0.67), (0.29, 0.79), (.32, .93), (0.35, 1.08), (0.55, 3.08), (0.66, 4.32), (0.72, 5.17), (0.77, 6.28), (0.81, 7.72, (0.82, 7.93)

convex hull for each machine1. Assuming we have a per-
formance requirement equal to the worst case latency using
maximum resources on each machine, then we can easily solve
Equations 16–17. Indeed, the analytical results confirm our
visual interpretation: 1) race-to-idle will be nearly optimal on
Server1, 2) not idling will be optimal (with significant savings)
on Desktop and Server2, and 3) on Mobile, the optimal strategy
improves over race-to-idle by over a factor of 3, meaning
battery life could be improved by 3× if we switched from
idling-based strategies to the optimal algorithm presented here.

Energy is saved here because the required work rate is
lower than the maximum. Obviously, as the required work rate
approaches the maximum, the energy savings of all schedulers
will converge. However, there are many cases where systems
are over-provisioned and do not need to or cannot run at their
maximum work rate. For example, Google data centers have
been shown to spend most of their time at around 30-40%
utilization, but they must be on to provide responsiveness
in rare times of heavy load [6]. Additionally, the Exynos
5 processor (in the Galaxy S4) has a 5.5 Watt peak power
consumption, but that is nearly twice the sustainable power
[36]. While one system is a datacenter and the other an
embedded device, both are over-provisioned and will spend
considerable time operating below their maximum work rate.
In both systems it is essential to determine how to run below
the maximum work rate and maintain predictable performance
(leading to user satisfaction), while minimizing energy to
reduce costs (data center) or extend battery life (phone).

C. Energy Savings Comparison
We test the energy savings of different heuristics by inte-

grating them into the PTRADE runtime [20]. PTRADE uses
feedback control to allocate resources such that applications
meet real-time performance constraints [29]. PTRADE’s con-
trol system continually computes the speedup necessary to
ensure performance goals are met. We evaluate the algorithms
proposed in Section IV, by integrating them into PTRADE –
when the controller produces a desired speedup, our algorithms
determine how to turn that speedup into resource usage. In
addition to comparing heuristics, we compare to an approach
that uses DVFS (dynamic voltage and frequency scaling) and
DPM (dynamic power management) only but does not use
other features like core scheduling and heterogeneity.

We deploy PTRADE on each machine. Then, for each
benchmark, we assign a performance constraint (equal to the
worst case latency when using maximum resources). We then
record the energy consumption for each combination of bench-
mark, hardware platform, and resource allocation algorithm.

1As an aside, it is somewhat surprising how few configurations appear on
the convex hull for each machine. This data indicates that most configurations
are not optimal for a particular application.

Server1

N
or
m
a
li
ze
d
E
n
er
g
y

Desktop

Server2 Mobile

0.9
1.0
1.1
1.2

Race Pace No − Idle DVFS + DPM

0.9
1.0
1.1
1.2

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fa
ce
sim
fe
rr
et

sw
ap
tio
ns

vi
ps
x2
64

Av
er
ag
e

1.0
1.5
2.0
2.5

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fa
ce
sim
fe
rr
et

sw
ap
tio
ns

vi
ps
x2
64

Av
er
ag
e

1.0
2.0
3.0
4.0

Fig. 4. Energy consumption of different resource allocation strategies on
different hardware platforms. (Lower is better.)

The results of this study are illustrated in Figure 4. Each
bar chart shows the results for a different machine. The x-
axis shows the application and the y-axis shows the energy
consumption. For each benchmark, there is a bar showing the
measured energy consumption under each heuristic. All results
are normalized the the optimal energy consumption for that
application on that hardware platform. Therefore, the lowest
possible energy consumption is unity.

The results indicate that the resource allocation strategy
makes only a small difference on Server1. On both this
machine race-to-idle is very close to optimal and the choice
of strategy does not appear to make a large difference. In
contrast, the choice of strategy starts to become significant
on Desktop. Here, race-to-idle consumes an average of 12%
more energy than optimal. Pace-to-idle is slightly better at 8%
more than optimal, but the no-idle strategy is very close to
optimal, within 1%. Finally, Server2 shows the biggest impact
of strategy choices. Here, race-to-idle consumes an average of
29% more energy than optimal. Pace-to-idle is significantly
better, consuming only 7% beyond optimal, while the no-idle
heuristic is closest to optimal at just over a 3% increase on
average. The numeric results are included in Table III.

