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Event-Based Prospective Memory (PM) requires remembering to perform intended deferred

actions when particular stimuli or events are encountered in the future. We propose a detailed

process theory within Braver’s (2012) proactive and reactive framework of the way control

is maintained over the competing demands of prospective memory decisions and decisions

associated with ongoing task activities. The theory is instantiated in a quantitative “Prospec-

tive Memory Decision Control” (PMDC) architecture, which uses linear ballistic evidence ac-

cumulation (Brown & Heathcote, 2008) to model both PM and ongoing decision processes.

Prospective control is exerted via decision thresholds, as in Heathcote, Loft and Remington’s

(2015) “Delay Theory” of the impact of PM demands on ongoing-task decisions. However,

PMDC goes beyond Delay Theory by simultaneously accounting for both PM task decisions

and ongoing task decisions. We use Bayesian estimation to apply PMDC to experiments ma-

nipulating PM target focality (i.e., the extent to which the ongoing task directs attention to

the features of PM targets processed at encoding) and the relative importance of the PM task.

As well as confirming Delay Theory’s proactive control of ongoing task thresholds, the com-

prehensive account provided by PMDC allowed us to detect both proactive control of the PM

accumulator threshold and reactive control of the relative rates of the PM and ongoing-task

evidence accumulation processes. We discuss potential extensions of PMDC to account for

other factors that may be prevalent in real-world PM, such as failures of memory retrieval.

Keywords: prospective memory, cognitive control, dual mechanisms framework, linear

ballistic accumulator model

Introduction

Event-Based Prospective Memory (PM) requires remem-

bering to perform intended deferred actions when particu-

lar stimuli or events are encountered in the future (Kliegel,

McDaniel, & Einstein, 2008). Event-based PM task re-

quirements are prevalent in everyday life (e.g., remember-

ing to post a letter when you next drive past a mailbox),

and can be crucial to personal safety and the safety of oth-

ers (e.g., remembering to slow down when driving through a

school zone; Bowden, Visser, & Loft, 2017). PM function is

The data and models discussed in the manuscript are available

at https://osf.io/t3cqw/. The results have been discussed at the

Australian Mathematical Psychology Conference, the Australasian

Experimental Psychology Conference, and the International Con-

ference on Prospective Memory. Please address correspondence

about this article to Luke Strickland, School of Medicine, Di-

vision of Psychology, Private Bag 30, The University of Tas-

mania, Churchill Avenue, Sandy Bay 7005, Australia. E-mail:

luke.strickland@utas.edu.au

also essential to expertise in many safety-critical work con-

texts such as in aviation, medicine, and defense (Dismukes,

2012; Gawande, Studdert, Orav, Brennan, & Zinner, 2003;

Loft, 2014). Given the number of actions required from ex-

perts in such work settings, even small PM error probabil-

ities can translate into significant accident rates (Dismukes

& Nowinski, 2006; Shorrock, 2005), with potentially disas-

trous consequences. In addition, PM is associated with dif-

ficulties with higher-level activities of daily living in both

clinical samples and older adults (e.g., Woods, Weinborn,

Velnoweth, Rooney, & Bucks, 2012). It is essential that the

design of interventions in these aforementioned contexts is

based on a thorough analysis of PM processes.

Einstein and McDaniel (1990) proposed a paradigm to

study event-based PM in the laboratory, in which participants

perform an ongoing task that usually requires a series of bi-

nary choices (e.g., a lexical decision making task). Prior to

commencing that task, participants are also instructed to per-

form a PM action (e.g., press ‘9’) if they encounter a PM

target (e.g., any letter string that contains “tor”) during that

ongoing task. Studies using the paradigm focus on two mea-
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sures. The first is PM accuracy, that is, the proportion of

PM trials to which participants make a PM response. The

second is response times (RTs) to non-PM trials; that is, on-

going task trials in which no PM target is presented, and

thus no PM response is required (Smith, Hunt, McVay, &

McConnell, 2007). Correct RTs are typically longer in PM

blocks, blocks of trials in which there is a PM demand, as

compared with control blocks, blocks of trials with no PM

demand. The slow down is referred to as PM cost (e.g.,

Einstein et al., 2005; Hicks, Marsh, & Cook, 2005; Loft &

Yeo, 2007; Smith, 2003). PM theories use costs to infer the

PM-related processes that occur not only on non-PM trials

but also those that occur on PM trials, and the associated

cognitive mechanisms responsible for variation in PM accu-

racy (e.g., Einstein et al., 2005; Guynn, 2003; Loft & Yeo,

2007; Marsh, Hicks, Cook, Hansen, & Pallos, 2003; Smith

& Bayen, 2004). Yet, the PM literature lacks a quantitative

theory connecting PM accuracy and PM cost. In addition,

most PM analysis ignores other potentially important fea-

tures of manifest behavior, such as error RT distributions and

the RT distributions observed on PM trials. In the current

paper we propose a detailed process theory of the manner

in which control is maintained over competing demands of

PM decisions and decisions associated with ongoing task ac-

tivities. We instantiate the theory in a comprehensive quan-

titative model that is able to accurately account for all the

features of the data from the Einstein and McDaniel (1990)

paradigm, as well as the effects of two benchmark manipu-

lations (PM focality and PM importance). Our findings shed

new light on the mechanisms underlying PM, and seriously

challenge other current PM theories.

The Race to Remember

To our knowledge, there have been two previous attempts

to quantitatively model both PM and ongoing task respond-

ing. Arnal (2008) instantiated PM and ongoing task pro-

cesses as two separate diffusion processes, with the first dif-

fusion process to complete determining the overt response.

Gilbert, Hadjipavlou, and Raoelison (2013) proposed a par-

allel distributed processing model in which the PM and on-

going task nodes are updated non-linearly over many cy-

cles of perceptual input until activation for one node reaches

threshold and the response is made. Although both of these

studies simulated a PM process, neither fit their models to

data. Thus, it is not clear to what degree these models pro-

vide an accurate and comprehensive account of data from

PM paradigms.

Recent research provides a more fine-grained analysis that

incorporates separate fits to the precise features of each indi-

vidual’s data set, but focuses exclusively on non-PM trials

(Ball & Aschenbrenner, 2017; Boywitt & Rummel, 2012;

Heathcote, Loft, & Remington, 2015; Horn, Bayen, & Smith,

2011; Horn & Bayen, 2015; Strickland, Heathcote, Reming-

ton, & Loft, 2017). Two model architectures have been fit to

non-PM trial responses: the diffusion decision model (DDM;

Ratcliff, Gomez, & McKoon, 2004), and the Linear Ballistic

Accumulator (LBA; Brown & Heathcote, 2008). Thus far,

where both were applied to PM data sets, the LBA provided

better fit (Heathcote, Loft, & Remington, 2015; Strickland

et al., 2017). In addition, unlike the DDM, the LBA easily

extends to more than two choices without sacrificing analytic

tractability. Thus, in the current study we use the LBA as the

basis to include both PM and ongoing task processes. Our

architecture includes a pair of accumulators corresponding

to each of the binary ongoing-task responses, and a third ac-

cumulator corresponding to the PM response. Stimulus fea-

tures consistent with a particular response provide excitatory

input to the corresponding accumulators, as well as possibly

providing inhibitory inputs to the other accumulators. The

evidence total in each accumulator increases independently

of the evidence totals in other accumulators, and the first

accumulator to reach its threshold determines the response

made. This setup with feedforward excitation and inhibition

and an independent race makes the model tractable, allowing

fits to all aspects of each individual subject’s data. If success-

ful, it will enable the most thorough quantitative examination

of PM data sets to date.

Figure 1 depicts the model for a lexical decision ongoing

task with an additional PM task demand. There are three

possible responses, indicating that the stimulus is either a

word, a non-word, or a PM target. Evidence for each re-

sponse accrues linearly towards threshold, starting from a

point that varies independently between accumulators from

trial to trial according to a uniform distribution. Correct PM

responses (PM hits) occur on PM trials when the PM accu-

mulator reaches threshold before either of the ongoing task

decision accumulators. Likewise, PM misses occur when

one of the ongoing task accumulators reaches threshold be-

fore the PM accumulator.

Response probabilities vary depending on the values of

three classes of model parameters: start-point variability,

thresholds and evidence accumulation rates. Evidence ac-

cumulates at a constant rate within a given trial, but rates

differ from trial to trial according to a normal distribution.

Rate parameters are usually assumed to vary as a function

of stimulus differences. Thresholds are set prior to stimulus

presentation, and hence are not affected by stimulus charac-

teristics that vary unpredictably from trial to trial. Thresh-

olds, can, however, vary over blocked manipulations (e.g.,

PM vs control blocks), and over accumulators (e.g., the PM

response threshold as compared with the ongoing task re-

sponse thresholds). The level of start-point variability is as-

sumed not to vary over the conditions we examine here, al-

though it might vary in other circumstances.

Decision time (i.e., the time for the winning response to

accumulate to threshold) is determined by the same set of
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parameters as response probabilities. Total RT is determined

by decision time plus non-decision time, which captures the

time for stimulus encoding and motor response production.

We assume non-decision time to be the same for all accumu-

lators (and take measures to ensure this, like making manual

responses for all choices equally easy), and so estimate only

one associated parameter. In addition, we assumed that non-

decision time would not play a role in PM cost, as it has

not done in any previous LBA modeling (Heathcote, Loft, &

Remington, 2015; Strickland et al., 2017).

We will use our LBA-based analysis to constrain and de-

velop PM theory. Firstly, by evaluating the ability of the

model to fit the observed PM data, we can determine whether

the simple assumptions that make it tractable - a parallel in-

dependent race with feedforward excitation and inhibition

and linear updating - are sufficient to model the processes

driving performance in the Einstein and McDaniel (1990)

paradigm. Model miss-fit will suggest that more complex

(and, unfortunately, likely less computationally tractable)

mechanisms are required, such as the non-linear updating

assumed by Gilbert et al. (2013), or perhaps other forms of

non-linearity, such as the recurrent excitation and inhibition

assumed in some race models (e.g., Usher & McClelland,

2001).

Assuming a sufficiently good fit, the way in which model

parameters vary to capture PM data provides detailed quan-

titative information about the latent cognitive processes that

drive observed responding. To date, verbal PM theories have

almost exclusively relied on PM accuracy and ongoing task

mean RT for constraint, with less attention paid to trade-offs

between accuracy and RTs, to RT distributions, and to PM

RTs. In contrast, our model parameters incorporate informa-

tion from the entire observed data set. Often, verbal theories

of mean effects (e.g., theories of the PM cost effect) spec-

ify mechanisms that map naturally to changes in LBA model

parameters, and so theorizing about these mechanisms can

potentially be constrained by more data than it is in standard

analysis. We now review other current PM theories and how

they correspond to our model.

Capacity Sharing and Spontaneous Processes

Extant theories of PM performance argue that PM is of-

ten, or always, reliant on the allocation of cognitive capac-

ity away from the ongoing task and towards a capacity con-

suming PM detection process (Einstein et al., 2005; Guynn,

2003; Nowinski & Dismukes, 2005; Smith, 2003). This ca-

pacity sharing is proposed to be ubiquitous in that it occurs

on both PM and non-PM trials within PM blocks. Initial

studies did not find decreased non-PM trial accuracy in PM

blocks compared with control blocks (Kidder, 1999; Kid-

der, Park, Hertzog, & Morrell, 1997; Park, Hertzog, Kid-

der, Morrell, & Mayhorn, 1997; West & Craik, 1999), but

Marsh and Hicks (1998) showed that concurrent tasks tap-

ping executive control could impair PM performance, and

Smith (2003) then found PM cost in terms of slowed RT to

non-PM trials in PM blocks versus control blocks. Smith

argued that elevated non-PM trial RTs are a more sensitive

measure of reduced capacity than accuracy. Since then, PM

cost has remained central to assertions that capacity sharing

is present (for discussions see Einstein & McDaniel, 2010;

Smith, 2010). Capacity sharing theories predict that the PM

cost on non-PM trials should benefit PM accuracy on PM

trials. There are at least three lines of evidence supporting

this. First, PM accuracy and costs to the ongoing task are of-

ten positively correlated across subjects (Smith, 2003; Smith

& Bayen, 2004). Second, RTs to non-target trials preceding

successful PM target detection and response can be longer

than RTs to ongoing task trials preceding PM errors (Loft

& Yeo, 2007; West, Krompinger, & Bowry, 2005). Third,

emphasizing the importance of PM tasks or increasing the

frequency of PM targets increases both costs to the ongoing

task and PM performance (e.g, Kliegel, Martin, McDaniel,

& Einstein, 2004; Loft, Kearney, & Remington, 2008; Loft

& Yeo, 2007).

Recent PM literature acknowledges that PM cost cannot

be attributed to capacity sharing without also considering

non-PM trial accuracy, because RT increases may also result

from strategic processes such as a shift in the speed/accuracy

trade-off (e.g., Smith, 2010). To address this, researchers

have applied the LBA and DDM to non-PM trials, in order

to titrate the latent variables underlying PM cost and non-

PM trial accuracy. The original capacity sharing hypothesis

of several authors was that PM cost would be driven by de-

creased accumulation rates (Boywitt & Rummel, 2012; Horn

et al., 2011; Horn, Bayen, & Smith, 2013). The idea, consis-

tent with general theories of cognitive resources (e.g., Bun-

desen, 1990; Gobell, Tseng, & Sperling, 2004; Kahneman,

1973; Navon & Gopher, 1979; Pashler, 1984; Welford, 1952;

Wickens, 1980), is that processing speed of the ongoing task

is increased in proportion to the amount of cognitive capacity

it receives. In the DDM, in which accumulation towards the

correct response is the same as accumulation away from the

error response, reduced processing speed is reflected in evi-

dence accumulation heading less directly towards the correct

response. In the LBA, reduced cognitive capacity could cost

ongoing task processing in two ways. First, the accumulation

of the ‘correct’ accumulator (e.g., in a lexical decision task,

the word accumulator when the stimulus is a word) could

decrease, implying that participants become less apt at iden-

tifying true signal from the stimuli. Second, the accumula-

tion of the ‘error’ accumulator (e.g., non-word accumulator

for a word stimulus) could increase, implying that partici-

pants are incorrectly interpreting stimulus attributes in favor

of the wrong response. Several recent computational model-

ing studies, examining a total of nine PM cost data sets, have

attempted to detect a capacity cost to accumulation rates on
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Figure 1. An LBA model of a PM task with a concurrent ongoing lexical-decision task. Evidence for each response is

initially drawn from a uniform distribution on the interval [0, A]. Over time, evidence accumulates towards each response at

accumulation rates drawn from normal distributions with mean v, and standard deviation sv. The first response to reach its

threshold, b, is the response made. We refer in our results to B, which is b−A. Total RT is determined by accumulation time

plus non-decision time.

non-PM trials using both the LBA and DDM (Ball & As-

chenbrenner, 2017; Heathcote, Loft, & Remington, 2015;

Horn & Bayen, 2015; Strickland et al., 2017). The modeling

revealed that PM cost is largely due to increases in response

threshold, and is not due to changes in ongoing task evidence

accumulation. In the DDM and LBA thresholds are the locus

of strategy, not capacity, and so these findings suggest that

PM cost does not result from capacity sharing.

In contrast to PM theories that specify PM always requires

ongoing task capacity (e.g., Smith, 2003), the multiprocess

view of PM (Einstein et al., 2005; McDaniel & Einstein,

2000) claims that in some paradigms PM does not rely on

ongoing task capacity because PM retrieval can occur ‘spon-

taneously’ on PM trials. The more recent dynamic multi-

process view (Scullin, McDaniel, & Shelton, 2013) extends

the standard multiprocess view by specifying that, with com-

plex task sets, spontaneous processes and capacity sharing

can interact, for example by spontaneous retrieval processes

triggering a period of capacity-consuming monitoring, but

for standard laboratory paradigms the theories make similar

claims. The multiprocess view proposes that spontaneous

processes are more likely if PM targets are ‘focal’ to ongo-

ing task performance (Einstein & McDaniel, 2010). PM tar-

gets are considered focal to ongoing task performance when

there is high overlap between the information that needs to

be assessed to perform the ongoing task and the information

that needs to be assessed to detect the PM target; for exam-

ple detecting a single PM target word may be facilitated by

making lexical decisions (Einstein et al., 2005). PM targets

are ‘non-focal’ if noticing the features requires some extra

processing. For example, identifying any word within a cat-

egory (e.g., make a PM response if you see a word that is an

animal) during lexical decision is ‘non-focal’, because per-

forming lexical decisions does not require a priori encoding

of categorical concepts (Einstein & McDaniel, 2010). Many

studies find high focal PM accuracy with little or no PM costs

(Ellis & Milne, 1996; Harrison & Einstein, 2010; Knight et

al., 2011; Marsh et al., 2003; Scullin, McDaniel, Shelton, &

Lee, 2010). In contrast, the same studies find lower non-focal

PM accuracy with higher PM cost.

On the basis of the reviewed effects the multiprocess view

distinguishes focal and non-focal PM mechanisms, claiming

that non-focal PM is reliant on PM monitoring that shares

capacity with the ongoing task, whereas focal PM is not re-

liant on sharing ongoing task capacity (and hence instead re-

liant on spontaneous, cue-driven PM processing) (e.g., Ein-

stein et al., 2005; Scullin, McDaniel, Shelton, & Lee, 2010).

However, as reviewed, the recent PM cost modeling suggests

that non-focal cost resulted from increased response thresh-

olds, rather than decreased ongoing task accumulation rates,

over a range of non-focal tasks (Ball & Aschenbrenner, 2017;

Heathcote, Loft, & Remington, 2015; Horn & Bayen, 2015;

Strickland et al., 2017). Given that, even with this lack of

evidence for capacity sharing, non-focal PM accuracy was

relatively high in the modeled data sets (>50%), it may be

unnecessary to distinguish focal and non-focal PM tasks by

their demand for ongoing task capacity. In line with this, the

proposed LBA architecture represents both focal and non-
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focal PM in the same way, as a PM accumulator that mon-

itors for the PM items. Although this architecture includes

PM capacity, in terms of the speed of the PM accumulation

process, it could potentially explain a broad range of canoni-

cal PM effects without invoking shared capacity between the

PM task and ongoing task. These effects include the presence

of PM errors, PM cost, the association between PM cost and

PM accuracy, and also variation in cost and PM accuracy as

a function of task conditions.

In our model, PM errors occur because PM and ongoing

task decision processes compete in a race. Previous research

has found that responses that have not been performed for

a while take longer than more recently performed responses

(Ruthruff, Remington, & Johnston, 2001), which suggests

faster processing for frequent decisions than for infrequent

decisions. Thus, the fact that PM responses are required less

frequently than ongoing task responses may put them at a

disadvantage in the race to response threshold, leading to

substantial PM error rates. In line with this conceptualization

of PM errors, Loft and Remington (2010), found that partic-

ipants made more PM errors when they needed to remem-

ber to deviate from more strongly practiced ongoing task re-

sponse routines. Further, Loft and Remington (2013) found

that when they delayed participants’ opportunity to respond

by 1 second, the difference between focal and non-focal PM

accuracy (long assumed to reflect different capacity-sharing

requirements) was eliminated. Thus, the race between PM

and ongoing task decisions can naturally, and plausibly, lead

to PM errors, without failures of special-purpose monitoring

mechanisms that rely on ongoing task capacity. However,

a sufficient PM theory must explain many other features of

PM data as well, including PM cost and the variation in PM

accuracy associated with factors such as PM focality and PM

importance. To fit these effects, decision process parameters

would have to vary across PM conditions. As reviewed, the

previous modeling indicates no variation in ongoing task ca-

pacity over PM conditions, inconsistent with previous theory.

An alternative to capacity sharing is that, in response to the

habitual advantage of ongoing task decisions, the cognitive

system invokes “cognitive control” to aid the PM decision

in completing on PM trials. Cognitive control is a general

feature of the cognitive system that allows us to act in a

goal-directed and flexible way, freeing us from automatic,

stimulus bounded, behavior, such as the dominance of more

frequent responding over rare responding (Miller & Cohen,

2001; Miyake et al., 2000). Thus, cognitive control is critical

to many paradigms in which low frequency responses must

overcome more frequent responses on some trials (Braver,

Barch, Gray, Molfese, & Snyder, 2001), like PM responses

must in the PM paradigm. Recent PM literature recognizes

that cognitive control mechanisms would likely contribute to

PM performance, and suggests that they should be integrated

into PM theory (Bugg, McDaniel, & Einstein, 2013). We

propose that cognitive control over PM and ongoing task de-

cision processes accounts for many phenomena of interest

in the PM literature, including PM cost, the effects of PM

focality, and the effects of PM importance.

Dual Mechanisms of Prospective Memory Decision

Control

Recently Braver (2012) proposed that there are two

classes of cognitive control: proactive and reactive. This dual

mechanism theory has been useful for understanding cog-

nitive control in many paradigms, including working mem-

ory tasks (e.g., Braver, Gray, & Burgess, 2007; Burgess &

Braver, 2010; Marklund & Persson, 2012), the AX- Con-

tinuous performance task (e.g., Braver, Barch, Keys, et al.,

2001; Locke & Braver, 2008; van Wouwe, Band, & Rid-

derinkhof, 2011), the stop signal task (e.g., Boehler, Schev-

ernels, Hopf, Stoppel, & Krebs, 2014; Stuphorn & Emeric,

2012), the Stroop task (e.g., Kalanthroff, Avnit, Henik, Dav-

elaar, & Usher, 2015; West, Choi, & Travers, 2010), and the

cued task-switching paradigm (e.g., Chevalier, Martis, Cur-

ran, & Munakata, 2015; Lucenet, Blaye, Chevalier, & Kray,

2014). Furthermore, proactive and reactive control have been

found to correspond to distinct patterns of brain activity (Ap-

pelbaum, Boehler, Davis, Won, & Woldorff, 2014; Braver,

2012; Irlbacher, Kraft, Kehrer, & Brandt, 2014). Braver pro-

posed that both control modes may be relevant to PM, and

this has since been discussed in the PM literature (Ball, 2015;

Bugg et al., 2013). Below we propose a way to identify both

forms of cognitive control in the PM paradigm by using our

model. We refer to this theoretical perspective as PM deci-

sion control (PMDC).

Proactive Control. Proactive control is deployed in or-

der to “bias attention, perception and action systems in a

goal-driven manner” (Braver, 2012, p. 2). The key distin-

guishing feature of proactive control is that it is active in

advance of the cognitively demanding event, so that it will

already be in effect when that event occurs. Thus, in the

Einstein and McDaniel paradigm (1990), PM-related proac-

tive control should be present on all PM block trials, includ-

ing non-PM trials. In this way it is similar to the prepara-

tory capacity-sharing mechanisms specified in previous PM

theory (e.g., Smith, 2003), and to theories of ‘attentional al-

location policies’ (Marsh, Hicks, & Cook, 2005; Marsh et

al., 2003). It is also similar to these theories in that it re-

flects an ongoing adjustment to decisions due to an appreci-

ation of increased task demands. Using a standard PM anal-

ysis, proactive control and capacity sharing are difficult to

compare, because their effects on the dependent variables

are qualitatively the same. Either more proactive control,

or more capacity sharing from the ongoing task towards the

PM task, could increase PM cost and PM accuracy. How-

ever, the PMDC model can parse proactive control from ca-

pacity sharing. As reviewed, capacity sharing should take a
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toll on processing speed, which corresponds to accumulation

rates. In contrast, threshold changes naturally correspond to

proactive control, as thresholds are the parameters of the de-

cision process that are set prior to trial presentation, and the

parameters that cause strategic trade-offs between responses

and RTs. For example, Verbruggen & Logan (2009) pro-

pose that “proactive slowing” of one decision process can be

implemented so that another process has more time to com-

plete. This is consistent with the delay theory of PM cost,

which proposes that participants slow their ongoing task de-

cision process in order to give a parallel PM process more

to reach response selection (Heathcote, Loft, & Remington,

2015; Loft & Remington, 2013).

The scope of delay theory is more limited than PMDC,

because it makes few specific claims about the PM process

itself. Thus, delay theory is silent on potentially important

PM-related phenomena. For example, proactive control may

be exerted on the PM response threshold. With a lower PM

threshold, the PM accumulator is more likely to win the PM

race when PM targets are presented. In our PMDC archi-

tecture, we propose that both forms of threshold adjustments

are possible. That is, as in delay theory, ongoing task thresh-

olds may be increased to increase the probability that the PM

accumulator completes before the ongoing task accumula-

tors. In addition, the PM threshold may be decreased for the

same reason. It was not possible to examine this mechanism

in previous modeling efforts, because they focused only on

non-PM trials, but here we are able to test it because we also

fit performance on PM trials.

Reactive Control. Reactive control is applied to influ-

ence responding “only as needed, in a just-in-time manner”

(Braver, 2012, p. 2). In the context of the Einstein and Mc-

Daniel (1990) paradigm, reactive control would be active on

PM trials, and not active on non-PM trials. Recent PM liter-

ature suggests that reactive control may sometimes facilitate

PM (Bugg et al., 2013), but to our knowledge the PM litera-

ture lacks a detailed process theory of how this reactive con-

trol would operate. With PMDC we can quantitatively char-

acterize reactive control by comparing parameters between

PM trials and non-PM trials. Reactive control will not affect

thresholds, as they are set prior to identifying whether the

item is a PM target. Thus, in order to facilitate PM accuracy,

reactive control would have to affect evidence accumulation

rates on PM trials. Note that reactive control can affect accu-

mulation rates on PM trials while leaving accumulation rates

on non-PM trials intact. It can thus be distinguished from

capacity sharing, which predicts that accumulation rate de-

creases are active for both PM trials and non-PM trials in

PM blocks.

Figure 2 presents the framework for reactive accumulation

rate control in the PMDC architecture, using the example of

a lexical decision task in which participants have a PM task

demand. The encoding process includes detectors (squares)

for each possible response to the task: ‘word’, ‘non-word’,

and ‘PM’. The detectors receive input from stimulus fea-

tures. Output from the detectors can directly contribute (solid

lines) to the input to the corresponding evidence accumula-

tor, which we refer to as excitation of the accumulator. Thus,

on PM trials, detection of PM-related stimulus attributes will

directly speed up PM accumulation (A1). This may allow

the PM accumulator to outpace ongoing task accumulators,

and thus for a PM response to reach threshold before an on-

going task response. Higher PM accumulation on PM trials

is a trivial prediction of PMDC, and not unique to it, as PM

stimuli contain evidence that a PM response should be made,

whereas non-PM stimuli do not contain this evidence. Faster

PM accumulation could also result from an increase in the

capacity devoted to the PM decision process.

More specific to PMDC, activation of the PM detector can

also inhibit ongoing task response production through inputs

to the two ongoing task accumulators (B1 & B2). This in-

hibition of ongoing task accumulators distinguishes reactive

control from spontaneous retrieval mechanisms, or increased

PM capacity, which would both increase excitation of the

PM accumulator. The LBA does not explicitly model inter-

actions between accumulators during the accumulation pro-

cess, such as competition between PM and ongoing task ac-

cumulation, or correlations between inputs to different accu-

mulators. These assumptions enable the likelihood for a par-

ticular accumulator winning at a particular time to be written

(although see Heathcote & Love, 2012), which in turn sup-

ports sufficient estimation (i.e., estimation that takes account

of all information in the data). However, the LBA can use

“feedforward” interactions to achieve similar effects with-

out sacrificing analytic tractability (van Ravenzwaaij, Brown,

Marley, & Heathcote, n.d.). Feedforward interactions occur

when the input to an accumulator associated with one re-

sponse is affected by evidence associated with alternative re-

sponses. For example, evidence for the presence of a PM tar-

get might affect the input to accumulators associated with the

ongoing-task responses. PMDC allows for such feedforward

effects, enabling it to account for competitive or cooperative

interactions among stimulus attributes associated with differ-

ent choices (see also Trueblood, Brown, & Heathcote, 2014).

PMDC’s feedforward inhibition structure is illustrated in

Figure 2 (dashed lines). Conceivably, input to the detec-

tors for each response could inhibit each of the compet-

ing responses. However, such feedforward interactions are

not always identifiable. For example, decreased non-word

accumulation on word trials is not uniquely attributable to

inhibition from the word detector. It could equally occur

if lexical evidence is drawn from a single dimension (and

thus word trials would necessarily contain less non-word ev-

idence). PM trials are unique in that PM stimuli contain no

less evidence towards the ongoing task responses than non-

PM stimuli. For example, a PM target that is also a word
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Figure 2. Conceptual model of reactive control in the PM paradigm. Panel 1: The underlying architecture. Input to each

detector from stimulus encoding carries forward to decision processing to excite accumulation towards the relevant response

(solid lines), and inhibit accumulation towards competing responses (dashed lines). Note we depict a threshold bias against

word responding, as is often induced if PM items are always words (Heathcote, Loft, & Remington, 2015; Strickland et al.,

2017). Panel 2: Reactive control from the PM detector. On PM trials, PM stimulus inputs will trigger the PM detector,

potentially increasing both excitation of PM accumulation (A1), and inhibition of ongoing task accumulation (B1 and B2).

Inhibition via B1 and B2 can be identified by comparing word and non-word accumulation rates on PM trials with non-PM

trials.

should not have any less evidence in its stimulus features

for the word accumulator than a non-PM word. Therefore,

lower accumulation towards ongoing task responses on PM

trials, as compared with non-PM trials, can be attributed to

feedforward inhibition from the PM detector.

Inhibition of ongoing task decisions from the PM detector

could explain the effects of PM “lures”. There are two types

of PM lure trials: 1) control block trials in which a PM target

is presented despite participants being informed there is no

need to perform the PM task, and 2) non-PM trials in PM

blocks in which certain stimuli have some, but not all, the

necessary PM features. On both types of lure trials, RTs are

longer than on regular non-PM trials (Knight et al., 2011;

Scullin, Einstein, & McDaniel, 2009; Scullin, McDaniel, &

Einstein, 2010). Although this RT slowing on lures strongly

suggests that some type of spontaneous process is triggered

by PM input and interferes with ongoing task responding, the

mechanism underlying this interference is unclear (Knight et

al., 2011). PMDC provides a process account, under which

input to the PM detector on lure trials would activate reac-

tive inhibition of ongoing task accumulation, extending total

ongoing task decision time.

One objection to the reactive control account of the PM

lure effect is that ongoing task RTs on PM error trials (i.e.,

ongoing responses made on PM trials) are sometimes faster

than ongoing task RTs on non-PM trials (Marsh, Hicks, &

Watson, 2002). At first glance, this might seem to imply that

PM accumulation actually speeds up ongoing task process-

ing, rather than inhibits it. However, fast PM error RTs can

emerge from our model with no such assumption. All trials

on which the ongoing task accumulators are slower than the

PM accumulator will lead to a PM hit, and hence be excluded

from the ongoing task RT distribution for PM error trials.

This would lead to quicker average ongoing task RTs on PM

trials by “statistical facilitation” (Raab, 1962). Consistent

with this, Gilbert et al. (2013) found that their simulation

model of PM predicted fast PM miss (i.e., ongoing responses

on PM trials) RTs despite their model explicitly specifying

that PM stimulus inputs should lead to slower ongoing task

processing. Our modeling will go further by testing whether

slowed ongoing task processing on PM trials fits the actual

observed RT distributions from our experiments.

Testing Prospective Memory Decision Control

We performed two studies that test the PMDC architec-

ture. One objective of our studies is to evaluate whether

the model is capable of fitting the full array of data from a

PM paradigm. Adequacy of fit will guide us as to whether

the assumption that PM and ongoing task decision processes

compete in an independent race is reasonable. Misfit might

also occur if the LBA is the wrong model of each accumu-

lation process, but given the breadth of past successful LBA

fits this seems less likely. The LBA has been successfully
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applied to many experimental tasks, including: lexical deci-

sion (Brown & Heathcote, 2008), brightness discrimination

(Brown & Heathcote, 2008), absolute identification (Brown

& Heathcote, 2008), random dot motion (Forstmann et al.,

2008), redundant target detection (Eidels, Donkin, Brown, &

Heathcote, 2010), the stop signal paradigm (Matzke, Love, &

Heathcote, 2017), and mental rotation (Provost & Heathcote,

2015).

Assuming we find good fit, we will evaluate, based on

model parameters, both the capacity sharing accounts of the

PM paradigm and the PMDC account. We will do this in part

by comparing trials from control blocks with non-PM trials

from PM blocks (proactive control), and in part by compar-

ing non-PM trials from PM blocks with PM trials from PM

blocks (reactive control). For both experiments, the ongoing

task was lexical decision. Each experiment focused on one

benchmark manipulation from the PM literature. The first is

a manipulation of PM target focality. Experiment 1 included

two separate blocks of PM: one in which participants have

a focal PM task, and one with a non-focal PM task. Focal

PM demands typically produces higher PM accuracy with

lower PM cost than non-focal PM demands. Experiment 2

manipulates the emphasis of the importance of the PM task.

Again it includes two types of PM blocks: one where the

instructions emphasize the importance of the PM task over

the ongoing task, and one where the instructions emphasize

the importance of the ongoing task over the PM task. Em-

phasizing the importance of the PM tasks typically produces

higher PM accuracy, with higher PM cost (e.g., Einstein et

al., 2005; Kliegel et al., 2004; Loft & Yeo, 2007; Smith &

Bayen, 2004).

In terms of the standard PM analysis of mean ongoing

task non-PM trial RT and mean PM accuracy, previous PM

theory can already account for the effects of focality and

importance. For example, capacity theories claim that fo-

cal PM has a lower capacity requirement (Einstein & Mc-

Daniel, 2005; Smith, Hunt, McVay, & McConnell, 2007),

which means that high PM accuracy can be achieved with

less PM costs, and that PM emphasis causes more attention

to be allocated to the PM task, which results in increased cost

and increased PM accuracy (Einstein et al., 2005; Smith &

Bayen, 2004). However, the decision processes that capacity

sharing theories would predict to underlie these effects differ

from the decision process mechanisms specified by PMDC.

We now outline the differing predictions of the theories.

Capacity sharing. A ubiquitous PM capacity demand

on the ongoing task should cause decreased non-PM trial ac-

cumulation rates in PM blocks. As reviewed, this account has

been rejected for nine previous data sets (Heathcote, Loft, &

Remington, 2015; Horn & Bayen, 2015; Strickland et al.,

2017, Ball & Aschenbrenner, 2017). However, the current

approach to analysis differs greatly from previous work, and

thus rejecting capacity sharing is not a foregone conclusion.

We made several departures from previous analysis. Firstly,

and most obviously, this is the first time that PM trials will

be in the model, and as some parameters are shared between

PM and non-PM trials, the addition of these trials could po-

tentially affect our result. Secondly, Experiment 2 includes

a condition in which PM is important, and capacity sharing

is considered to be particularly likely under such conditions

(Smith & Bayen, 2004). In addition, we estimate parameters

using Bayesian methods, whereas all previous modeling has

used optimization methods like maximum likelihood. We

also used posterior inference, in which a model that can po-

tentially produce all relevant effects is fit and conclusions are

drawn based on posterior parameter distributions (see Brooks

& Gelman, 1998), rather than model selection.

Proactive control. PMDC predicts that thresholds will

be proactively controlled in favor of PM responding in PM

blocks. Thus, in line with previous findings (Heathcote,

Loft, & Remington, 2015; Strickland et al., 2017), we ex-

pect that ongoing task response thresholds will increase in

PM blocks compared with control blocks. In Experiment

1, we include PM instructions that are “stimulus-specific”

(Lourenço, White, & Maylor, 2013). That is, PM stimuli

can only be one type of ongoing task stimulus (in our case,

they could only be words in a lexical decision task). This en-

hances the competition between the PM response and one of

the relevant ongoing task responses (e.g., more competition

between PM and ‘word’ if PM targets are always words), and

decreases the competition between the PM response and the

other ongoing task response. Thus, if, as specified in PMDC,

thresholds elevations are strategically targeted at buying the

PM decision process more time on PM trials, we would ex-

pect to see larger threshold increases for the ongoing task

accumulator relevant to PM (word) than the irrelevant on-

going task accumulator (non-word), an effect we refer to as

selective delay. Note that, as participants do not know in

advance what items they will be presented, and thresholds

cannot be reactively adjusted, this threshold increase will be

active across all trials in PM blocks - word trials, non-word

trials, and PM trials.

An alternative view is that thresholds will increase equally

between word and non-word responding, due to a general

perception of increased task complexity (see Horn & Bayen,

2015; Strickland et al., 2017). Previous literature has pro-

duced a mixed picture regarding whether general caution

increases result from stimulus-specific PM instructions (cf.

Heathcote, Loft, & Remington, 2015; Horn & Bayen., 2015;

Strickland et al., 2017). The presence vs. absence of gen-

eral caution increases appears to depend on task conditions.

For example, in Strickland et al. (2017), we found that fo-

cal PM was associated only with selective delay. In con-

trast, non-focal PM caused a larger selective delay than focal

PM, but also a non-word (general) threshold increase. We

argued that participants implement the latter general caution
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increase because the complexity of the non-focal task might

be perceived to be higher. In Experiment 1, our task condi-

tions are very similar to Strickland et al. (2017), and thus we

expect to replicate this finding.

In Experiment 2, we include PM targets in both types of

stimuli (words and non-words). This would lead to similar

competition between the PM response and both ongoing task

responses, and so under PMDC we expect to see substantial

threshold increases for both accumulators (word and non-

word). In addition, we would expect that thresholds should

increase more when the importance of the PM task is empha-

sized. In Experiment 2, the PM task is identical in the blocks

where it is important and blocks where it is unimportant, and

thus increased ongoing task thresholds as a function of PM

importance can be ascribed uniquely to proactive control and

not to task complexity.

These predictions of PMDC could all also have been de-

rived from the delay theory of PM cost (Heathcote, Loft, &

Remington, 2015). However, PMDC goes further in specify-

ing that the PM threshold may also vary in favor of the PM

response. Prior to PMDC, variation in PM threshold had not

been considered, despite being a potential source of differ-

ences in PM accuracy. It is not clear how the PM threshold

will vary in non-focal PM conditions, as compared with fo-

cal PM conditions, in Experiment 1. On the one hand, the

non-focal PM threshold might be lower than the focal PM

threshold, in order to compensate for slower non-focal PM

accumulation. On the other hand, the non-focal PM thresh-

old might be higher because the non-focal PM rule requires

more evidence. Nonetheless, it is important to examine how

the PM threshold varies, and also to control for threshold

variations when examining other PM-related parameters. In

Experiment 2, PMDC makes a direct prediction about the

PM threshold; when participants are instructed to prioritize

the PM task, they will proactively lower their PM thresh-

old so that the PM accumulator has a higher chance to reach

threshold before the ongoing task accumulators.

Reactive control. PMDC also extends beyond delay

theory by specifying that reactive control may affect the ac-

cumulation rates of PM trials as compared with non-PM tri-

als. Obviously, the PM accumulation rate should be higher

on PM trials, due to the processing of PM related stimulus

attributes that are not present on non-PM trials. More impor-

tantly for PMDC’s account, reactive control may reduce on-

going task accumulation on PM trials. For example, on a PM

trial with a word stimulus (and perhaps particularly under the

stimulus-specific PM conditions of Experiment 1), PMDC

allows that accumulation towards the ‘word’ response could

be reduced by an inhibitory input from the PM detector, de-

spite their being equal evidence that the item is a word as

there is on non-PM trials.

Our experimental manipulations may also affect reactive

control. Focal PM, as compared with non-focal PM, may be

more strongly activated by bottom-up retrieval processes on

PM trials, increasing reactive control of ongoing task deci-

sion processing (McDaniel, LaMontagne, Beck, Scullin, &

Braver, 2013). We can identify with our modeling which

pathways of reactive control are increased. First, focal PM

targets might increase the excitation towards the PM re-

sponse (i.e., increased PM response accumulation on PM

trials), without diminishing ongoing task processing (i.e, no

change in ongoing task response accumulation on PM tri-

als). Alternatively, focality may increase feedforward inhi-

bition of ongoing task decision accumulation on PM trials

(i.e., decreased ongoing task accumulation on PM trials with

no change in PM accumulation rates). It is also possible that

both excitation of PM accumulation and inhibition of ongo-

ing task responding may be increased by focality.

Although previous PM theory has argued that emphasiz-

ing the importance of the PM task would modify proactive

control factors, such as monitoring or capacity sharing (Mc-

Daniel & Einstein, 2000; Smith & Bayen, 2004), it is also

possible that importance emphasis could affect how reactive

control operates. Motivation via reward has previously been

shown to increase reactive response inhibition (Boehler et al.,

2014). In terms of PMDC, participants may alter the sensi-

tivity of their reactive control structure to input from the PM

detector. PM input may excite PM accumulation more when

PM importance is emphasized, or it may inhibit ongoing task

accumulation more. Alternatively, both pathways may be af-

fected. However, we cannot differentiate the last option from

the possibility that the detector input itself was somehow in-

creased (e.g., more focus on the PM target), as that would

also cause both increased excitation and inhibition.