The proposed approach’s average energy consumption is
lower than using DVFS and DPM only. On Server1 and
Desktop the difference is small and may not be meaningful.
However, the energy savings of the proposed approach com-
pared to DVFS and DPM is very large on both Server2 and
Mobile. Specifically, on Server2 the proposed approach reduces
energy by 30% compared to DVFS and DPM. On Mobile the
energy reduction is 2.2×. These tremendous energy savings
come from increased generality. On Server2 the proposed
approach saves energy by scheduling cores to help reduce
energy. On Mobile, the proposed approach saves energy by

TABLE III. AVERAGE ENERGY CONSUMPTION OF DIFFERENT
HEURISTICS, 1 IS OPTIMAL.

Average Energy Consumption
System race pace no− idle DVFS + DPM
Server1 1.04 1.02 1.07 1.02
Desktop 1.13 1.08 1.01 1.02
Server2 1.37 1.07 1.03 1.32
Mobile 3.34 1.12 1.11 2.21

aggressively scheduling on the more energy efficient LITTLE
cores. Systems that combine only DVFS and DPM cannot take
advantage of these scheduling savings. These results confirm
prior empirical studies showing the importance of scheduling
based on core type for heterogeneous systems [23].

D. Discussion
These results provide empirical evidence that race-to-idle is

not sufficient for minimizing energy consumption. In fact, no
one heuristic is optimal on all machines or for all applications;
however, pace-to-idle is generally good and always outper-
forms race-to-idle (validating the analytical framework). These
results also confirm that low idle power does not imply that
race-to-idle is optimal. Indeed, race-to-idle is worst on Mobile,
which has the by far the lowest idle power. In addition, on
Mobile no heuristic approach is within 10% of optimal energy,
making the true optimal algorithm presented here extremely
valuable for extending battery life.

Furthermore, these results indicate that relying on DVFS
and DPM alone cannot provide optimal energy savings on
the more modern systems. On Server2, the optimal energy
schedules take advantage of DVFS, DPM and reduced core
usage – for applications that do not scale linearly with number
of cores this addition provides great energy savings. On
Mobile, the optimal energy schedules take advantage of low-
power LITTLE cores to save energy. Incorporating these kinds
of features will be essential for energy savings under timing
constraints on future systems.

VIII. CONCLUSION
This paper explores the well-studied problem of allocating

resources to minimize energy while respecting real-time per-
formance constraints. This important problem requires under-
standing both algorithmic policies and the practical concerns
that may limit these algorithms on real platforms. As hardware
and computer systems evolve it is important to revisit earlier
assumptions and practices. Toward this end, the paper presents
a combined analytical and empirical approach to studying this
resource allocation problem. In particular, we have focused
on heuristic solutions which can be incorporated into existing
systems. We find that the well-known race-to-idle heuristic is
consistently bettered (in both theory and practice) by the pace-
to-idle heuristic. Additionally, we find that often not-idling is
closer to optimal than an idling-based strategy. We believe
that as future hardware exposes more and more configura-
tions governing power/performance tradeoffs, similar studies
will need to be repeated and resource allocation algorithms
must be re-evaluated. We note that the dwindling practical
efficacy of race-to-idle puts greater burden on the problem of
implementing resource schedulers. Race-to-idle is particularly
easy to implement in practice, but more sophisticated solu-
tions require increasing computational complexity and greater
understanding of the power/performance tradeoffs exhibited by
a combination of application and system.

REFERENCES
[1] S. Albers. “Algorithms for Dynamic Speed Scaling”. In: STACS. 2011, pp. 1–11.

[2] S. Albers and A. Antoniadis. “Race to idle: new algorithms for speed scaling
with a sleep state”. In: SODA. 2012.

[3] H. Aydi et al. “Dynamic and Aggressive Scheduling Techniques for Power-Aware
Real-Time Systems”. In: RTSS. 2001.

[4] N. Bansal et al. “Average Rate Speed Scaling”. In: Algorithmica 60.4 (2011).
[5] N. Bansal et al. “Speed Scaling with an Arbitrary Power Function”. In: ACM

Transactions on Algorithms 9.2 (2013).
[6] L. A. Barroso and U. Hlzle. “The Case for Energy-Proportional Computing”. In:

IEEE Computer 40 (2007).
[7] A. Bhavnagarwala et al. “The impact of intrinsic device fluctuations on CMOS

SRAM cell stability”. In: Solid-State Circuits, IEEE Journal of 36.4 (2001).
[8] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architec-

tural Implications”. In: PACT. 2008.
[9] E. Bini et al. “Minimizing CPU energy in real-time systems with discrete speed

management”. In: ACM Trans. Embedded Comput. Syst. 8.4 (2009).
[10] S. Bradley et al. Applied mathematical programming. Addison-Wesley Pub. Co.,

1977.
[11] A. Carroll and G. Heiser. “Mobile Multicores: Use Them or Waste Them”. In:

Proceedings of the 2013 Workshop on Power Aware Computing and Systems
(HotPower’13). Farmington, PA, USA, 2013, p. 12.