Experiment 1: PM Target Focality

We designed our experiments with the goal of accurate

process measurement on PM trials. Our design includes three

features to this end. First, because most PM studies con-

ducted using the traditional Einstein and McDaniel (1990)

paradigm use only a small number of PM stimuli, they do

not produce enough data to reliably constrain a model of PM

processes. Thus, we modified the paradigm to increase the

power of our model fitting by keeping the PM target trial to

ongoing task trial ratio within the bounds of previous liter-

ature (1:14), but presenting participants substantially more

experimental trials (~4000 trials over 3 days). Second, we

instructed participants to make their PM response instead of

their ongoing task response, as we have done in our previ-

ous computational modeling efforts (Heathcote et al. 2015;

Strickland et al., 2017). We used this measure of PM be-

cause it is relevant to common everyday errors, in which in-

dividuals perform a routine task action instead of a less com-

mon but required deferred task action (Norman, 1981; Rea-

son, 1990). In addition, this means we record only one RT

and one response on every trial, allowing us to fit PM RTs
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without confounds from the production of other responses.

Third, we modified the response key arrangements from the

typical paradigm. Usually in the PM literature participants

rest their fingers on the ongoing task keys and have to make

a larger movement for the PM response. This would cause

uneven non-decision time between responses (via motor re-

sponse production time), which adds needless complexity

to the model that is not relevant to understanding PM pro-

cesses, and neglecting substantial differences in non-decision

times between responses can lead to biased estimates of other

model parameters (Voss, Voss, & Klauer, 2010). Hence, we

asked participants to rest their fingers on both ongoing task

response keys (with one hand), and on the PM response key

(with the other hand), so we could assume an equal motor

response time.

In Experiment 1, we used a repeated measures design in

which participants completed a lexical decision ongoing task

under three conditions: control (no additional PM task), fo-

cal PM (the PM task was to respond to a single target word)

and non-focal PM (the PM task was to respond to any word

within a PM target category). The task to make PM responses

to a single target word is one of the most commonly em-

ployed focal PM demands (see Einstein & McDaniel, 2010).

Relative to the single target task, the task to respond to any

member of a target category is non-focal, because in order to

detect PM targets participants need not only read the word (as

is necessary for lexical decision and the single target task),

but also map the stimulus to the relevant semantic category.

In line with this, PM accuracy is found to be be higher to the

focal single target task than the non-focal categorical task,

with lower PM cost (e.g., Loft & Remington, 2013; Strick-

land et al., 2017).

Our design is very similar to that in Strickland et al.

(2017), in which we modeled responding to non-PM trials

and found that both focal and non-focal PM costs were at-

tributed to increased thresholds, rather than changes in ongo-

ing task evidence accumulation rates. We expect to replicate

these previous findings. Our PM instructions were “stimulus-

specific” (Lourenço et al., 2013). That is, PM targets could

only be one type of ongoing task item (words), and partic-

ipants were informed of that. As outlined above, PMDC

predicts that under these conditions the word threshold will

increase to allow the PM process more time to complete on

PM trials (selective delay). Typically, non-focal PM cost is

higher than focal PM cost. Thus, under PMDC, we expect to

find a greater degree of ongoing task threshold increases in

the non-focal PM condition than the focal PM condition.

In the current work, we directly assess the PM process

by modeling the PM trials. Thus, we can examine the PM

threshold, and how this differs between focal and non-focal

PM tasks. It is not clear at the outset how the two thresh-

olds would differ. For example, the non-focal PM instruc-

tions may create the impression of a globally harder task,

and cause the PM threshold to increase. Alternatively, par-

ticipants may reduce their non-focal PM threshold below the

focal PM threshold if they expect slower evidence accrual

and wish to compensate.

We also examine reactive control on PM trials, and how

this differs as a function of target focality. Trivially, we ex-

pect a faster PM accumulation rate on PM trials in PM blocks

than non-PM trials in PM blocks, as PM trials contain more

evidence that participants should make a PM response than

non-PM trials. In addition, reactive control may cause the

ongoing task accumulation rates to decrease on PM trials as

compared with non-PM trials. In our paradigm, detection of

non-focal PM targets requires adequate semantic encoding of

PM stimuli to match them to a category, whereas detection of

focal PM targets does not. The simpler requirements of the

focal PM task may support efficient extraction of PM signal

from the PM-related stimulus attributes. Thus, in terms of

the PMDC, focal PM conditions should be associated with

increased input to the PM detector on PM trials. This could

lead to a faster PM accumulation rate for the focal PM con-

dition. In addition, focal PM targets may trigger more reac-

tive inhibitory control than non-focal PM targets. This could

leader to slower accumulation towards ongoing responses on

PM trials in the focal PM condition.

Method

Participants

The University of Western Australia’s Human Research

Office approved both Experiment 1 and Experiment 2. For

both experiments, all participants were students, who re-

ceived course credit for their participation. For both experi-

ments, the upper age limit for participation was 35, and En-

glish as a first language (the language spoken in the child-

hood home) was required. For both experiments, partici-

pants performed three one-hour sessions, with each session

on a separate day. In Experiment 1, two participants were

excluded (see results), with 35 participants remaining (19 fe-

males) with ages ranging from 17-34 (mean = 20.46).

Materials

Both of our experiments were programmed using E-prime

(Schneider, Eschman, & Zuccolotto, 2002). In Experiment

1, one thousand nine hundred and eighty low frequency (oc-

curring 2-6 times per million) English words (of length be-

tween 4 and 10 characters) were selected from the Sydney

Morning Herald word database (Dennis, 1995). A non-word

was created from each word by replacing every vowel with a

randomly chosen alternate vowel (e.g., chemist to chamust).

All 1980 non-words were presented once to all participants,

1812 of the words (randomly selected) were presented once
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to all participants. Twenty nine low frequency words 1 from

each of 3 categories (animal, food, part of the human body)

were also selected from the TMSH database to be PM targets.

Participants performed 9 blocks of 440 trials - 3 non-focal

blocks, 3 focal blocks and 3 control blocks -1 block of each

type a day. Block order was balanced across days so that

participants would not get a condition in the same position

twice, and the 12 orders that satisfy these conditions were

approximately counterbalanced across the 35 participants. In

control blocks, participants were presented with 220 non-

words and 220 words. In non-focal blocks, participants were

presented with 220 non-words, 192 non-target words and 28

PM target words from one of the PM categories (e.g., 28

different animal words). In focal blocks, participants were

presented with 220 non-words, 192 non-target words and 1

PM target word (e.g., ‘giraffe’) was presented 28 times. Each

PM category was in one non-focal block for each participant.

For each participant, one focal PM target word was drawn

randomly from each of the category lists, and if a word was

to be presented as a PM target in the focal PM block then

it was not presented in the non-focal PM blocks. The as-

signment of PM category to each day’s non-focal block, and

of which category the word from the focal block was drawn

from was random (without replacement) except that the fo-

cal word for a given day was never from the non-focal PM

category of that day. Each of the 29 words in each category

was used as a focal PM target for one of the first 29 partici-

pants, and 7 words were randomly redrawn (without replace-

ment) from each category for the remaining 7 participants.

The order of lexical decision stimuli was randomized across

blocks. Participants were given three 1 minute long breaks

within each block - one after each 110, 220 and 330 trials

were completed- and PM targets were presented 28 times per

440 trial block; on trials 6-20, 21-35, 36-50, 51-65, 66-80,

81-95, 96-110 of each quarter. Target trials were separated

by at least 2 lexical decision trials.

Procedure

For the lexical decision task, participants were instructed

that they would be presented with letter strings and that they

should press a key to indicate whether strings were words or

non-words (e.g., press ‘s’ for word, ‘d’ for non-word). Partic-

ipants were instructed to make their responses as quickly and

accurately as possible. Depending on the PM block, partici-

pants received either control, focal or non-focal PM instruc-

tions. Before control blocks, participants were instructed that

they only needed to make lexical decision responses for that

block. Before focal PM blocks, participants were instructed

to press an alternative key instead of their word response

when they saw a specific target word, for example, “In the

next block of lexical decision trials, if you see the word ‘jelly’

then press ‘d’ instead of ‘j”’. Before non-focal PM blocks,

participants were instructed to press an alternative key in-

stead of their word response when they saw any word within

a category, for example, “in the next block of lexical decision

trials, if you see ANY word that is an ANIMAL then press ‘d’

instead of ‘j”’. Four response key assignments were coun-

terbalanced across participants; 1) s = word, d = non-word,

j = PM, 2) d = word, s = non-word, j = PM, 3) k = word,

j = non-word, d = PM, and 4) j = word, k = non-word, d =

PM). The key order was the same for each participant across

the entire experiment. Participants were instructed before the

commencement of each quarter of a block (including control

blocks) to rest their fingers on their designated response keys.

Each trial began with a fixation cross ‘+’, displayed in

white on a black background for 0.5s. The fixation cross

was then replaced by a blank screen for 0.25s, which was

followed by the presentation of a white letter string which

remained on the black screen until the participant pressed

any key. If the participant made a correct word or non-word

response (including a correct lexical decision response on a

PM target trial, which is a PM miss), or a correct PM re-

sponse, the next trial immediately began (next fixation cross).

If the participant made an incorrect response the word ‘IN-

CORRECT’ was presented in white for 1s, after which the

subsequent trial would begin (next fixation cross).

Each day, participants first completed 24 practice lexical

decision trials and received summative feedback on the ac-

curacy of their responses (e.g., “87.50% correct”). Partic-

ipants then proceeded to the experimental blocks and were

presented with either control, focal, or non-focal PM instruc-

tions. Participants next completed a 3 minute distractor puz-

zle, after which they began the first block of experimental tri-

als. After completion of each quarter of a block, participants

were presented summative feedback on the accuracy of their

responses. In order to avoid cueing the PM intention, both

a correct ongoing task response and a correct PM response

counted towards the ‘correct’ status of trials in this summa-

tive feedback. In addition to the breaks within blocks, partic-

ipants were instructed to rest for 2 minutes between blocks.

Results

We first report conventional analysis to check whether our

manipulations had the expected effects. Two participants

were excluded, one who made no ‘word’ lexical decision

response for an entire block, and one for which there was a

computer error. The first two trials of each block, and the first

two trials after each rest period, were excluded from further

analyses. The two trials following each PM trial, and follow-

ing any PM false alarms, were excluded from further anal-

ysis. We also excluded trials where participants responded

with a key that was not designated to indicate their PM or

lexical-decision responses (0.03% of trials), and trials with

1The human body category contained 3 words of frequency 1

per million and 2 of frequency 7 per million.
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outlying RTs, defined as less than 0.2s or 3 times the in-

terquartile range / 1.349 (a robust measure of standard de-

viation) above the mean (4.65% of responses overall). Two

participants responded once each with the PM response key

in the control condition; these trials were excluded from fur-

ther analyses.

In addition to stimulus type (word, non-word) and PM

block (focal, non-focal, control) the subsequent analyses in-

cluded a day factor (day 1, day 2, day 3) to capture any effects

of task repetition. In our omnibus significance testing for ac-

curacy effects we used generalized linear mixed models with

a probit link function. In our omnibus significance testing

for mean correct RTs we used general linear mixed models.

Significance was assessed with Wald’s chi-square tests, and

an alpha level of 0.05 was used in all analyses. The results

of our omnibus analyses are tabulated in the supplementary

materials. All standard errors reported in text and displayed

in graphs were calculated using the Morey (2008) bias cor-

rected method.

Non-PM Trials

Accuracy was higher for non-words (95.3%) than words

(90.5%), and decreased slightly over days (day 1 M = 93.6%,

SE = 0.71%; day 2 M = 93.0%, SE = 0.74%, day 3 M =

92.1%, SE = 0.92%). There was an interaction between PM

block and stimulus type. Planned comparisons revealed that

non-word accuracy was higher in both the non-focal condi-

tion (M = 95.5%, SE = 0.45%), t (34) = 2.19, p = 0.04, d =

0.37, and the focal condition (M = 95.5%, SE = 0.43%), com-

pared to the control condition (M = 94.9%, SE = 0.48%), t

(34) = 2.19, p = 0.04, d = 0.37. In contrast there was no

significant difference in word accuracy between the control

condition (M = 90.9%, SE = 0.58%), and the non-focal PM

(M = 90.5%, SE = 0.68%), t (34) = 1.87, p = 0.07, or fo-

cal PM (M = 90.1%, SE = 0.79%), t (34) = 1.04, p = 0.31,

conditions.

Mean correct ongoing task RTs are displayed in Figure

3. RTs decreased over days (day 1= 0.682s, day 2= 0.641s,

day 3= 0.619s). Participants responded faster to non-words

(0.640s) than words (0.654s). This effect interacted with day;

correct responses to non-words sped up more over days than

correct responses to words. Correct responses were fastest in

the control blocks (0.633s), intermediate in the focal blocks

(0.643s), and longest in the non-focal blocks (0.665s). The

effects of PM block and stimulus type interacted. Planned

contrasts revealed that non-word RTs increased under non-

focal conditions (0.652s) compared with control (0.635s), t

(34) = 5.03, p < .001, d = 0.85, but not for focal conditions

compared with control (0.634s), t < 1. Word RTs were slower

than control (0.631s) under focal conditions (0.652s) t (34)

= 5.29, p < .001, d = 0.89, and slower than control under

non-focal conditions (0.679s), t (34) = 11.14, p < .001, d =

1.88. Thus, we observed stimulus-specific PM costs in the

focal PM condition, and a much larger effect size for costs to

words than non-words in the non-focal condition.

PM Trials

PM responses were scored as correct if the participant

pressed the PM-response key instead of a lexical decision

response key on the PM target trial. PM accuracy was higher

for focal PM blocks (M = 87%, SE = 3%), than non-focal

blocks (M = 60%, SE = 3%), and decreased over days (day 1

M = 78%, SE = 4%; day 2 M = 74%, SE = 3%, day 3; M =

70%, SE = 4%). Thus, we observed the expected effect of tar-

get focality on PM accuracy. However, note the magnitude of

this effect varied widely across participants: for some partic-

ipants there was a major shift in PM accuracy, and for others

much less of a shift (Figure 4). The average false alarm rate

was very low, 0.11%, and differed little between participants,

ranging from 0 to 0.3%. Correct PM responses were faster

in focal PM blocks (M = 0.653s, SE = 0.010s) than in non-

focal PM blocks (M = 0.764s, SE = 0.014s), and there was

an effect of day (day 1 M = 0.724s, SE = 0.016s; day 2 M =

0.705s, SE = 0.014s; day 3 M = 0.697s, SE = 0.013s).

Non-PM trials compared with PM trials

It is possible that reactive control over ongoing task deci-

sions could lead to slower ongoing task RTs on PM trials in

PM blocks, as compared with non-PM trials in PM blocks.

Thus, in order to check whether reactive control was evident

without the model-based analysis, we compared correct on-

going task RTs on PM trials to correct ongoing task trials.

That is, RTs to make the ‘word’ response on PM trials were

compared with RTs to make the word response on non-PM

trials (in the PM blocks). Note that these ‘correct’ ongoing

task responses on PM trials are PM misses. We ran a linear

mixed effects model including the effects of PM trial status

(PM trial vs non-PM trial), PM block, and day. Word RTs

were significantly faster on PM trials (0.575s) than on non-

PM trials (0.665s). There was an interaction between PM

trial status (PM, non-PM), and PM block. Word RTs on PM

trials were faster than on non-PM trials in both focal (non-

PM trial M = 0.652s, SE = 0.008s; PM trial M = 0.527s; SE

= 0.019s), t (33) = 9.11, p < .001, d = 1.56, and non-focal

blocks (non-PM trial M = 0.679s, SE = 0.008s; PM trial M =

0.617s; SE = 0.010s), t (34) = 9.37, p < .001, d = 1.58, but

the speed-up on PM trials was greater for the focal blocks, t

(33) = 5.01, p < .001, d = 0.86. Note, however, that reactive

control on PM trials is confounded in raw RT by statistical

facilitation from the PM response. Thus, the critical test of

reactive control is on accumulation rates, as presented in the

modeling section below.
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Figure 3. Experiment 1, ongoing lexical decision task mean correct RTs by stimulus type by PM block by day. The standard

error bars were calculated using the Morey (2008) bias corrected method.

Figure 4. Frequency histogram demonstrating the spread across participants of the effect of PM focality on PM accuracy.

Positive values demonstrate an advantage for focal PM accuracy. For most participants, focal PM accuracy was higher, but the

magnitude of the effect varied substantially.

Model Analysis

The PMDC model of the current experiment (Figure 1)

includes several parameters for each accumulator. Each ac-

cumulator begins a decision trial with a starting amount of

evidence drawn from the uniform distribution [0, A]. After

stimulus presentation, evidence accrues linearly according to

an accumulation rate that is drawn from a normal distribution

with mean v and standard deviation sv. Evidence accrues un-

til some response reaches a threshold b. We report threshold

in terms of B (B = b - A); note that as A is the same across

all conditions, differences in B across conditions reflect pure

threshold effects. Finally, there is the non-decision time pa-

rameter t0, which captures additional RT that falls outside

decision time.

The experiment includes several factors that model pa-

rameters can vary over, including latent response (i.e., word,

non-word and PM accumulator), and three manifest factors,

stimulus type, day and block type. The latent response fac-

tor refers to the accumulators that can lead to each response,

that is, ‘word’, ‘nonword’, and ‘PM’. It is important to be

clear that the latent response factor corresponds to the accu-
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mulators, and not the response that was actually observed;

the observed response is predicted by, not included in, the

model. The stimulus type factor has three levels: non-PM

words, non-PM non-words, and PM (always words). The

‘day’ factor – included to capture task repetition effects such

as learning to tune the response threshold – had three levels:

day one, day two, day three. Finally, the blocked PM ma-

nipulation had three levels: control blocks, focal PM blocks,

and non-focal PM blocks. Note that because there were no

PM trials (and thus no PM responses) in control blocks of

our experiments, we modeled control performance with only

2 accumulators, not three.

We applied some sensible a priori constraints on the

model to reduce its complexity. First, following common

practice with the LBA (Donkin, Brown, & Heathcote, 2011;

Heathcote, Loft, & Remington, 2015), we estimated only one

A parameter for each participant. Second, we allowed the sv

parameter to vary over the stimulus and latent response fac-

tors, but not PM block. This is more flexible than most pre-

vious LBA modeling, which only allows sv to vary as a func-

tion of whether the latent accumulator matches or does not

match the stimulus, because in our current model there are

two types of “correct” response for PM trials (correct PM and

correct lexical decision). Third, we varied only the response

threshold parameter over days of the experiment. This is

consistent with Strickland et al. (2017), in which we found

that day’s effects were expressed in shifts in the B parameter.

Fourth, we estimated only one non-decision time parame-

ter for each participant. We follow previous modeling in as-

suming that non-decision time is constant across trials (e.g.,

Heathcote, Loft, & Remington, 2015; Horn & Bayen, 2015;

Strickland et al., 2017), and we do not allow non-decision

time to vary over PM block because it has not varied in pre-

vious LBA modelling of PM paradigms (Heathcote, Loft, &

Remington, 2015; Strickland et al., 2017). Finally, because

there were very low numbers of PM false alarms, we pooled

estimates of false alarm rate parameters (both v and sv) over

all experiment factors. Furthermore, the false alarm sv (i.e.,

the sv for the PM accumulator on non-PM trials) was fixed

at 1, as a scaling parameter. Even with these restrictions, the

model had fifty-two free parameters: one non-decision time,

one A, twenty-four B (PM block × latent response accumu-

lator × day), nineteen v (stimulus type × PM block × latent

response accumulator), and 7 sv (stimulus type × latent re-

sponse accumulator) parameters.

Sampling

As opposed to previous studies, which relied on max-

imization to obtain point estimates of the parameter val-

ues (Heathcote, Loft, & Remington, 2015; Strickland et al.,

2017; Horn & Bayen, 2015), we used Bayesian techniques

to estimate the entire probability distribution of the param-

eters. We opted for Bayesian estimation because it is better

equipped than previous maximum likelihood approaches to

handle the relatively sparse PM trials. In terms of model se-

lection, previous maximum likelihood efforts have penalized

model complexity with a mere count of parameters. This is

clearly inappropriate for the full PM data set, where adding a

PM-related parameter (e.g., an extra PM accumulation rate)

would contribute to flexibility of fit on far fewer trials than

adding a non-PM trial related parameter (e.g., an extra on-

going task threshold). Our Bayesian selection will, in con-

trast, punish model complexity proportionately to the flexi-

bility that extra parameters add to the fits. In terms of estima-

tion, Bayesian fitting will estimate uncertainty in parameter

estimates, which can then be incorporated into our tests of

parameter differences. This is particularly important for PM

trial parameters, for which data is relatively sparse.

We could have fit a hierarchical model that assumes com-

mon population distributions of parameters across all partic-

ipants. However, as our design included thousands of tri-

als per participant, we had enough within-participant power

to rely on separate parameter estimation for each partici-

pant. We did so for three reasons. First, as mentioned in

the standard analysis section, the effect of target focality

on PM accuracy was substantially dispersed across partici-

pants. As this is the first time that our model has been fit,

we did not have knowledge of the appropriate form of pop-

ulation distributions. Thus, we were concerned that inap-

propriate assumptions combined with hierarchical shrinkage

effects could cause undesirable biases. Second, fitting a hier-

archical model would complicate exploring individual differ-

ences across participants, due to the aforementioned shrink-

age. Third, the Bayesian analysis was already computation-

ally demanding for individual fits, and would be much more

so in the hierarchical case. Bayesian analysis requires the

researcher to specify their prior beliefs about the probabili-

ties of the model parameters. However, note that because of

our large sample sizes and use of posterior based inference

the influence of the priors was small, and we selected fairly

uninformative prior distributions (Table 1). The priors for

control, focal and non-focal PM conditions were the same.

We estimated posterior parameter distributions using the

differential evolution MCMC algorithm (Turner, Sederberg,

Brown, & Steyvers, 2013), which is more effective than stan-

dard MCMC for dealing with the high level of parameter cor-

relations in evidence accumulation models. The number of

chains was three times the number of parameters (e.g., for a

52 parameter model 156 chains per parameter). The chains

were ‘thinned’ by 20 (i.e., only one iteration in every 20 was

saved). We continued to sample for each participant until a

small Gelman’s multivariate potential scale reduction factor

(<1.1, Gelman et al., 2013), calculated with the number of

chains doubled by considering the first and second halves of

each as separate chains (Gelman et al., 2013), indicated con-

vergence, stationary, and mixing. This was confirmed with
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visual inspection. We retained the same number of samples

for each participant: each chain was 180 iterations long, and

thus with 156 chains there were 28,080 posterior samples (it-

erations x chains) for each parameter for each participant.

Model Results

In order to evaluate fit, we sampled 100 posterior pre-

dicted data sets for each participant. As shown in Figure 5,

the model provided a good fit to both ongoing task and PM

accuracies, as well as to the observed ongoing task and PM

RT distributions. It fitted the PM cost effect, the effect of

focality on PM accuracy, and the effect of focality on PM

RTs. In their simulations, Gilbert et al. (2013) explored

the effect of competing PM and ongoing task decisions on

the coefficient of variation of RT. Their model predicted that

coefficient of variation would be highest on correct non-PM

trials, intermediate on PM miss trials, and lowest on PM hit

trials. For non-focal PM conditions, we found such a trend.

For focal PM conditions, we did find coefficient of variation

was higher for non-PM trials than PM trials. However, coef-

ficient of variation was similar between focal PM ‘hits’ and

PM ‘misses’. In the supplementary materials we plot these

trends, and show they corresponded reasonably well to the

predictions of our PMDC model. In sum, overall the PMDC

architecture fitted the trends in Experiment 1’s data closely.

We now focus on inference from the model by assessing how

model mechanisms varied across PM conditions.

Model Selection. We first applied model selection to

determine whether we could statistically justify constrain-

ing parameters across our blocked conditions (Control/ Focal

PM/ Non-focal PM), and in order to determine the necessity,

and the importance, of different parameters in capturing the

effects. For this purpose we used WAIC (Watanabe, 2013), a

computationally tractable approximation to cross validation.

WAIC balances goodness of fit and model complexity, with

the aim that the model with the lowest WAIC should be the

best at fitting new data. We determined whether a difference

in WAIC is sufficient to provide evidence in favor of the

model with the lowest WAIC by comparing that difference

with its standard error. As a rule of thumb a standardized

difference (i.e., the WAIC difference divided by this standard

error of the difference) larger than two indicates support for

the model with the lower WAIC (Vehtari, Gelman, & Gabry,

2017)

Table 2 displays the results of model selection. We se-

quentially tested the importance of parameters related to

PMDC, that is thresholds and PM trial accumulation rates.

Then we tested the importance of the remaining parameters

of the top model, which were related to differences in non-

PM trial accumulation rates across blocks.

We began by comparing the overall contribution of thresh-

olds vs accumulation rates. We tested a ‘No Proactive Con-

trol’ model – where accumulation rate parameters could vary

freely among the PM and control conditions, but thresholds

could not – against an ‘Only Proactive Control’ model, in

which both the ongoing task and PM thresholds could vary

over PM conditions, but accumulation rates could not. The

WAIC for the Only Proactive Control model was much lower

than the WAIC for the No Proactive Control model. Given

the difference had a standard error of 125, the difference in

standard units is very large, 20.66. This clearly indicates that

variation in thresholds is a very important part of the account

of differences among the PM and control conditions.

Next, we allowed accumulation rate of the PM response

on PM trials to vary between Focal and Non-focal conditions,

to allow for differences in ‘excitatory’ reactive control. Rel-

ative to the Only Proactive Control model, the WAIC for this

model was lower by a reasonable margin, 66.90, standard

error of the difference = 23.82, difference in standard units =

2.81. The improvement in fit in this case, although still sub-

stantial, was much smaller than for the previous comparison,

suggesting a much more moderate influence of excitatory re-

active control on our data. However, it is important to keep in

mind that reactive control, by definition, can only influence

performance on PM trials, and because such trials are rare

reactive control can only exert a limited effect on overall fit.

Next we allowed only the ongoing task accumulation rates

on PM trials to vary between Focal and Non-focal condi-

tions, to capture differences in ‘inhibitory’ reactive control

between the conditions. We compared this model to the pre-

vious ‘excitatory’ reactive control model. We found that the

inhibitory only reactive control model had a WAIC signifi-

cantly lower than the excitatory only model, by 245.13, with

a standard error of the difference = 43.56. This difference, at

5.63 standard units, was quite substantial. This suggests that

for fitting the effects of focality, it is more important to allow

the ongoing task accumulation rates to vary on PM trials than

it is to allow the PM accumulation rate to vary. However, a

comparison of the best model so far – the proactive and re-

active (inhibitory) control model – to the full PMDC model

(which also allows excitatory reactive control) showed that

the full PDMC model was preferred, with a WAIC differ-

ence = 87.34, standard error of the difference = 23.59, and

standardized difference = 3.70, supporting the need for both

types of reactive control.

Finally, we compared the PMDC model to the top model,

which also allows non-PM trial accumulation rates to vary

over PM condition. Relative to the PMDC model, the WAIC

for the top model was lower by a solid margin, 195.11 with

a standard error of 45.39. Although the standardized differ-

ence in this case is on the moderate side, 4.30, compared to,

say, the difference in fit provided by allowing thresholds to

vary, it is still clearly sufficient to support the presence of

different rates among the control and PM conditions in the

rates for non-PM trial accumulation.
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Table 1

Both experiments, choice of priors for each parameter

Model Parameter Distribution Mean SD Lower Upper

A Truncated Normal 1 1 0 10

B Truncated Normal 1 1 0 None

v (Correct Ongoing Task Response) Truncated Normal 1 2 None None

v (Incorrect Ongoing Task Response) Truncated Normal 0 2 None None

v (Correct PM Response) Truncated Normal 1 2 None None

v (PM false alarm) Truncated Normal -1 2 None None

sv Truncated Normal 1 1 0 None

t0 Uniform 0.1 1

Table 2

Experiment 1, WAIC model selection. To evaluate each model using data from the entire group of participants, we first

concatenated the log-likelihoods under the model for each trial, for all participants, together into one pointwise log-likelihood

matrix where points are trials. We then calculated WAIC for each model using its log likelihood matrix. Lower WAIC indicates

more preference for the model.

Model Estimated Number of Parameters WAIC

Top 1035.5 -110467.4

Proactive Control & Reactive Control (both) 898.1 -110272.3

Proactive Control & Reactive Control (inhibitory) 886.4 -110184.9

Proactive Control & Reactive Control (excitatory) 884.4 -109939.8

Only Proactive Control 862.5 -109872.9

No Proactive Control 753.2 -107290.4

Given that the WAIC appeared to always favor more com-

plexity, it was not diagnostic regarding our competing cog-

nitive theories. Although the WAIC is currently the clos-

est computationally tractable approximation available to the

gold standard of leave-one-out cross validation (Vehtari et

al., 2017), and is recommended to be used above other

Bayesian model selection such as the deviance information

criterion (Gelman et al., 2013), it remains possible that it

did not select the most parsimonious model of our data. For

example, Millar (2017) demonstrated poor performance of

the WAIC even in correctly selecting models that are rela-

tively simple in comparison to our fifty-two parameter LBA.

In light of our results, in the next section we test the direction

and magnitude of differences among conditions in the param-

eters of the top model. Testing directions of differences is

particularity critical, as PM theories not only predict differ-

ences but also which condition should have larger parameter

values. For example, capacity sharing predicts non-PM trial

accumulation rates should be greater in the control condition

than the PM conditions.

Model Summary

In order to summarize the central tendency of model pa-

rameters across participants, we obtained a subject-average

posterior distribution, by calculating the mean of each pos-

terior sample over all participants. Our primary interest fo-

cused on mean rate and threshold parameters, which we ex-

amine in the next sections. The other parameters had rea-

sonable values. The non-decision time mean of the averaged

posterior samples was 0.13s (posterior SD = 0.002). The A

posterior mean was 0.34 (posterior SD = 0.013). The sv pa-

rameters are summarized in Table 3. As is typical in other ap-

plications of the LBA (Heathcote & Love, 2012), sv is lower

for the accumulator that matches the stimulus (e.g., the word

accumulator for a word stimulus).

Table 3

Experiment 1, Mean (SD) of the posterior distributions, av-

eraged across participants, of the standard deviation of the

evidence accumulation rates.

Accumulator Stimulus Type

Word Non-word PM

Non-word 1.51 (.04) 0.65 (0.01) 1.08 (0.04)

Word 0.65 (0.01) 1.55 (0.03) 1.49 (0.04)

PM Fixed at 1 0.39(0.01)

We tested the direction, and magnitude, of differences in

top-model parameters across experimental conditions in or-

der to evaluate support for capacity sharing, proactive con-

trol, and reactive control. To do so, we calculated the

posterior distribution of the differences. For example, to

test the difference between the non-PM trial accumulation

rates in control and PM conditions, and hence the capacity-

sharing theory prediction that the control rate should be
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Figure 5. Fits of the LBA to the Experiment 1 data. The open circles indicate the data averaged over participants. The

black dots indicate the posterior predictive mean, with 95% credible intervals. The RT distributions are summarized with three

order statistics (the three lines on each RT graph): the 10th percentile, which captures the leading edge of the distribution

(i.e., the fastest responses), the median, and the 90th percentile, which captures the tail of the distribution (i.e., the slowest

responses). We calculated the plotted statistics (accuracies and quantile RTs) by concatenating the observed data from all

participants into one data frame, and then calculating the statistics for that entire data frame. We used this same procedure

for both the observed data and the simulated data. The alternative is to calculate statistics on a participant-by-participant basis

(e.g., calculate a median RT for every participant), and then average. The approaches yielded similar results. Due to the low

number of PM trials, PM RTs are collapsed over correct and error responses.

larger, for every posterior sample we subtracted the con-

trol rate from the rate in the focal PM condition, and sim-

ilarly for the non-focal PM condition. We calculated these

distributions independently for each participant, and then

we averaged each posterior sample across participants. For

each participant-average difference distribution we report a

Bayesian posterior-predictive p value (Meng, 1994). These p

values indicate the one-tailed probability that the difference

between parameters was less than 0. Due to our powerful

design, many of our observed parameter differences had p =

0 (i.e., a probability of 1 that there was an effect), yet some

of the differences were much larger than others. Thus, to

illustrate the magnitude of the effects we also report the stan-

dardized difference between parameters, that is, M / SD of

the difference distribution. As our posterior parameter distri-

butions are approximately normal, the interpretation of this

statistic is similar to a Z score, and thus we refer to the score

as Z from here on.

Capacity Sharing (Non-PM Trial Accumulation).

The non-PM trial rates for the ongoing task accumulators

(non-word and word) are displayed in the left two panels of

Figure 6. The capacity sharing theories of PM predict lower

accumulation rates towards the correct accumulator (i.e., the

one that matches the ongoing stimulus) in PM than control

conditions (e.g., Horn & Bayen, 2011; Boywitt & Rummel,

2012), which would lead to faster correct responses in the
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control condition. They also predict lower correct rates in

the harder non-focal PM condition than the easier focal PM

condition. Capacity sharing theories may also predict higher

ongoing task rates for the error accumulator (i.e., the one that

does not match the ongoing stimulus) under PM conditions,

which would lead to more errors (and, similarly, a prediction

of higher error accumulation rates for non-focal than focal

PM).

The effect sizes and p values for comparisons between

non-PM trial accumulation rates are displayed in Table 4.

Inconsistent with capacity sharing predictions, correct ac-

cumulation to non-PM words was actually higher for focal

PM blocks (2.94) than control blocks (2.88), and was high-

est for non-focal blocks (3.03). Error accumulation rates for

non-PM words were similar between focal PM (-0.29) and

control (-0.27) blocks, and actually lower for non-focal PM

blocks (-0.49) than control blocks. Thus, accumulation rates

to non-PM word trials shifted in the opposite direction to that

predicted by capacity sharing theories. Similarly, correct ac-

cumulation to non-PM non-words was marginally higher in

focal PM blocks (2.85) than control (2.82), but similar be-

tween non-focal PM blocks (2.81) and control. Error accu-

mulation to non-word trials was similar for focal PM blocks

(-0.97) and control blocks (-0.98), but higher for non-focal

PM blocks (-0.69) than control. The latter effect (an increase

in the error accumulation rate) is the only one that is consis-

tent with capacity sharing, and so the overall pattern of re-

sults convincingly refutes the predictions of capacity sharing

theories.

Proactive Control (Thresholds). Proactive control

over ongoing task decisions (as in delay theory) predicts

higher ongoing task decision thresholds in PM blocks than

in control blocks. The effect sizes and p values for our com-

parisons of thresholds are displayed in Table 5. As shown

in Figure 7, word thresholds were higher in focal PM blocks

(1.30) than control blocks (1.21), and higher in non-focal PM

blocks (1.43) than either focal PM blocks or control blocks.

Non-word thresholds differed by much less. They were not

substantially higher in focal PM blocks (1.19) than control

blocks (1.18). They were, however, larger in non-focal PM

blocks (1.21) than both control and focal blocks. The weaker

effects on non-word accumulator thresholds suggest that the

proactive control was targeted, rather than a generic result of

increased task difficulty (recall that non-words could never

cue a PM response). There was also an effect on the PM

threshold. The PM threshold was lower in focal PM blocks

(1.11) than in non-focal PM blocks (1.31). All of these ef-

fects are consistent with proactive control, both of the ongo-

ing task and PM decisions.

Reactive Control (PM vs. Non-PM Trial Accumula-

tion). Examining reactive control requires comparing ac-

cumulation rates between non-PM trials (left two panels of

Figure 6) and PM trials (rightmost panel of Figure 6). The

effect sizes for comparisons relevant to reactive control are

displayed in Table 6. As expected given the rarity of PM false

alarms, PM accumulation rates on PM trials (right panel of

Figure 6) were much faster than PM false alarm accumula-

tion rates, that is, accumulation rates towards a PM response

on non-PM trials, (M = -2.42). More importantly, PMDC

predicts that stimulus characteristics, such as target focality,

could increase excitation of the PM accumulator, driving up

its rate. In line with this prediction, the PM accumulation

rate on PM trials was higher in the focal PM block (2.48),

than the non-focal PM block (2.30).

PMDC predicts that the lexical (ongoing task) accumula-

tion rates will be reduced on PM trials, compared with non-

PM trials, due to inhibitory control of the ongoing task deci-

sion from the PM detector. In line with this prediction, accu-

mulation towards the ‘word’ response (non-PM word trials)

was much lower on focal PM trials (0.49) than on non-PM

word trials in focal PM blocks (2.94). The same rate suppres-

sion on PM trials also occurred in non-focal PM blocks, but

to a lesser degree (PM trial word accumulation = 1.64, non-

PM trial word accumulation = 3.03). The finding that non-

focal reactive inhibition was weaker than focal reactive inhi-

bition is consistent with PMDC, which predicts that a lower

input to the PM detector from the non-focal stimuli would

lead to weaker reactive control, and therefore higher ongo-

ing task accumulation. The reactive inhibitory control effect

was weaker for the incorrect (i.e., non-word) accumulator,

but was again present to a greater degree in focal blocks. In

focal PM blocks with word stimuli non-word accumulation

was reduced on PM trials (-1.56) compared to non-PM tri-

als (-0.29). There was a trend towards the same effect in

non-focal PM blocks (PM = -0.57, non-PM = -0.49), how-

ever it was much weaker. This suggests that reactive control

was targeted towards the word accumulator, which was most

likely to cause a failure of control in the form of a word re-

sponse that preempts a PM response.

Parameter Recovery

We performed a ‘parameter recovery’ study (Heathcote,

Brown, & Wagenmakers, 2015) to confirm that PMDC can

be treated as a ‘measurement model’, a model whose esti-

mated parameters reliably index the processes they control.

This involves simulating data from known parameter val-

ues, then estimating parameters from that simulated data to

examine whether the fitted estimates match the ‘true’ data-

generating values. In particular, we assessed whether we

could adequately recover realistic parameter values for indi-

vidual subjects given our design, priors, and sampling set-

tings. We simulated from the top model with parameters

equal to the posterior mean values reported above. We simu-

lated an individual subject, using for each cell of the design

the average number of trials (rounded up) that we obtained

per participant (thus accounting for loss of power due to ex-
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Figure 6. Experiment 1, posterior distributions of the mean accumulation rates, averaged across participants. The central

symbols are the posterior means, and the bars are the mean + or - the posterior standard deviation. Plotted by stimulus type,

by latent response accumulator, and by PM block. There is very little difference by PM block in the accumulation rates of the

non-PM trials, hence the overlapping symbols. False alarm accumulation, that is accumulation towards the PM response on

non-PM trials, not pictured (M = -2.42, SD = 0.13).

Table 4

Experiment 1 Z values (with associated posterior predictive p values in brackets) for contrasts between non-PM trial mean

accumulation rates. The "correct" accumulator refers to the matching ongoing task response (e.g., word on word trials), and

the "error" accumulator refers to the mismatching ongoing task response (e.g., non-word on word trials).

Contrast Word Trial Accumulator Non-word Trial Accumulator

Correct Error Correct Error

Focal - Control 3.03 (.001) -0.60 (0.27) 1.71 (0.04) 0.16 (.43)

Non-focal - Control 8.16 (0) -4.61 (0) -0.58 (0.28) 4.74 (0)

Non-focal - Focal 4.82 (0) -3.93 (0) -2.24 (0.01) 4.37 (0)

Table 5

Experiment 1 Z values (with associated posterior predictive

p values in brackets) for contrasts between thresholds.

Contrast Accumulator

Word Non-word PM

Focal - Control 9.47 (0) 1.14 (.13)

Non-focal - Control 21.46 (0) 4.57 (0)

Non-focal - Focal 12.73 (0) 3.42 (<.001) 9.35 (0)

clusion of outlier RTs, etc.) We replicated this simulation

100 times, and then fit the model back to the 100 simulated

data sets. In the supplementary materials, we graph the pa-

rameter estimates that we obtained from these fits. Our re-

sults support the measurement abilities of PMDC. The esti-

mated posterior means for each simulation clustered around

the true values, other than some over-estimation of A and t0

(which were both fixed across conditions). In addition, our

Bayesian estimates of uncertainty for each simulation corre-

spond well to the level of uncertainty across simulations.

As our design, in terms of the number of trials per partici-

pant, was more powerful than usual, we also explored a sim-

plification of the model suitable for less powerful designs.

For the full model, the sv parameters, which measure the

trial-to-trial variability in accumulation rates, were the most

difficult to estimate. Thus, we performed a recovery study

on a model with variability in rates fixed at 1. This model

led to more consistent and more certain estimation of some

model parameters, particularly mean rates. We also fit the

simpler model to our actual data, and found that it resulted in

virtually the same parameter inference as we reported above.

Thus, for future work with fewer trials per participant, fix-

ing sv may firm up estimation while still allowing reasonable

inference.

One pertinent question related to parameter recovery is

whether we would obtain support for capacity sharing if it

was the true casual account of the data. That is, if our data

was driven by shifts in non-PM accumulation rather than
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Figure 7. Experiment 1, posterior distributions of response threshold. The central dots are the posterior means, and the bars

are the mean + or - the posterior standard deviation. Plotted by latent response accumulator, by PM block, by day.