[12] H.-L. Chan et al. “Optimizing throughput and energy in online deadline schedul-
ing”. In: ACM Transactions on Algorithms 6.1 (2009).

[13] H. Cheng and S. Goddard. “SYS-EDF: a system-wide energy-efficient scheduling
algorithm for hard real-time systems”. In: International Journal of Embedded
Systems 4.2 (2009).

[14] J. Choi et al. “Algorithmic Time, Energy, and Power on Candidate HPC Compute
Building Blocks”. In: IPDPS. 2014.

[15] Z. Du et al. “Energy-Efficient Scheduling for Best-Effort Interactive Services to
Achieve High Response Quality”. In: IPDPS. 2013.

[16] V. W. Freeh et al. “Analyzing the Energy-Time Trade-Off in High-Performance
Computing Applications”. In: IEEE Trans. Parallel Distrib. Syst. 18.6 (June 2007).

[17] S. Funk et al. “A Global Optimal Scheduling Algorithm for Multiprocessor Low-
power Platforms”. In: RTNS. 2012.

[18] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. 1st. Morgan and Claypool Publishers,
2009.

[19] H. Hoffmann. “Racing vs. Pacing to Idle: A Comparison of Heuristics for Energy-
aware Resource Allocation”. In: HotPower. 2013.

[20] H. Hoffmann et al. “A Generalized Software Framework for Accurate and
Efficient Managment of Performance Goals”. In: EMSOFT. 2013.

[21] T. Horvath et al. “Dynamic Voltage Scaling in Multitier Web Servers with End-to-
End Delay Control”. In: Computers, IEEE Transactions on 56.4 (2007), pp. 444
–458.

[22] C. Imes and H. Hoffmann. “Minimizing Energy Under Performance Constraints
on Embedded Platforms: Resource Allocation Heuristics for Homogeneous and
Single-ISA Heterogeneous Multi-Cores”. In: EWiLi. 2014.

[23] C. Imes et al. “POET: A Portable Approach to Minimizing Energy Under Soft
Real-time Constraints”. In: RTAS. 2015.

[24] S. Irani et al. “Algorithms for Power Savings”. In: ACM Trans. Algorithms 3.4
(Nov. 2007).

[25] B. Jeff. “Big.LITTLE system architecture from ARM: saving power through
heterogeneous multiprocessing and task context migration”. In: DAC. 2012.

[26] K. Kant et al. “Willow: A Control System for Energy and Thermal Adaptive
Computing”. In: IPDPS. 2011.

[27] E. Le Sueur and G. Heiser. “Slow Down or Sleep, That is the Question”. In:
Proceedings of the 2011 USENIX Annual Technical Conference. Portland, OR,
USA, 2011.

[28] J. D. Lin et al. “Real-energy: A New Framework and a Case Study to Evaluate
Power-aware Real-time Scheduling Algorithms”. In: ISLPED. 2010.

[29] M. Maggio et al. “Power Optimization in Embedded Systems via Feedback
Control of Resource Allocation”. In: IEEE Trans. on Control Systems Technology
21.1 (2013).

[30] N. Mishra et al. “A Probabilistic Graphical Model-based Approach for Minimizing
Energy Under Performance Constraints”. In: ASPLOS. 2015.

[31] A. Miyoshi et al. “Critical Power Slope: Understanding the Runtime Effects of
Frequency Scaling”. In: ICS. 2002.

[32] T. Pering et al. “The simulation and evaluation of dynamic voltage scaling
algorithms”. In: ISLPED. 1998.

[33] P. Pillai and K. G. Shin. “Real-time Dynamic Voltage Scaling for Low-power
Embedded Operating Systems”. In: SOSP. 2001.

[34] E. Rotem et al. “Power management architecture of the 2nd generation Intel Core
microarchitecture, formerly codenamed Sandy Bridge”. In: Hot Chips. Aug. 2011.

[35] S. Saewong and R. Rajkumar. “Practical voltage-scaling for fixed-priority RT-
systems”. In: RTAS. 2003.

[36] Y. Shin et al. “28nm High- Metal-Gate Heterogeneous Quad-Core CPUs for High-
Performance and Energy-Efficient Mobile Application Processor”. In: ISSCC.
2013.

[37] V. Vardhan et al. “GRACE-2: integrating fine-grained application adaptation with
global adaptation for saving energy”. In: IJES 4.2 (2009).

[38] C.-Y. Yang et al. “System-Level Energy-Efficiency for Real-Time Tasks”. In:
ISORC. 2007.

[39] F. F. Yao et al. “A Scheduling Model for Reduced CPU Energy”. In: FOCS. 1995.
[40] H. Yun et al. “System-wide energy optimization for multiple DVS components

and real-time tasks”. In: Real-Time Systems 47.5 (2011).