Table 6

Experiment 1 Z values (with associated posterior predictive p values in brackets) for mean accumulation rate contrasts relevant

to reactive control (i.e., for word stimuli only). In the first and second row we compare PM trials with non-PM trials. In the

third row, we compare the difference in reactive control between focal and non-focal blocks. Thus, the third row displays the

difference between PM blocks (focal - non-focal) of the differences by PM trial status (PM - non-PM).

Contrast Accumulator

Word Non-word PM

Focal: PM Trial - Non-PM Trial -23.59 (0) -6.72 (0) 51.14 (0)

Non-focal: PM Trial - Non-PM Trial -20.77 (0) -0.53 (.30) 47.73 (0)

Focal difference - Non-focal difference -13.44 (0) -6.17 (0) 4.55 (0)

proactive control, would our fitting procedures be able to de-

tect it? We performed another recovery simulation to ad-

dress this issue. The simulation was the same as the one re-

ported above, except that the parameters we simulated from

the posterior mean parameters of the pure ’capacity-sharing’

model of Experiment 1, which attributed all effects of PM

condition to changes in accumulation rates. The tables in

the supplementary materials detail our finding that we recov-

ered similar non-PM rate effects to those we simulated from.

We also checked whether the rate-driven data would produce

spurious evidence of control over thresholds. We found this

was not the case, with any changes in threshold an order of

magnitude or more smaller than the actual effects we found.

Thus, we conclude that the PMDC model can adequately de-

tect accumulation-rate effects, and differentiate them from

proactive control.

Exploring Model Mechanisms

In complex non-linear models, the effect of a given param-

eter effect on different aspects of performance can be hard to

discern. Here we examine those effects by removing them,

and evaluating the model mis-fit that results. To the extent

that removing a parameter effect from the model causes a

particular type of mis-fit, it drove the effect in the full model.

We took two approaches to removing effects from the model.

One was to remove control and capacity effects entirely, by

setting parameters to baseline values (e.g., setting non-PM

accumulation to control levels). The other was to replace

selected parameters with the average across conditions (e.g.,

replacing estimates of the focal and non-focal PM thresholds

with the average of the two). In the supplementary materi-

als, we provided detailed descriptions of the results of these

explorations. Here, we focus on PM cost and PM accuracy,

and the differences between these measures under focal and

non-focal conditions.

To study the effect of removing capacity sharing effects,

we set all non-PM trial accumulation rate parameters equal

to those from control conditions. This actually increased the

predicted PM cost, suggesting that model predictions of cost

were not at all driven by changes in accumulation rate. This

was the case for both focal and non-focal PM conditions. To

remove proactive control effects, we set all the ongoing task

response thresholds (i.e., word and non-word) to the level of

control conditions. This drastically reduced predictions of
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PM cost for both focal and non-focal PM conditions, sug-

gesting that control over thresholds was critical to the full-

model account of cost. Removing this type of proactive

control also affected predictions of non-focal PM accuracy;

the full model predicted 99% of the observed non-focal PM,

whereas the model with no proactive control only predicted

85%. There was far less effect on focal PM accuracy; the full

model predicted 96% of focal PM, the model with proactive

control removed predicted 94% of focal PM. Taken together,

the two results demonstrate that the extra proactive control

under non-focal conditions mitigated the advantage for focal

PM accuracy.

To remove reactive control from the model, we set accu-

mulation rates on PM trials for each PM condition equal to

the accumulation rate on non-PM trials. This resulted in pre-

dicting only 52% of observed focal PM accuracy (compared

with 96% in the full model), and 55% of non-focal PM ac-

curacy (compared with 99% in the full model), suggesting

a large role for reactive control in both types of PM. Re-

moving reactive control also reduced the difference between

focal and non-focal PM accuracy. Whereas the full model

predicted 92% of the advantage of focal PM accuracy over

non-focal, removing reactive control reduced the predicted

effect to only 47% of the observed.

We also examined how differences between focal and non-

focal PM thresholds and PM accumulation rates contributed

to differences in PM accuracy. We did so by replacing each

conditions’ parameter values with the average across condi-

tions. Both PM thresholds and PM rates contributed to the

advantage of focal PM accuracy. The full model predicted

92% of the advantage of focal PM accuracy over non-focal,

whereas the model with PM rates averaged predicted only

72% of the effect, and the model with PM thresholds aver-

aged predicted 63%.

Individual Differences

Correlations. As depicted in Figure 4, the effect of fo-

cality on PM accuracy varied across participants. Thus, here

we assessed how individual differences in model mecha-

nisms related to individual differences in PM accuracy. We

did so by examining correlations between model mecha-

nisms (i.e., model parameters or differences in model param-

eters) and PM accuracy. We also correlated differences be-

tween focal and non-focal model parameters with the differ-

ence between focal and non-focal PM accuracy. To perform

inference we estimated the distribution of plausible correla-

tions values (Ly et al., 2017). That is, we calculated Pearson

correlations across participants for each posterior sample, re-

sulting in posterior distributions of correlations. We then ap-

plied a transformation to the sample correlations that allows

for uncertainty in generalizing inference to the population,

rather than sample, level (Ly, Marsman, & Wagenmakers, in

press). We examined several mechanisms: changes in non-

PM accumulation rates (i.e, capacity effects), changes in on-

going task thresholds (proactive control), changes in ongoing

task accumulation on PM trials (reactive control), PM ac-

cumulation rates, and PM thresholds. In the supplementary

materials, we graph the posterior means and credible inter-

vals for all of the correlations. Here, we report the posterior

means of the correlations that had at least a 95% probability

of being different to 0.

No ongoing task parameters were correlated with focal

PM accuracy, and only increases in the rate of error accumu-

lation to word trials with PM (a form of increased ongoing

task capacity) was correlated positively with non-focal PM

(.42). Thus, neither decreases in shifts in ongoing task capac-

ity, nor proactive control effects, were associated with indi-

vidual differences in PM accuracy. In contrast, PM accuracy

was strongly correlated with differences in reactive control

of word accumulation, for both focal (.67) and non-focal PM

accuracy (.73). Thus, individual differences in PM accuracy

were explained by individual differences in inhibitory reac-

tive control. The advantage of focal PM accuracy (i.e., focal

PM accuracy - non-focal PM accuracy) was correlated with

the advantage of the focal PM accumulation rate (.37), and

with nothing else. Thus, individual differences in the effect

of target focality on PM accuracy were explained by individ-

ual differences in the effect of focality on PM accumulation

rate.

Model Mechanisms. We also explored the causal rela-

tion between model mechanisms and PM accuracy for indi-

vidual participants, by examining individual fits to PM accu-

racy with the full model, and comparing them to the fit of the

model with components removed. We examined five models:

the full model, the model with proactive control removed, the

model with reactive control removed, the model with differ-

ences between focal and non-focal PM excitation removed,

and the model with differences in focal and non-focal PM

thresholds removed. Supplementary materials contain plots

of each model’s fit to each individual’s focal PM accuracy,

non-focal PM accuracy, and the difference between the two.

Our results indicated fairly consistent effects of parame-

ters across participants, similar to the exploration of model

mechanisms based on averages over participants. Whereas

the full model fit PM accuracies well, removing proactive

control resulted in underestimation of non-focal PM accu-

racy across participants. In contrast, it did not consistently

result in underestimation of focal PM accuracy. Thus, re-

moving proactive control resulted in some underestimation

of the advantage of focal PM accuracy. Removing reactive

control resulted in large underestimation of focal and non-

focal PM accuracy for all participants. It also caused caused

drastic mis-fit to the difference between focal and non-focal

PM accuracy, particularly for participants for whom this dif-

ference was large. Averaging PM thresholds across focal

and non-focal conditions seemed to cause a fairly consistent
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under-estimation of the difference between focal and non-

focal PM accuracy, for participants where it existed, as did

averaging the PM accumulation rate.

Discussion

The LBA model provided a good fit to ongoing task accu-

racies and PM accuracies in Experiment 1, as well as a com-

prehensive account of the distribution of ongoing task and

PM RTs. This included fit to the PM cost effect, and to the

effects of manipulating PM target focality on PM costs, PM

accuracy, and PM response RT. The behavior of the model

did not suggest at all that changes in capacity sharing require-

ments between PM and ongoing tasks were responsible for

the increased costs, or decreased PM accuracy, under non-

focal compared to focal conditions, and instead suggested

that both proactive and reactive control were active over PM

and ongoing decision processes, as specified by PMDC.

Capacity sharing. In both focal and non-focal PM

blocks, evidence accumulation actually improved for non-

PM words in PM blocks (i.e., higher correct accumula-

tion rates, lower incorrect accumulation rates), contrary to

the predictions of capacity sharing theories. In contrast,

evidence accumulation towards non-words was marginally

worse in the non-focal condition (error accumulation rates

increased). These non-PM trial effects are inconsistent, with

many indicating increased capacity with PM and only one

indicating decreased capacity. In addition, they are sub-

stantially weaker than the threshold effects discussed below

(standardized differences less than half the size). They also

have little relation to PM cost: for both PM blocks, cost

was highest to word trials, and yet evidence accumulation

to word trials actually sped up in PM blocks. In fact, when

we averaged the accumulation rate effects out of the model,

it actually predicted more PM cost. Thus, conceptually, we

replicate previous studies that found no relation between PM

cost and accumulation rate (Heathcote, Loft, & Remington,

2015; Horn & Bayen, 2015; Strickland et al., 2017; Ball &

Aschenbrenner, 2017).

One distinction between the current findings and previous

work is that here we find non-PM trial accumulation effects

that were inconsistent with capacity sharing, whereas pre-

vious work has selected models that exclude non-PM trial

accumulation effects entirely (e.g., Heathcote, Loft, & Rem-

ington, 2015; Strickland et al., 2017). In our WAIC model

selection, the pure PMDC model, with non-PM trial accu-

mulation effects totally removed, was selected second after

the top model. However, when we examined graphically the

average fit of the PMDC model (supplementary materials),

it was nearly indistinguishable from the top model, with all

the relevant PM-induced trends in the data accounted for. It

seems likely, therefore, that our WAIC method selected an

overly complex model, and more importantly, with regard to

capacity sharing, one that was not psychologically plausible.

Overall then, we did not find evidence for the central

tenant of previous PM theories that focal PM has a lower

shared ongoing task capacity requirement than non-focal PM

(Einstein & McDaniel, 2005; Smith, Hunt, McVay, & Mc-

Connell, 2007), and that this drives increased costs or de-

creased PM accuracy under non-focal conditions. Our find-

ings indicated that neither focal nor non-focal PM shares ca-

pacity with the ongoing task.

One reviewer pointed out that, due to ‘carryover’ effects

(Poulton, 1982) in our within-subjects design, participants

might have devoted ongoing task capacity to PM monitoring

in control blocks that followed PM blocks. If this was the

case, capacity sharing would affect our control baseline for

testing ongoing task capacity, and thus weaken our test of

diminished ongoing task capacity in PM blocks. To explore

this, we fit a re-parameterized PMDC model, allowing both

thresholds and non-PM accumulation rates to vary depend-

ing upon whether a condition was performed first, second,

or third within a session of the experiment (a factor we re-

fer to as ‘block’), rather than across day order 2. Resulting

parameters are summarized in supplementary materials. We

found that the previously reported patterns of non-PM accu-

mulation, which did not support capacity sharing, held for all

levels of the block factor. Critically, there were no ongoing-

task capacity costs with PM even for block 1. For a given day,

participants were not assigned any PM task prior to block 1,

and thus it seems highly unlikely that comparisons for this

block would be confounded by unnecessary capacity sharing

in control conditions. Thus, it appears that capacity sharing

was not masked by carryover effects in our data. We did

find some variation in control over ongoing task thresholds

by within-session order. We found a decrease in control of

non-focal word thresholds for block 2, but this decrease was

not sustained for block 3. Thus, carryover effects might alter

PM-related ongoing task threshold settings, but in this exper-

iment they appeared not to do so in a systematic way.

Proactive Control. Replicating Heathcote et al. (2015),

Horn and Bayen (2015), Strickland et al. (2017), and Ball

and Aschenbrenner (2017), we found large increases in on-

going task thresholds in PM blocks compared with control

blocks. As PMDC predicts should be the case with stimulus-

specific instructions, we found that threshold increases were

largely selective, with the word threshold increasing more

than the non-word threshold. Thus, participants applied

proactive control specifically to target the threshold param-

eter that would affect PM accuracy. However, we did find

2Note that we did not include this factor in our primary analyses

because we could not model within-day effects, across-day effects,

and PM condition effects simultaneously. Each participant per-

formed each condition in the same within-day position only once.

For example, if a participant performed the control condition on

block 1 of day 1, they would not perform control on block 1 of later

days.
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evidence of significant (but smaller) increases in non-word

thresholds in the non-focal condition (also replicating Strick-

land et al., 2017). Thus, non-focal PM appears to cause

participants’ general response caution to increase, perhaps

due to increased perceived task complexity (Horn & Bayen,

2015). The effect sizes of the non-word threshold increases

were much smaller than the word threshold increases. Thus,

our data demonstrate a largely selective delay strategy, with

a smaller role for general caution increases.

Replicating Strickland et al. (2017), the ongoing task

threshold increases were greater under non-focal conditions

than focal conditions. This suggests that participants applied

more proactive control for the non-focal PM task, perhaps

because a larger degree of selective delay is required to wait

for the slower PM accumulator. Our posterior exploration

revealed that this threshold strategy was indeed beneficial to

non-focal PM - when we removed ongoing task threshold in-

creases from the model, the advantage of focal PM accuracy

was increased beyond that observed in the data.

Despite higher ongoing task decision thresholds in the

non-focal PM blocks, focal PM accuracy was greater overall.

This owed to differences between focal and non-focal blocks

in the parameters of the PM accumulator. In focal blocks,

there was a lower threshold to respond PM. This threshold

effect was not a strong prediction of PMDC, which makes

no claim either way about whether PM thresholds should

vary in response to stimulus characteristics. Nonetheless, it

would be interesting to identify the reasons underlying this

shifted threshold. One possibility is that participants set a

higher non-focal threshold because the non-focal task re-

quires a more difficult target-nontarget discrimination pro-

cess, in which they are less confident relative to the focal

task.

Reactive control. Reactive control was evident on PM

trials in both focal and non-focal PM blocks. As expected,

PM excitation was evident on PM trials, with accumulation

towards the PM response being much higher than on non-PM

trials. Consistent with PMDC, we also found feedforward in-

hibition of accumulation towards the correct ongoing task de-

cision on PM trials (i.e., decreased word accumulation). We

were unable to detect this with mean RTs, as word responses

to PM trials were actually faster than word responses to non-

PM trials, likely due to statistical facilitation (i.e., when the

correct ongoing task accumulator is slow it is not observed

because a PM response is made). The accumulation rate es-

timates provided by our model can unmask the feedforward

inhibition effect because they titrate processing speed from

statistical facilitation.

Although still present, evidence for feedforward inhibi-

tion of incorrect ongoing task accumulation (i.e., non-word

accumulation on PM trials) was substantially weaker than for

correct ongoing task accumulation. This is consistent with

selective reactive inhibition (i.e., mainly inhibiting the ongo-

ing task response associated with PM stimuli), which might,

for example, arise through associative learning of the relevant

contingency over the course of the experiment. However, the

parameter for the non-word accumulation rate on PM trials is

constrained by relatively little data – there are only 84 PM tri-

als for each PM block (focal and non-focal), and participants

made very few incorrect ongoing task responses on these tri-

als (~2% of responses on the 84 trials). The lack of data for

these response cells would allow for strong influence from

the prior, which specified no difference. Thus, the data does

not allow us to conclusively determine whether inhibitory re-

active control was selective, or applied to all ongoing task

decision processes.

Reactive control was larger in focal PM blocks than in

non-focal PM blocks. There was an increase in excitation of

PM accumulation. That is, the PM accumulation rate was

higher under focal conditions than under non-focal condi-

tions. This is consistent with greater bottom-up activation

from focal PM stimuli than non-focal PM stimuli. There

was also more feedforward inhibition of ongoing task deci-

sions under focal conditions. That is, accumulation towards

ongoing task responses was reduced more on PM trials un-

der focal conditions than under non-focal conditions. The

increase in inhibitory reactive control was larger than the

increase in PM excitation, and responsible for more of the

PM accuracy advantage observed in the focal condition. Ar-

guably, this is inconsistent with the multiprocess account of

focality effects, in which spontaneous retrieval brings the PM

response immediately to mind (e.g., Einstein & McDaniel,

2000), without the need to inhibit the ongoing task decision

process. However, it converges with more recent theoretical

work (Bugg et al., 2013), and with neurological data (Mc-

Daniel et al., 2013) that implicates reactive control on focal

PM trials.

Summary. The modeling of Experiment 1 was consis-

tent with dual mechanisms of PM decision control. The be-

havior of our model suggested no role of capacity sharing in

PM cost. Instead, there was proactive control over decision

thresholds. We found that our stimulus-specific PM task, in

which PM targets were always words, was associated with

larger increases in word thresholds than non-word thresh-

olds. This suggests that decision control via delay can be tar-

geted selectively at allowing time for the PM response. There

were greater increases in proactive control of ongoing task

decisions under non-focal conditions, and this increased non-

focal PM accuracy. Focal PM accuracy was higher than non-

focal overall, due to PM-related mechanisms not indexed by

PM cost. A unique contribution of our modeling is to pro-

vide a quantitative process account of these mechanisms. We

found that increased focal PM accuracy owed to a lower focal

PM threshold, more PM focal excitation, and, most critically,

increased inhibitory reactive control of ongoing task decision

processes on focal PM trials.
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Experiment 2: PM Importance

In Experiment 1, we found that PMDC could provide

a full distributional account of performance in the PM

paradigm. PMDC accounted for non-focal PM task perfor-

mance, which produced moderate PM accuracy with sizeable

PM cost, while simultaneously accounting for performance

on focal PM tasks, which produce high PM accuracy with

lower PM cost. In Experiment 2, we instead manipulated PM

accuracy by varying the importance of the PM task. Like

focality, PM importance increases PM accuracy, but unlike

focality, PM importance increases PM cost. In Experiment 2

we test whether the model can fit these effects, and, if it can

fit them, examine how it does so. We use a within-subjects

design including control blocks of trials (no PM task), PM-

important blocks (participants instructed that the PM task

was most important), and PM-unimportant blocks (partici-

pants instructed that the ongoing task was most important).

In Experiment 1, our modeling revealed a lack of sup-

port for capacity sharing on non-PM trials. In Experiment

2 we again compare non-PM trial accumulation between PM

blocks and control blocks, allowing us to once again test for

capacity sharing effects. Current PM theories claim that PM

importance emphasis causes more capacity to be allocated to

the PM task, resulting in increased cost and increased PM

accuracy (e.g., Einstein et al. 2005; Smith & Bayen, 2004).

It is possible that, even if not supported by our model of typ-

ical PM cost, capacity sharing may be uniquely supported

in the case of PM-important cost. If this is the case, we

should see systematic reductions in non-PM trial accumu-

lation rates under PM-important conditions. Further, as the

cognitive capacity usurped from ongoing task processing is

assumed to be allocated to to monitoring ongoing task stim-

uli for PM features, increased capacity sharing with impor-

tance should also be associated with increased PM excitation

on PM trials (faster accumulation towards the PM response)

for PM-important blocks as compared with PM-unimportant

blocks. There is also the possibility we will find evidence

of increased non-shared capacity for the PM-important task.

Participants may have some separate capacity pool that does

not affect ongoing task decisions, which they draw more ca-

pacity from when PM is important. If this is the case, PM-

important instructions will lead to an increase in PM accu-

mulation, without any corresponding decreases in non-PM

trial accumulation.

In contrast to capacity sharing theories, PMDC predicts

PM cost will be reflected in increased ongoing task deci-

sion thresholds. In Experiment 2 we changed our PM task

to detecting a target syllable within lexical decision items

(e.g., press a different key if any letter string contains ‘tor’).

We swapped to this task so that we could include both PM

word targets and PM non-word targets. In Experiment 1, we

observed that the non-word threshold increased a relatively

small amount under PM conditions. According to delay the-

ory, this is because the non-word accumulator was unlikely

to reach threshold before the PM accumulator on PM trials:

as PM trials were always words, the non-word accumulation

rate to PM trials was always very low. With the inclusion

of non-word PM targets, the non-word threshold should be

more relevant to PM accuracy, and as such we expect to find

more substantial threshold shifts for the non-word threshold

than in Experiment 1.

Under PMDC, increased PM cost with importance would

be reflected in larger increases in ongoing task thresholds.

The presence vs. absence of larger threshold increases in

PM-important conditions is diagnostic as to whether ongo-

ing decision threshold increases are implemented specifically

to improve PM accuracy (Heathcote, Loft, & Remington,

2015; Strickland et al., 2017), or whether they reflect a global

increase in caution due to the PM instructions increasing

the overall perception of task complexity (Horn and Bayen.,

2015). The perceived complexity of the PM-important and

PM-unimportant tasks should be identical, and thus any on-

going task decision threshold increase in the PM-important

blocks beyond the PM-unimportant blocks can be attributed

to PM-specific processes, rather than general impressions of

the task. Increased ongoing decision thresholds could lead to

higher PM accuracy, by allowing more time for the PM ac-

cumulator to reach threshold on PM trials. Proactive control

could also benefit PM-important accuracy via control of the

PM threshold. Participants could lower their PM threshold

in the PM-important block, so that the PM accumulator is

more likely to win the race with the competing ongoing task

accumulators.

Emphasizing the importance of the PM task may also al-

ter reactive control. That is, under PM-important conditions,

the reactive control architecture may react differently to each

unit of PM input that it receives. This could produce dif-

ferences in PM accuracies despite identical monitoring pro-

cesses or thresholds. Specifically, participants may increase

inhibitory reactive control when PM importance is empha-

sized, in line with findings that reward increases reactive re-

sponse inhibition (Boehler et al., 2014). In this case, accu-

mulation of ongoing task decision processes should decrease

more on PM trials when PM is important than when PM is

unimportant. In terms of our PMDC framework for reac-

tive control (Figure 2), this would indicate that pathways B1

and B2 become more sensitive to input from the PM detec-

tor when PM is important. However, note that if we find

that PM excitation (A1) also increases, we cannot identify

whether the reactive control structure was modified. In this

case changes in accumulation could equally owe to an in-

crease in input to the PM detector, for example as a result of

more capacity devoted to the PM-important task.
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Method

Participants

Five participants were excluded from analysis (see re-

sults), which left our final data set with 36 participants (30

females) aging from 17-26 (average = 18.56 years).

Materials

All word stimuli (both PM targets and non-targets) in the

experiment were low frequency English words (occurring 1-

7 times per million) drawn from the TMSH database (Den-

nis, 1995) of length between, and including, 5 to 10 char-

acters. All non-word stimuli were created using the Wuggy

algorithm (Keuleers & Brysbaert, 2010), which replaces sub-

syllabic segments of words with other subsyllabic segments

(i.e., that are also legal in the same position in the language

of choice). Wuggy was set to replace two out of three sub-

syllabic segments and to match both the subsyllabic segment

lengths and transition frequencies of its output non-words

with the input words. One thousand eight hundred and ninety

six words were selected to be non-PM word stimuli. Each

word was input to Wuggy to produce a corresponding non-

PM non-word stimulus. PM targets contained the substring

ver, the substring tor, or the substring per. To create the PM

target words for each substring, 28 new words were drawn

from the TMSH database that contained that substring, for

example tortoise was one of the 28 words drawn that con-

tain the substring tor. To create the PM target non-words for

each substring, 28 new words were drawn from the TMSH

database and input to Wuggy, with filters so that only non-

words that contained each of the target syllables were gener-

ated. All stimuli were presented once each to all participants.

The total number of trials per block, and the counterbal-

ancing of the three different PM conditions, followed the

same pattern as Experiment 1. For each day of the exper-

iment for each participant, one substring (tor, ver, per) was

assigned as a PM target for the PM-important block and a dif-

ferent substring was assigned to the PM-unimportant block.

The assignment of substrings to PM blocks was balanced

for each participant so that, over the three days, each sub-

string was used once in the PM-important and once in the

PM-unimportant block. Other than satisfying the previous

two conditions, the assignment of substrings to PM blocks

was random. In control blocks, participants were presented

with 220 non-words and 220 words. In PM blocks (both PM-

important and PM-unimportant), participants were presented

with 206 non-target non-words and 206 non-target words, as

well as 14 PM target non-words and 14 PM target words.

For each participant, the 14 PM target words and 14 non-

words used in the PM-important block were drawn randomly,

without replacement, from the 28 of each available for each

substring. The other 14 were used for the PM-unimportant

block. The order of PM target presentation for each block

was randomized. For each participant the order of lexical de-

cision stimuli was randomized across blocks. The structure

of each block, in terms of breaks, and position of PM trials,

was the same as Experiment 1, except that PM target trials

were separated by at least 4 lexical decision trials rather than

2.

Procedure

The procedure was identical to Experiment 1, except that

the instructions were modified to match the new PM task and

PM importance manipulation. In PM blocks, participants

were additionally instructed to press an alternative key in-

stead of their word or non-word response when they encoun-

tered items containing a target substring, for example, “In

the next block of lexical decision trials, if you see ANY item

that contains ‘tor’ then press ‘j’ INSTEAD of ‘s’ or ‘d’. For

example, if you see ‘indicator’ then press ‘j’ instead of ‘s’

or if you see ‘botoraty’ then press ‘j’ instead of ‘d”’. For

the PM-important blocks, participants were asked to prior-

itize remembering to perform their alternative response to

PM targets; “Please make all your responses as quickly and

accurately as possible, however, concentrate on remember-

ing to make a special response if you see items containing

‘per’. That is, for this block of trials, remembering to make a

special response to items containing ‘per’ is more important

than discriminating between words and non-words”. For the

PM-unimportant blocks, participants were asked to prioritize

their performance on the lexical decision task; “Please make

all your responses as quickly and accurately as possible,

however, concentrate on the lexical decision task. That is, for

this block of trials, discriminating between words and non-

words is more important than remembering to make a special

response if you see items containing ‘tor”’. The instructions

also asked the participant to speak to the experimenter, so

they could ask any questions they had about the task. For

PM blocks, the next screen asked to indicate whether the

PM or LD task was more important, e.g., “Please indicate

which of your tasks is more important. Press ‘g’ if respond-

ing to items containing tor is more important. Press ‘h’ if

discriminating between words and non-words is more im-

portant. If you answer correctly, the experiment will con-

tinue. If you answer incorrectly, the experiment will return

to the instructions screen for review”. If participants made

the wrong response they returned to their instructions screen

for review. They were then asked the question again, and if

they made the incorrect response would again be returned to

their instructions. Once they correctly indicated which task

was more important the experiment proceeded.

Results

Five participants were excluded from analysis: two be-

cause an entire block of their ongoing task accuracy was near

chance (< 65%), two because they didn’t identify a single PM
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target in the PM-unimportant blocks over all 84 PM presenta-

tions, apparently because they misinterpreted the instructions

and decided to completely disregard the PM, and one because

the participant, after completing the experiment, indicated in

a conversation with the experimenter that they did not under-

stand the importance emphasis instructions. This exclusion

rate of participants is higher than typical, but not surprising

given that for each participant we required valid data from

nine blocks of trials over three days of testing. The first two

trials of each block and after each rest period were excluded

from the analyses, as were the two trials following each PM

trial, and following any PM false alarms. We also excluded

trials where participants responded with a key which was not

designated to indicate their PM or LD responses (0.03% of

trials), and trials with outlying RTs, defined as less than 0.2s

or 3 times the interquartile range above the mean (4.47% of

the remaining responses). One participant responded once

with the PM response key in the control condition, this re-

sponse was excluded from the analyses.

Prior to reporting modeling results we present standard

analysis of ongoing task accuracy, PM cost, PM accuracy,

and PM RT. As with Experiment 1, we analyzed accuracies

with binomial probit models and mean correct RTs with gen-

eral linear models (supplementary materials), and standard

errors were calculated as suggested by Morey (2008). In ad-

dition to stimulus type (word, non-word) and PM block (con-

trol, PM-important, PM-unimportant), all analyses included

a day order factor (day 1, day 2, day 3) to capture effects of

task repetition.

Non-PM Trials

In addition to PM trials, false alarm trials (non-PM trials

on which a PM response was made) and the two lexical de-

cision trials following both PM trials and false alarm trials

were excluded. Accuracy was higher for non-words (92.7%)

than words (89.2%), and there was an effect of day (day 1 =

91.8%, day 2= 90.8%, day 3= 90.3%). These effects were

qualified by an interaction between stimulus type and day.

Non-word accuracy was relatively stable over the 3 days (in

order of day: 93.1%, 92.4% and 92.7%), whereas word ac-

curacy decreased over the 3 days (90.5%, 89.3% and 87.8%).

There was no effect of PM block (PM-important M = 91.0%,

SE = 0.84%; PM-unimportant M = 90.9%, SE = 0.87%; Con-

trol M = 90.9%, SE =0.75%).

Correct ongoing task RTs decreased over days (day 1=

0.809s, day 2= 0.740s, day 3= 0.709s), and were slower to

non-words (0.774s) than words (0.731s). We found costs to

correct ongoing task RT in PM-unimportant blocks (0.761s)

as compared to control (0.712s), t (35) = 5.91, p < .001, d =

0.99. Costs were larger in the PM-important blocks (0.785s)

than in the PM-unimportant blocks, t (35) = 4.74, p < .001,

d = 0.79. Thus, the experiment produced the expected PM

costs, and the expected increase in PM costs with PM im-

portance. The effect of PM block interacted with the effect

of day order (Figure 8), with the speed increase over day be-

ing largest in the PM-important condition and smallest in the

control condition (PM-important mean RT in order of day

= 0.853, 0.773s, 0.730s; PM-unimportant = 0.824s, 0.744s,

0.715s; control = 0.750s, 0.704s, 0.682s). The effects of

stimulus type and PM block did not interact.

PM trials

PM responses were scored as correct if the participant

pressed the PM response key instead of a lexical decision

response key on the target trial. PM accuracy decreased

over days (day 1 M = 62%; SE = 5%; day 2 M = 60%;

SE = 4%; day 3 M = 56%; SE = 4%), and was higher for

non-word PM targets (M = 61%, SE = 5%) than for word

PM targets (M = 57%, SE = 5%). We found the typical

effect of importance emphasis; PM accuracy was higher in

the PM-important blocks (M = 70%, SE = 4%) than in the

PM-unimportant blocks (M = 49%, SE = 5%). However, the

magnitude of this effect was widely distributed across partic-

ipants: for some participants there was a major shift in PM

accuracy, and for some none at all (Figure 9). PM response

false alarms were very rare, ranging from 0 to 0.7% of trials.

Correct PM responses were faster in the PM-important

blocks (M = 0.839s, SE = 0.018s) than in the PM-

unimportant blocks (M = 0.884s, SE = 0.023s), and there

was an effect of day order (day 1 M = 0.917s, SE = 0.018s;

day 2 M = 0.849s, SE = 0.016s; day 3 M = 0.811s, SE =

0.015s). PM responses took longer for non-word PM targets

(M = 0.870s, SE = 0.022s) than for word targets (M = 0.850s,

SE = 0.021s).

Non-PM trials compared with PM trials

We again tested for reactive control by examining the ef-

fect of PM trial status (PM trial vs. non-PM trial) on ongoing

task RT. We ran a linear mixed effects model including the

effects of PM trial status, PM block, stimulus type, and day.

Recall that a ‘correct’ ongoing task response on a PM trial is

in fact a missed PM target. Correct ongoing task RTs were

not significantly different on non-PM trials (M = 0.778s) than

PM trials (M = 0.762s). There was an interaction between

PM trial status, and lexical stimulus type. There was a trend

for correct ongoing task responses to non-words to be slower

on PM trials (M = 0.801s; SE =0.032s) than on non-PM trials

(M = 0.792s; SE = 0.015s), t (35) = 1.93, p = .06, d = 0.79,

whereas there was a trend for correct ongoing task responses

to words to be faster on PM trials (M = 0.725s; SE = 0.027s)

than on non-PM trials (M = 0.754s; SE =0.016s), t (35) =

1.92, p =.06, d = 0.32. There was no interaction between

PM trial status and PM block. Although these RT effects

do not strongly suggest reactive control, note again that the

critical analyses are of accumulation rates (next section), and

not raw RT.
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Figure 8. Experiment 2, ongoing task RTs by PM block by day.The standard error bars were calculated using the Morey

(2008) bias corrected method.

Figure 9. Frequency histogram demonstrating the spread across participants of the effect of PM importance emphasis on PM

accuracy. Positive values demonstrate an advantage for the PM-important blocks. For most participants, PM-important PM

accuracy was higher, but the magnitude of the effect varied substantially.

Model Analysis

Our factor structure was the same as Experiment 1, ex-

cept that our stimulus type factor had four levels: word, non-

word, PM word, and PM non-word. We applied the same

modeling approach, parameter restrictions, priors, and sam-

pling settings as in Experiment 1. Figure 10 plots the fits

of the posterior predictions, averaged over participants, to

the Experiment 2 data. Again the model provided a good

fit to both non-PM trials and PM trials, including the PM

cost effect, PM accuracies, PM RTs, and the effects of PM

importance. We also include fits to the coefficient of vari-

ation in non-PM trial RTs, PM miss RTs, and PM hit RTs,

in the supplementary materials. Again we found similar pat-

terns to those reported by Gilbert et al. (2013), with non-PM

trial coefficient of variation larger than PM trial coefficient

of variation, and the PMDC model provided a reasonable fit

to these trends.

We again used WAIC model selection (Table 7) to as-

sess whether any further constraint on our model across PM

blocks could be statistically justified. We used the differ-

ences in WAICS, and standard error of the differences, to
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Figure 10. Fits of the LBA to the Experiment 2 data. The white dots indicate the observed data average. The black dots in-

dicate the posterior prediction. The error bars are the 95% credible interval of the posterior prediction. The credible intervals

tend to be narrow due to our large number of trials. The RT distributions are summarized with three order statistics (the three

lines on each RT graph): the 0.1 quantile, which captures the leading edge of the distribution (i.e., the fastest responses), the

median value, and the 0.9 quantile which captures the tail of the distribution (i.e., the slowest responses). We calculated the

plotted statistics (accuracies and quantile RTs) by concatenating the observed data from all participants into one data frame,

and then calculating the statistics for that entire data frame. We used this same procedure for both the observed data and the

simulated data. The alternative is to calculate statistics on a participant-by-participant basis (e.g., calculate a median RT for

every participant), and then average. The approaches yielded similar results. Due to the lower number of PM trials, PM RTs

are collapsed over correct and error responses.

assess the relative importance of differences in accumula-

tion rates and thresholds across PM conditions (control/ PM-

important/ PM-unimportant). As with Experiment 1, we

found more support for an ‘Only Proactive Control’ model,

in which both the ongoing task and PM thresholds could vary

over PM conditions, but accumulation rates could not, than

for a ‘No Proactive Control’ model, in which accumulation

rate parameters could vary freely among the PM and con-

trol conditions, but thresholds could not, WAIC difference =

4103.61, standard error of the difference = 159.54, standard-

ized difference = 25.72.

We compared the Only Proactive Control model to a

model that allowed both proactive control and also varia-

tion in PM excitation across PM block (i.e., different accu-

mulation rates towards the PM response for PM-important

and PM-unimportant conditions), and although WAIC for the

latter was slightly lower, the difference was not substantial,

12.25, standard error of the difference = 15.92, difference in

standard units = 0.77. We found a larger difference when we

compared the model with proactive control and differences

in PM excitation to a model with proactive control and dif-

ferences in PM inhibition (differences in the ongoing task

accumulation rates on PM trials between blocks). WAIC fa-

vored latter, with an advantage of 279.37, standard error of

the difference = 40.35, standardized difference = 6.92. Con-

sistent with the weak effect of PM excitation, a comparison

of the previous model (variation proactive control plus in-

hibitory reactive control) to the full PMDC model (variation
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in proactive control, excitatory control and inhibitory con-

trol) indicated only a slight WAIC preference for the PDMC

model, WAIC difference = 7.29, standard error of the dif-

ference = 16.67, and standardized difference = 0.44. Thus,

in terms of the importance effects on PM trials, variation in

ongoing task accumulation rates on PM trials as a function

of PM importance led to big improvements in fit, whereas

variation in accumulation towards the PM response led to

smaller improvements in fit.

Finally, we compared the PMDC model to the top model,

which also allows non-PM trial accumulation rates to vary

over PM condition. As with Experiment 1, we found that the

top model was the most supported of all, with a WAIC 301.06

lower than the full PMDC model, standard error of the dif-

ference = 62.03 , difference in standard units = 4.85. Thus,

again it appears that non-PM trial accumulation rate flexibil-

ity increases the predictive ability of the model. However,

as we demonstrate below with posterior inference from the

chosen, most flexible model, we again found that the direc-

tion and magnitude of non-PM trial accumulation differences

does not suggest capacity sharing.

Model Summary

As with Experiment 1, we summarize our results by

averaging the posterior samples across participants. The

non-decision time posterior mean was 0.16 (posterior SD =

0.002). The A posterior mean was 0.35 (posterior SD = 0.01).

The sv parameters are summarized in Table 8. As with Ex-

periment 1, all of these values are reasonable and consistent

with past results. We now examine variation in mean accu-

mulation rates and thresholds to determine the relative sup-

port for capacity sharing and PMDC mechanisms. We test

differences between parameters using posterior predictive p

values, and also report the standardized effect size of the dif-

ference distribution (Z).

Capacity sharing (Non-PM Trial Accumulation).

The non-PM trial accumulation rates are displayed in the left

two panels of Figure 11. Table 9 contains effect sizes and

posterior p values for comparisons of non-PM trial rates. Ca-

pacity sharing theories predict lower correct non-PM trial ac-

cumulation in PM blocks, and higher incorrect non-PM trial

accumulation in PM blocks. Inconsistent with capacity shar-

ing, correct accumulation to non-PM words was marginally

higher for PM-important blocks (2.71) than control (2.68).

The difference between control and PM-unimportant (2.70)

blocks was negligible. Also inconsistent with capacity shar-

ing, error accumulation to non-PM words was lower under

PM-unimportant conditions (0.13) than control (0.26), and

marginally lower still in PM-important blocks (0.09) than

PM-unimportant blocks. Similarly, error accumulation to

non-PM, non-word trials was similar under PM-unimportant

(-1.19) and control conditions (-1.20), as well as control and

PM-important conditions (-1.17).

We found one non-PM trial accumulation effect in line

with capacity sharing. Correct accumulation to non-PM non-

words was lower under PM-unimportant conditions (2.65)

than control (2.72), and similar between PM-unimportant

and PM-important conditions (2.64). Although this effect

could be taken as evidence for capacity sharing, it is not con-

vincing in the context of the other effects pointing in the op-

posite direction.

Proactive Control (Thresholds). Proactive control to

delay ongoing task decision processes should be reflected

in higher ongoing task decision thresholds in PM blocks,

and more proactive control should cause higher thresholds

in PM-important blocks compared with PM-unimportant

blocks. Figure 12, which plots the thresholds, demonstrates

that this is what we found. Table 10 shows effect sizes

and posterior p values for comparisons of thresholds. Word

response thresholds were higher in PM-unimportant blocks

(1.27) than control blocks (1.14), and higher in PM important

blocks (1.36) than unimportant blocks. Non-word thresholds

were higher in PM-unimportant blocks (1.33) than control

blocks (1.26), and higher in PM-important (1.38) blocks than

PM-unimportant blocks. We also found support for proactive

control over the PM threshold: it was lower (i.e., set to fa-

vor making the PM decision) in PM-important blocks (1.12)

compared with PM-unimportant blocks (1.35).

Reactive Control (PM vs. non-PM trial accumulation).

We examined reactive control by comparing the non-PM trial

accumulation rates (left two panels of Figure 11) with the PM

trial accumulation rates (right two panels of Figure 11). The

effect sizes and p values relevant to these comparisons are

in Table 11. As expected, we found evidence in both PM-

important and PM-unimportant blocks for excitation of the

PM accumulator on PM trials, in that the PM accumulation

rates on PM trials were much higher than the ‘false alarm’

PM accumulation rate on non-PM trials (M = -2.71).

We compared PM excitation (accumulation towards PM

on PM trials) between PM-important and PM-unimportant

blocks. Inconsistent with gains in PM excitation, PM ac-

cumulation to PM non-words was a little lower in PM-

important blocks (1.84) than in PM-unimportant blocks

(1.89). However, more consistent with increased excitation,

for PM words PM accumulation was higher in PM-important

blocks (1.89) than in PM-unimportant blocks (1.84). Given

there opposing directions, these effects do not indicate that

PM excitation increased overall in PM-important blocks as

compared with PM-unimportant blocks.

We again test for reactive inhibitory control by comparing

correct ongoing task accumulation rates on PM trials with

correct ongoing task accumulation rates on non-PM trials. In

PM-unimportant blocks, word accumulation was much lower

on PM word trials (1.70), than on non-PM word trials (2.70).

Similarly, in PM-unimportant blocks non-word accumula-

tion was lower on PM non-word trials (1.63) than on non-
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Table 7

Experiment 2, WAIC model selection. Lower WAIC indicates more preference for the model. To evaluate each model using

data from the entire group of participants, we first concatenated the log-likelihoods under the model for each trial, for all

participants, together into one pointwise log-likelihood matrix where points are trials. We then calculated WAIC for each

model using its log-likelihood matrix.

Model Estimated Number of Parameters WAIC

Top 1171.1 -47977.3

Proactive Control & Reactive Control (both) 1013.1 -47676.3

Proactive Control & Reactive Control (inhibitory) 991.8 -47669.0

Proactive Control & Reactive Control (excitatory) 985.4 -47389.6

Proactive Control 962.3 -47377.4

No Proactive Control 877.4 -43273.8

Table 8

Experiment 2, M (SD) of the posterior distributions, averaged across participants, of the standard deviation of the evidence

accumulation rates.

Accumulator Stimulus Type

Word Non-word Word PM Non-word PM

Non-word 1.36 (0.03) 0.66 (0.012) 0.98 (0.04) 1.06 (0.03)

Word 0.71 (0.01) 1.53 (0.03) 1.26 (0.04) 1.09 (0.04)

PM Fixed at 1 0.40 (0.01) 0.43 (0.01)

PM non-word trials (2.65). In PM-important blocks, ongo-

ing task accumulation rates were also reduced on PM trials,

and the reduction in rate was larger than in PM-unimportant

blocks for both word stimuli (non-PM word = 2.71 , PM

word = 1.13) and non-word stimuli (non-PM non-word =

2.64, PM non-word = 1.15). Thus, in sum, we found strong

evidence of reactive inhibition towards the ‘correct response’

for all PM trial types, and also strong evidence of greater

reactive inhibition towards the ‘correct’ response in PM-

important conditions.

In contrast to the correct rates, incorrect ongoing task ac-

cumulation rates were not consistently lower on PM trials.

Although non-word accumulation was reduced on word PM

trials (PM-unimportant = -0.57, PM-important = -0.57) as

compared with non-PM word trials (PM-unimportant = 0.13,

PM-important = 0.09), word accumulation on non-word PM

trials (PM-unimportant = -0.45, PM-important = -0.83) was

actually higher than non-PM trials (PM-unimportant = -1.19,

PM-important = -1.17). However, these incorrect ongoing

task accumulation rates were again very data poor param-

eters, with very few incorrect ongoing task responses ever

being observed on PM trials, and so this was probably due to

influence from the prior.

Model Mechanisms

We took the same approach as with Experiment 1 to ex-

ploring how parameter differences accounted for the effects

in the data. That is, we simulated from models where differ-

ences between parameters were averaged out, or parameters

were set equal to baseline values, and evaluated predictive

mis-fit as compared with the full model. In the supplemen-

tary materials, we include detailed graphs of our findings. In

text, we restrict our discussion to the benchmark PM effects

(PM cost, PM accuracy, and increased PM cost and PM ac-

curacy with importance). Again, for simplicity, we discuss

the adequacy of fit to PM cost effects, and the percentage of

actual PM accuracy and PM accuracy effects predicted (see

supplementary materials for more detailed graphical sum-

maries).

Again we simulated a model with all non-PM trial accu-

mulation rate parameters equal to those from control con-

ditions (i.e., no capacity sharing). This did not appreciably

affect the model’s predictions of costs, again suggesting a

dissociation between capacity sharing and PM cost. In con-

trast, setting all ongoing task response thresholds to the level

of control conditions (i.e., no proactive control) removed the

model’s predictions of PM cost, suggesting that thresholds

were critical to the effect in the full model. Ongoing task

thresholds also affected PM accuracy. The full model pre-

dicted nearly all of both PM-important accuracy (96% of

word PM, 98% of non-word PM) and PM-unimportant ac-

curacy (99% of word PM, 98% of non-word PM), whereas

the model with ongoing task thresholds set to control levels

predicted less of both PM-important accuracy (85% of word

PM, 91% of non-word PM) and PM-unimportant accuracy

(88% of word PM, 91% of non-word PM). Differences in

ongoing task thresholds also contributed to the advantage of

important PM accuracy: the full model fit most of the advan-

tage (89% word, 96% non-word), whereas the model with
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Figure 11. Experiment 2, posterior distributions of the mean accumulation rates, averaged across participants. The central

symbols are the posterior means, and the bars are the mean + or - the posterior standard deviation. Plotted by stimulus type,

by latent response accumulator, and by PM block. There is very little difference by PM block in the accumulation rates of the

lexical decision stimuli, hence the overlapping symbols. False alarm accumulation (M = -2.71, SD = 0.11) not pictured.

Table 9

Experiment 2 Z values (with associated posterior predictive p values in brackets) for contrasts between non-PM trial mean

accumulation rates.

Contrast Word Trial Accumulator Non-word Trial Accumulator

Correct Error Correct Error

Unimportant - Control 0.88 (.19) -3.41 (<.001) -3.89 (<.001) 0.32 (.37)

Important - Control 1.68 (.05) -4.31 (<.001) -4.42 (0) 0.62 (.27)

Important - Unimportant 0.77 (.22) -1.00 (.16) -0.64 (.26) 0.29 (.39)

ongoing task thresholds set to control levels moderately un-

derestimated it (77% word, 91% non-word).

We simulated a model with reactive control removed, by

setting ongoing task accumulation rates on PM trials to non-

PM trial levels. Removing reactive control resulted in the

under-prediction of both PM-important accuracy (49% of

word PM, 51% of non-word PM) and PM-unimportant ac-

curacy (53% of word PM, 54% of non-word PM). Further,

whereas the full model predicted most of the effect of PM

importance on PM (89% word, 96% non-word), the model

with reactive control removed did not (41% word, 43% non-

word).

We also examined how differences across conditions in

PM thresholds and PM accumulation rates contributed to

the differences in important and unimportant PM. The PM-

important accuracy advantage was facilitated by the PM

threshold: with the PM thresholds averaged, the percentage

of PM accuracy effect predicted was down from 89% to 52%

for words and from 96% to 50% for non-words. In contrast,

the effect of changes in PM rate on the PM-important advan-

tage to accuracy were inconsistent: removing PM rate dif-

ferences reduced the prediction of the effect from 89% to

86% for word PM targets, but actually increased the effect

predicted from 96% to 103% for non-word targets.

Individual Differences

Correlations. As with Experiment 1, we used plausible-

value correlations with population corrections to explore in-

dividual differences in PM accuracies, and the strength of our

PM accuracy manipulation. We correlated PM accuracy with

PM accumulation, PM thresholds, and also combinations of

model parameters that index PM mechanisms: decreases in

non-PM accumulation as compared with control conditions

to index capacity sharing, increases in ongoing task thresh-

olds as compared with control conditions to index proactive

control, and decreases in accumulation towards ongoing task

responses on PM trials as compared with non-PM trials to in-

dex reactive control. In contrast to Experiment 1, here there

were two types of PM trials, word and non-word. We calcu-

lated separate correlations for PM accuracies on each type of

trial.

Neither PM-important accuracy, nor PM-unimportant ac-

curacy, nor the difference in the two, correlated with de-

creases in non-PM accumulation rates. In contrast, there

were many correlations between PM accuracy and proactive

control. For word PM targets, PM accuracy under impor-

tant conditions was correlated with increases in word thresh-

olds (.33) and non-word thresholds (.40), as was PM accu-
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Figure 12. Experiment 2, response thresholds. The central dots are the means of the average posterior samples, and the bars

are the mean + or - the standard deviation. Plotted by latent response accumulator, by PM block, by day.

Table 10

Experiment 2 Z values (with associated posterior predictive p values in brackets) for contrasts between thresholds.

Contrast Accumulator

Word Non-word PM

Unimportant - Control 14.54 (0) 8.44 (0)

Important - Control 22.29 (0) 13.18 (0)

Important - Unimportant 9.30 (0) 4.88 (0) -8.40 (0)

racy under unimportant conditions (word threshold correla-

tion = .43; non-word = .38). For non-word PM targets, PM

accuracy under important conditions was correlated with in-

creases in non-word thresholds (.42) as compared with con-

trol, but not word thresholds. PM accuracy to non-words un-

der unimportant conditions correlated with both increases in

both word (.47) and non-word (.43) thresholds. We also ex-

amined how increases in ongoing task thresholds from PM-

unimportant conditions to PM-important conditions corre-

lated with the advantage of important PM accuracy. We only

found one correlation, that between increases in proactive

control over non-word and increased PM accuracy to non-

words (.36). In sum, individual differences in PM accuracy

were to some degree explained by individual differences in

proactive control over ongoing task thresholds. Individual

differences in the advantage of PM-important accuracy were

explained by increased proactive control over non-word deci-

sions for non-word PM targets, but not by increased proactive

control over word decisions for word targets.

We next considered PM accumulator parameters. We

found no correlation between PM rates and PM accuracies,

and no correlations between changes in PM rate and the dif-

ference in important and unimportant PM. We found no cor-

relation between PM thresholds and PM accuracy for im-

portant conditions, but for unimportant conditions we found

negative correlations between PM threshold and both word

PM accuracy (-0.36) and non-word PM accuracy (-0.38).

Further, we found strong correlations between differences

in PM thresholds over important and unimportant conditions

and differences in PM accuracy for both word (-0.56) and

non-word PM targets (-0.61). Thus, individual differences

in PM thresholds explained a large amount of the individual

differences in the effect of importance on PM accuracy.

Finally, we examined reactive control. For word PM tar-

gets, reactive control over word accumulation was strongly

correlated with both important (0.66) and unimportant PM

accuracy (0.73), whereas reactive control of non-word accu-

mulation was not. For non-word PM targets, reactive control

over non-word accumulation was strongly correlated with

both important (0.52) and unimportant PM accuracy (0.56),

whereas reactive control over word accumulation was not.

Thus, reactive control over the ‘correct’ ongoing task accu-

mulator for a given PM target explained a large degree of in-

dividual differences in PM accuracy to that target. We found

no correlation between differences in reactive control across

PM conditions and differences in PM accuracy. Thus, differ-

ences between PM-important and PM-unimportant reactive

control were not associated with differences in the effect of

importance on PM accuracy.
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Table 11

Experiment 2, mean accumulation rate contrasts relevant to reactive control. We report Z (p), as defined in text. We separate

the word trials (top half) and non-word trials (bottom half). In first and second row of each half we compare PM trials with

non-PM trials. In the third row, we compare the difference in reactive control between PM-important and PM-unimportant

blocks. Thus, the third row of each half displays the difference between PM blocks (Important- Unimportant) of the differences

by PM trial status (PM - non-PM).

Contrast Accumulator on Word Trials

Word Non-word PM

PM-unimportant: PM trials - Non-PM trials -16.21 (0) -4.27 (0) 47.25 (0)

PM-important: PM trials - Non-PM trials -20.11 (0) -4.03 (0) 57.99 (0)

Important difference - Unimportant difference -8.75 (0) 0.21 (.42) 0.97 (.17)

Contrast Accumulator on Non-word Trials

Word Non-word PM

PM-unimportant: PM trials - Non-PM trials 4.56 (0) -19.13 (0) 52.33 (0)

PM-important: PM trials - Non-PM trials 1.93 (.03) -21.40 (0) 56.84 (0)

Important difference - Unimportant difference -2.40 (.008) -8.17 (0) -1.19 (.12)

Model Mechanisms. As with Experiment 1, we exam-

ined how different model mechanisms accounted for PM ac-

curacy across individual participants by removing mecha-

nisms from the model and examining the resulting PM ac-

curacies for each individual. Supplementary materials con-

tain plots of each model’s fit to each individual’s important

PM accuracy, unimportant PM accuracy, and the difference

between the two.

Our model exploration of individual participants was

fairly consistent with our averaged model exploration. The

contribution of the different pieces of PMDC (i.e., proac-

tive ongoing task threshold control, proactive PM thresh-

old control, reactive control) to PM-important and PM-

unimportant accuracies were similar across participants. Re-

moving proactive ongoing task threshold control resulted in

consistent moderate underestimation of both important and

unimportant PM accuracy across participants. Removing re-

active control resulted in consistent large underestimation of

PM accuracies.

As previously discussed, there was a large spread across

participants in the effect of PM importance on PM accuracy,

perhaps because participants varied in their sensitivity to our

instructions to prioritize PM. Our exploration here revealed

that for the participants where the advantage of important

PM was substantial, all the PMDC mechanisms contributed.

Removing proactive control of ongoing task thresholds pro-

duced a small underestimation of the effect, whereas remov-

ing reactive control produced a large underestimation, as did

averaging PM thresholds. Averaging PM accumulation rates

between important and unimportant conditions did not lead

to consistent underestimation of the differences.

Discussion

The LBA model provided a good fit to the ongoing task

accuracies and PM accuracies in Experiment 2, as well as

a comprehensive distributional account of ongoing task and

PM RTs. This included fit to the PM cost effect, and to the

effects of manipulating PM importance on PM costs, PM ac-

curacy, and PM RTs. We did not find evidence that capac-

ity sharing between PM and ongoing task processes was re-

sponsible for the increased costs or increased PM accuracy

in our PM-important condition. Instead, we found evidence

that both proactive and reactive control were active over PM

and ongoing decision processes, as specified by PMDC.

Capacity sharing. For both PM blocks, the shifts in

non-PM trial accumulation rates as compared with control

were inconsistent: non-PM non-word trials might be pre-

sented as evidence of capacity-sharing cost with PM (lower

correct ongoing task accumulation), but non-PM word trials

actually indicated evidence for higher ongoing task cogni-

tive capacity with PM (lower error accumulation with PM).

These accumulation effects were similar between the PM-

unimportant blocks and PM-important blocks, despite the

latter being argued to be particularly conducive to capacity

sharing. In addition, the effects of PM condition on non-

PM trial accumulation rates were substantially weaker than

the increases in ongoing task thresholds, and were not as-

sociated with prediction of PM cost. Thus, our findings are

consistent with Experiment 1, and previous work, in that they

do not support the capacity sharing account of PM cost. We

also did not find consistent increases in PM accumulation

rates in the PM-important condition compared to the PM-

unimportant condition. For word trials, there was a trend

towards slightly faster PM accumulation with important PM,

but for non-word trials, the PM accumulation rate was ac-

tually lower with important PM. Thus, not only was there

a lack of evidence for capacity sharing, there was a lack of

evidence for increased non-shared capacity when PM impor-

tance was emphasized.
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Proactive Control. We found large increases in ongo-

ing task response thresholds in PM blocks compared with

control blocks, suggesting proactive control in favor of PM

responding. We found that Experiment 2’s PM task, in which

PM items could be words and non-words, resulted in much

larger threshold increases to non-words than in Experiment

1, where PM items could not be non-words. This is consis-

tent with delay theory’s proposition that ongoing task thresh-

old increases are targeted specifically to slow down decision

processes that might pre-empt the PM decision on PM tri-

als (Heathcote, Loft, & Remington, 2015; Loft & Reming-

ton, 2013; Strickland et al., 2017). Furthermore, ongoing

task threshold increases were larger in PM-important blocks.

This suggests that when PM is important, participants ap-

plied greater proactive control over their ongoing task deci-

sions.

One interesting finding is that, although we observed sub-

stantial overall PM cost, the increased PM cost we observed

with PM importance was smaller than previous studies (only

0.024s). Perhaps this is due to our use of a within-subjects

design, whereas, to our knowledge, all previous PM manip-

ulations have used a between subjects design (Einstein et al.,

2005; Kliegel, Martin, McDaniel, & Einstein, 2001; Kliegel

et al., 2004; Loft et al., 2008). Proactive control settings

may be subject to within-subjects carryover effects from the

control blocks and PM-unimportant blocks (Poulton, 1982).

We explored this possibility in the same way we explored

carryover effects for Experiment 1: by re-parameterizing

PMDC using within-day order (‘block’) as a factor, rather

than across day order. The resulting parameters are presented

in supplementary materials. In contrast to Experiment 1, here

we found that differences in ongoing task thresholds across

PM conditions did decrease for blocks performed later within

a session, suggesting that indeed, within-subjects carryover

reduced the strength of proactive control over ongoing task

thresholds. However, we replicated Experiment 1’s findings

of no support for capacity sharing in non-PM accumulation

even for the blocks that were performed first each day, sug-

gesting that carryover effects did not mask capacity sharing.

Despite the small impact on PM cost, our importance ma-

nipulation was not weak per se, as the increase in PM ac-

curacy with importance was quite substantial (21%). The

fact that a large increase in PM accuracy could be achieved

with only a small increase in PM cost suggests that PM ac-

curacy and cost do not map entirely to a change in a sin-

gle cognitive mechanism. Consistent with this, our model

exploration revealed that although our cost parameters (the

ongoing task threshold increases) did contribute to increased

PM accuracy with importance, they contributed much less

to the increase in PM-important PM accuracy than the PM

accumulator parameters. For example, we found that PM

importance caused proactive control over the PM threshold.

In the PM-important condition, the PM threshold was lower,

biasing responding in favor of PM. This caused around half

of the PM accuracy effect. This effect on PM threshold was

larger than the effect of focality on PM threshold from Ex-

periment 1, consistent with the strategic nature of the impor-

tance manipulation.

Reactive Control. We found evidence for PM-induced

reactive control in both PM-important and PM-unimportant

blocks. As expected, in both PM blocks the PM accumula-

tion rate was much higher on PM target trials than on non-

PM trials. As in Experiment 1, accumulation towards the cor-

rect ongoing task response was greatly reduced on PM trials

compared with non-PM trials, suggesting that processing of

PM-related attributes inhibited accumulation towards this re-

sponse. In contrast, there was not strong evidence that accu-

mulation towards the incorrect ongoing task response was re-

duced on PM trials. However, the incorrect ongoing task ac-

cumulation rates for PM trials are very data-poor parameters

(as we observed very few incorrect ongoing task responses

on PM trials), and thus may have been subject to substantial

influence from the prior, which specified no difference. Con-

sistent with this, incorrect ongoing task accumulation rates

for PM trials appeared lower than non-PM trial rates when

the non-PM trial rates were above the prior value, but ap-

peared higher than non-PM trial rates when the non-PM trial

rates were far below the prior value.

We found that reactive control on PM trials was stronger

when the PM task was important. In particular, when the im-

portance of the PM task was emphasized, feedforward inhibi-

tion of the competing ongoing task response increased (i.e.,

accumulation towards the correct ongoing task response to

PM items decreased). This feedforward inhibition accounted

for around half of the advantage to PM accuracy associated

with important PM. In contrast to Experiment 1’s finding that

PM accumulation was faster under focal conditions, we did

not find that PM accumulation was substantially faster un-

der PM-important conditions. This is consistent with reac-

tive excitation being a stimulus-driven rather than a control-

related effect. Furthermore, the lack of increase in PM ac-

cumulation with PM importance suggests there is not an in-

crease in the capacity devoted to extracting PM-related in-

formation from the PM stimuli. Instead there appears to be

an additional strategic adjustment (beyond proactive thresh-

old adjustment) specific to reactive inhibition. It seems that

under PM-important conditions participants alter their reac-

tive control architecture to inhibit ongoing task accumulation

more strongly when they encounter PM signal (in Figure 2,

increasing the sensitivity of pathways B1 and B2).

Summary. The model analysis of Experiment 2 was

consistent with dual mechanisms of PM decision control. We

did not find evidence for capacity sharing between PM and

ongoing task processes: we found no systematic difference

in non-PM trial accumulation rates between PM and control

conditions, even with important PM, and we found no in-
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crease in PM accumulation with important PM. Instead, PM

cost was due to proactive control over ongoing task thresh-

olds. There was more threshold control when PM importance

was emphasized as compared with when ongoing task impor-

tance was emphasized, despite otherwise identical instruc-

tions. This suggests ongoing task thresholds can be modi-

fied for PM-specific reasons. Higher PM accuracy in PM-

important blocks was caused in small part by the aforemen-

tioned increase in ongoing task thresholds, but in larger part

by a decreased threshold to respond PM, and by increased

inhibitory reactive control on PM trials in PM-important

blocks.

General Discussion

We found that a three accumulator LBA provided a good

fit to the entire array of observed PM data from two exper-

iments. This included focal PM cost, non-focal PM cost,

PM-important cost, and PM-unimportant cost, as well as cost

from both stimulus-specific PM instructions (in which PM

items could only be words) and non-specific PM instruc-

tions (in which PM items could be both types of ongoing

task item). The model was able to account for the accuracy

and RT of PM responding to all three of the PM tasks we

used: the non-focal categorical task, the single-target focal

PM task and the non-focal syllable detection task, and was

also able to account for the effects of PM emphasis on PM

accuracy. Thus, it appears that the three-accumulator LBA is

sufficient to measure PM processes in the Einstein and Mc-

Daniel (1990) paradigm, and to predict many benchmark ef-

fects from the PM literature. The model indicated that both

proactive and reactive control, as specified in our PMDC ar-

chitecture, accounted for the range of observed effects.

Proactive Control. All four of our PM conditions repli-

cated the nine previous data sets that found strong evidence

for increased ongoing task response thresholds in PM blocks

(Heathcote, Loft, & Remington, 2015; Horn & Bayen, 2015;

Strickland et al., 2017; Ball & Aschenbrenner, 2017). This

included the single target focal task (Strickland et al., 2017)

as well as the two non-focal tasks (category and syllable

detection)(Heathcote, Loft, & Remington, 2015; Strickland

et al., 2017). Furthermore, the effect occurred under both

PM-unimportant and PM-important conditions. In terms of

PMDC, this demonstrates proactive control of ongoing task

decision processes in favor of the PM decision. In Experi-

ment 1, which used focal and non-focal PM tasks that were

stimulus-specific (i.e., PM targets were always words), the

threshold of the word accumulator increased substantially

more under PM conditions than the non-word threshold. In

addition, the non-word threshold did not substantially in-

crease under focal PM conditions, in which the PM deci-

sion process was relatively fast. In Experiment 2, when the

PM task was non-specific (i.e., PM targets were words and

non-words) there were substantial increases in both word

and non-word thresholds. Further, in Experiment 2 when

we instructed participants that the PM task was more impor-

tant than the ongoing task, their ongoing task thresholds in-

creased more than we instructed them the ongoing task was

more important, enabling higher PM accuracy. This com-

bination of results suggests that ongoing task threshold in-

creases are specifically implemented to allow time for PM

accumulation on PM trials. This form of proactive decision

control is consistent with the delay theory of PM cost (Loft

& Remington, 2013; Heathcote, Loft, & Remington, 2015).

Although our stimulus-specific instructions in Experiment

1 led to a large word threshold increase, we did also observe

a smaller increase in non-word thresholds in the non-focal

PM blocks. As the latter would have minimal impact on

PM accuracy, it appears that the non-focal PM instruction

induces general threshold changes in addition to PM-specific

delay. Horn and Bayen (2015) proposed that PM instruc-

tions cause participants to increase general response caution,

because they perceive the task to be more complex. In other

words, they suggested that the threshold increases underlying

PM cost owe to a change in participants’ general impression

of the task, rather than the threshold increases being imple-

mented for the sake of PM performance on PM trials. Alter-

natively, non-word thresholds may increase with word trial

specific PM because participants do not realize when encod-

ing the PM instruction that only increasing the word decision

threshold is most efficient (for further discussion see Strick-

land et al., 2017). In any case, the magnitude of the effect

of non-focal PM on non-word thresholds was much smaller

than the effect on word thresholds, and so much of the thresh-

old effect can be attributed to delaying word responses in fa-

vor of PM responding.

Unlike previous models, which did not predict PM accu-

racy (Heathcote, Loft, & Remington, 2015; Horn & Bayen,

2015; Strickland et al., 2017; Ball & Aschenbrenner, 2017),

PMDC quantitatively estimates the extent to which proactive

control over ongoing task decisions benefits PM accuracy.

For both experiments, we found that conditions with higher

ongoing task thresholds (non-focal and PM-important), did

have higher PM accuracy as a result of those thresholds.

However, variations in PM accuracy were not only a re-

sult of differences in ongoing task thresholds. In fact, dif-

ferences between conditions in PM-accumulator parameters

were more influential than differences in ongoing task pa-

rameters. This is obvious in Experiment 1, because focal

PM accuracy was higher than non-focal PM despite lower

cost. However, in Experiment 2 PM cost and PM accuracy

increased together. Only with modeling could we parse the

relative contribution to the advantage of PM-important accu-

racy of our cost-related mechanism (proactive control over

ongoing task decisions) from the contribution of other mech-

anisms such as differences in PM thresholds and reactive

control. This demonstrates a general benefit of quantitative
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theorizing, in which not only the direction of effects is pre-

dicted, but also the magnitude (Pitt, Myung, & Zhang, 2002).

We wish to make one parting point about PMDC’s proac-

tive control over thresholds. In contrast to our instantiation

of proactive control as increased ongoing task thresholds, an-

other recent paper has proposed that proactive control corre-

sponds to PM target checking (Ball & Brewer, 2017). Ball

et al. argued that PM checks caused increases to the µ pa-

rameter that they observed when fitting the ex-Gaussian dis-

tribution to PM costs. However, although µ costs could be

brought about by increased non-decision time (which might

indicate a serial PM check), they could also be brought about

by increased thresholds (Matzke & Wagenmakers, 2009).

Thus, the µ increases that Ball et al. observed actually could

have been caused by proactive control over ongoing task de-

cisions as specified by PMDC. We prefer this interpretation,

because it is embedded in a clear process theory of PM that

has been fit to, and supported by, actual PM accuracy and

PM RT data. In contrast, we do not yet know what type of

PM checking theory could fit to actual PM accuracy and PM

RT data. Ball et al.’s µ costs range between 0.04s and 0.09s,

which, given that mean ongoing task RTs were between 0.8s

- 0.96s in control conditions, does not seem enough extra

time to contain a PM decision that runs in series to the ongo-

ing task decision.

Proactive control was not only evident in ongoing task de-

lay, but also in the PM threshold. In Experiment 2, the PM

response threshold was lower in PM-important blocks than

in PM-unimportant blocks. This follows straightforwardly

from PMDC. Under PMDC, the PM response threshold is

malleable, and when PM is important it could be decreased

in order to increase the probability that the PM accumula-

tor reaches response selection before the ongoing task ac-

cumulators. In Experiment 1, the PM accumulator thresh-

old was higher in non-focal PM blocks than in focal PM

blocks. We suggest that this occurred because participants

predicted it would be more difficult to correctly distinguish

non-focal targets from non-targets, compared to focal targets

from non-targets. However, the PMDC framework made no

a priori prediction about the magnitude of focal vs non-focal

PM response thresholds, and, to our knowledge, no current

PM theory does. Future work should develop a clear process

account of this effect.

That we could quantify PM threshold effects, and the ex-

tent to which they were responsible for changes in PM ac-

curacy, exemplifies another benefit of quantitative theorizing

about PM processes. Without accounting for the contribu-

tion of thresholds to PM accuracy effects, we would not be

able to attribute changes in PM accuracy to other PM-related

parameters. For example, an extremely low PM threshold

could mimic some of the effects of fast PM accumulation on

PM trials. Because threshold effects are controlled for in our

models, we can safely attribute additional variation in PM

accuracy to accumulation rate effects. In our experiments,

identifying these accumulation rate effects on PM trials was

crucial to revealing PM-induced reactive control.

Reactive control. We found strong evidence of reactive

control on PM trials. Unsurprisingly, excitation of the PM

accumulator (i.e., accumulation towards the PM response)

increased on PM trials, especially when PM targets were fo-

cal. More interesting was the finding that the rates of ongoing

task response accumulation (i.e., accumulation to the ‘word’

and ‘non-word’ responses) also decreased on PM trials, de-

spite stimulus evidence for the ongoing response being the

same across PM and non-PM trials. PMDC attributes this

effect to feedforward inhibition of ongoing task processing

from PM detection processes. Despite very large decreases in

ongoing task accumulation on PM trials, we did not observe

slowing when we compared raw ongoing task RTs between

PM trials and non-PM trials. Our modeling suggests that this

results from statistical facilitation from the PM accumulator,

such that the slow ongoing task RTs that would be observed

on PM trials are absorbed into the PM RT distribution (Raab,

1962). This is consistent with Gilbert et al. (2013), who

found the same lack of difference in ongoing task RT in sim-

ulation despite specifying lateral inhibition between PM and

ongoing task decisions in their model.

To our knowledge, acute, PM trial-induced inhibition as

specified by PMDC (and by Gilbert et al., 2013) is the only

mechanism proposed to date that clearly predicts our find-

ing of reduced ongoing task processing rates on PM trials.

However, post-hoc we can think of at least two alternative

explanations for the finding, both of which we have reason

to reject. One alternative is that participants engage in acute

capacity sharing on PM trials, rather than the ubiquitous ca-

pacity sharing specified by previous PM theory that occurs

on both non-PM and PM trials (e.g., Smith, 2003). For ex-

ample, on PM trials processing of PM target features dur-

ing encoding time may cause participants to shunt subse-

quent attention at the decision stage towards PM accumu-

lation and away from ongoing accumulation. Although this

could equally account for the decreased ongoing task accu-

mulation on PM trials, it is inconsistent with the effects of

our focality and importance manipulations. When PM was

focal rather than non-focal, there was a larger decrease in

ongoing task accumulation on PM trials. As capacity shar-

ing theories argue that focal PM tasks are less capacity de-

manding than non-focal PM tasks (e.g., McDaniel & Ein-

stein, 2000; Smith, 2008), they would predict that ongoing

task accumulation should be faster, not slower, on PM trials

in focal blocks compared with non-focal blocks. In contrast,

increased reactive control of ongoing accumulation with fo-

cality follows directly from our proposed PMDC architecture

(more activation of the PM detector increasing input to feed-

forward inhibition, Figure 2). Further, when PM was impor-

tant, there was a large decrease in ongoing task accumulation
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on PM trials, but not substantial effects on PM accumulation.

If importance increased the capacity acutely shunted towards

the PM task, then the capacity of the PM accumulator (i.e.,

the PM accumulation rate) should have increased in the PM-

important blocks.

The second alternative explanation is that participants

might begin to suppress ongoing task accumulation (or de-

vote capacity to PM) when PM had not occurred for a while,

if they assume that another PM cue is coming soon. To inves-

tigate this possibility, we did follow-up modeling in which

we treated the three non-PM trials prior to each PM trial sep-

arately from other non-PM trials (see supplementary materi-

als for results). We found not much difference between rate

parameters proximal to PM trials, and rate parameters for the

rest of the non-PM trials, suggesting that this explanation has

little merit.

In summary, we found that the PMDC architecture, that

is, a three-accumulator LBA with feedforward excitation and

inhibition, provided a quantitatively sufficient and conceptu-

ally cohesive account of all features of PM data from two

benchmark PM manipulations. Regarding non-PM trials, the

key contribution of our analysis was to implicate threshold

control in PM cost. This extends and replicates previous find-

ings (Heathcote, Loft, & Remington, 2015; Horn & Bayen,

2015; Strickland et al., 2017; Ball & Aschenbrenner, 2017),

and suggests that PM cost reflects delaying of ongoing task

decision processes so that the PM process has more time to

complete. In addition to this replication, our complete model,

that included both ongoing task responses and PM responses,

afforded us novel insights into PM. We found that the thresh-

old to make the PM response varied, both as a function of PM

focality and PM importance. This indicates that proactive

control applies not only to ongoing task decision processes,

but also PM decisions. We also found strong evidence of

reactive control of ongoing task accumulation on PM trials.

This reactive control was stronger when PM was focal, and

when PM was important. Focal PM was also associated with

increased PM excitation, suggestive of more PM activation

from PM stimulus features, whereas important PM was not

associated with increased excitation, suggesting a strategic

ramping up of reactive inhibition.

No Support for Capacity Sharing

We did not find evidence for capacity sharing between PM

processes and the ongoing task in either of our experiments.

Although there was some variation by PM block in non-PM

trial accumulation rates, in both experiments we found mul-

tiple effects that pointed in opposite directions, with no clear

net loss of ongoing task capacity. In Experiment 1, neither

focal nor non-focal PM caused a clear capacity cost to non-

PM trial accumulation, and there was no clear difference in

non-PM trial accumulation rates between the two, either. We

also did not find evidence of PM cost to non-PM trial accu-

mulation rates in Experiment 2, even when the importance of

the PM task was emphasized, which has been argued to in-

crease the magnitude, and likelihood of, PM capacity sharing

effects (McDaniel & Einstein, 2000; Smith & Bayen, 2004).

Taking our findings together with previous work (Heathcote,

Loft, & Remington, 2015; Horn & Bayen, 2015; Strickland

et al., 2017; Ball & Aschenbrenner, 2017), eleven modelled

data sets have now revealed no cost to non-PM trial accumu-

lation under PM conditions. Thus, a central claim of extant

PM theories, that PM cost results from capacity sharing be-

tween PM processes and the ongoing task (e.g., McDaniel &

Einstein, 2000; Smith, 2003), is not supported by our fine-

grained analysis of the latent variables underlying the PM

cost effect. In addition, our finding that non-PM trial accu-

mulation rates do not vary over focal and non-focal condi-

tions challenges the assumption of current PM theories that

focal PM has lower PM cost and higher PM accuracy due to

the PM task requiring less ongoing task capacity (Einstein

& McDaniel, 2005; Smith et al. 2007). Our finding that

non-PM trial rates do not vary between PM-important and

PM-unimportant conditions challenges the assumption that

PM importance is associated with higher cost and higher PM

accuracy because it causes more ongoing task capacity to be

allocated to the PM task (Einstein & McDaniel, 2005; Smith

& Bayen, 2004). Furthermore, in Experiment 2 we failed to

find any effect of PM importance on non-shared PM capacity,

that is PM capacity that is not relevant to ongoing task per-

formance. Had non-shared PM capacity increased when PM

importance was emphasized, we would expect a faster PM

accumulation rate in PM-important blocks, which we did not

find.

We do not, however, argue that PM and ongoing task ca-

pacity sharing never occurs under any circumstances. If we

venture outside the canonical laboratory PM paradigm de-

vised by Einstein and McDaniel (1990), into paradigms that

are somehow more representative of everyday, or safety crit-

ical, PM tasks, we may discover evidence of a PM capacity

burden on ongoing tasks. For example, in the majority of PM

experiments, including those modeled, PM stimulus features

are readily apparent and processed with the same perceptual

information as the ongoing task. In contrast, safety critical

tasks such as air traffic control require that the operator pay

attention to many different sources of perceptual information

(Loft, 2014). Under these conditions, participants may incur

a PM capacity cost to the ongoing task if they are unable

to simultaneously attend to PM-relevant and ongoing task-

relevant information.

Limitations and Future Directions

Because specifying a comprehensive cognitive model re-

quires taking a stance on difficult meta-theoretical issues,

our approach invites criticisms that verbal PM theory has

avoided. One such criticism of PMDC is that PM and on-
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going task processes may occur in series, (e.g., the PM pro-

cess occurs followed by the ongoing task process, or vise

versa), rather than in parallel as we specified. Other than

pointing out that our parallel architecture fit the data well, we

would also point out that previous PM theories, although not

forthcoming with their underpinning architectural assump-

tions, seem to be consistent with parallel PM task and ongo-

ing task processing. The preparatory attentional and mem-

ory processes theory proposes that preparatory PM processes

occur “on the periphery of our attentional focus” while the

ongoing task is being performed (Smith, 2010). The Multi-

process view claims that spontaneous processes occur when

“cue-driven thoughts unrelated to the ongoing task” enter

consciousness during ongoing task processing (Einstein &

McDaniel, 2010). The Associative Activation Theory of PM

(Nowinski & Dismukes, 2005) explicitly specifies a parallel

architecture, in which activation of PM and ongoing task in-

tentions accumulate to threshold, at a rate driven by the con-

tents of “focal attention”. More generally, associating PM

cost with capacity sharing requires assuming parallel pro-

cessing, as serial processes would extend response latency

whether they are capacity consuming or not (Navon, 1984).

A reviewer pointed out that there is a serial component in

the PMDC model, namely non-decision time, and that PM

processes might increase this time. Indeed, Horn and Bayen

(2015) argued that DDM estimates of non-decision time in-

crease with PM cost because participants perform a sequen-

tial PM check. We initially did not model differences in non-

decision time across PM conditions, as we were concerned

about allowing too much flexibility in our model, and as our

previous work indicated that this parameter plays no role in

the LBA account of PM cost (Heathcote, Loft, & Remington,

2015; Strickland et al., 2017). However, to address the possi-

bility of a serial PM check within the PMDC architecture, we

re-fitted the model with non-decision time permitted to vary

over PM condition. Supplementary materials include the re-

sulting parameter estimates. Overall, we did not find com-

pelling evidence for PM checking during non-decision time.

Non-decision time actually decreased under PM conditions,

and decreased most when PM was important (32ms). We did

find one increase in non-decision time of 12ms for non-focal

conditions in Experiment 1. However, as most other effects

went in the opposite direction, and as 12ms is a very small

amount of time relative to ongoing task decision time, we

think it is very unlikely that this sole effect reflected as se-

quential PM check. Given the largely unexpected direction

of these non-decision time effects, we suspect that, indeed,

flexibility in non-decision time led to ‘over-fitting’, and thus

in the main body of the text we maintained our PMDC ac-

count of the data absent that flexibility.

Evidence for our reported PMDC mechanisms largely re-

mained even with non-decision time effects included in the

model (see supplementary materials). However, there were

a couple of differences for Experiment 1. One, focal cost

to word thresholds increased up to meet non-focal levels of

cost, likely due to trading off with decreases in non-decision

times in focal conditions (below control). Given this results

from non-decision time decreasing with focal PM, an im-

plausible effect, we suspect over-fitting. The second, perhaps

more interesting, difference is that non-word threshold ele-

vations under non-focal conditions were absent. This thresh-

old effect was the only one that does not fall directly out of

PMDC theory - as all PM targets were words in this exper-

iment, the non-word decision was a weak competitor to the

PM decision, and thus raising its threshold should have little

benefit to PM. Thus, we recommend it be viewed with more

skepticism than the other reported effects.

We also recommend further investigation into the issue

of serial vs parallel PM and ongoing task processes. Ad-

judicating empirically between serial and parallel architec-

tures with RT and accuracy data alone is difficult, particularly

when cognitive capacity allocation may vary. In some highly

controlled paradigms, it is possible with an array of factorial

comparisons of observed RT and accuracy, given some mod-

est assumptions(i.e., Systems Factorial Technology: Fific,

Nosofsky, & Townsend, 2008). It could be very interesting to

develop PM experiments along these lines, although the PM

paradigm would need to be modified. The other solution, in

line with our approach, is to examine specific computational

theories that commit to a serial or parallel architecture. As

differing computational theories emerge, they can be com-

pared in terms of the theoretical leverage they offer, or on

quantitative grounds (i.e., model selection). For example, it

might be possible to instantiate Horn and Bayen (2015)’s tar-

get checking hypothesis in a computational model. We could

then quantitatively compare the resulting model with PMDC.

One limitation of the current work is that we only mod-

eled one type of PM response mode. Our PM instruction

was identical to that of Strickland et al. (2017), which told

participants to make the PM response instead of the ongo-

ing task response. Horn and Bayen (2015) used a similar

instruction to “press the target key immediately when pre-

sented with a target”. Heathcote et al. and others have used a

slightly different instruction to simply make the PM response

when the target was presented (e.g., Einstein et al., 2005;

Loft & Humphreys, 2012; Loft & Remington, 2013; Scullin,

McDaniel, & Einstein, 2010; Scullin, McDaniel, Shelton,

& Lee, 2010; Smith, 2003; Smith & Bayen, 2004; Taylor,

Marsh, Hicks, & Hancock, 2004). Although this latter in-

struction very typically results in participants choosing to re-

spond by pressing the PM response key instead of the ongo-

ing task response key, it is conceivable that PM actions may

be retrieved during the “down time” before the next trial, or

during the next trial itself. However, late PM responses have

been rare when participants are specifically instructed that

late PM responses can be made. This suggests it is critical
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that PM response selection is made before ongoing task re-

sponse selection. For this reason we are confident that con-

clusions from the current modeling architecture would gen-

eralize to these similar forms of PM response mode instruc-

tions. A further type of instruction is to explicitly tell the

participant to make the ongoing task response before the PM

response (Loft, Kearney, & Remington, 2008; Loft & Yeo,

2007; Marsh et al., 2005; Marsh et al., 2003; Meeks, Hicks,

& Marsh, 2007; Meeks & Marsh, 2010), although it might

be argued to be less relevant to PM tasks outside the labora-

tory, which usually interrupt other activities (Einstein & Mc-

Daniel, 1996; Loft et al., 2013). As outlined in more detail

by Heathcote et al. (2015), terminating stimulus processing

(response selection) to make an ongoing task response would

still interrupt processing of the stimulus features required to

detect the PM target (after the ongoing task response is made,

the stimulus is removed from the display and can no longer

be assessed for PM response selection), and thus we would

expect the current modeling architecture to generalize to this

PM response mode. In fact, costs have been accounted for by

threshold, and not accumulation rates, across all three types

of PM instruction manipulations. That is, the Heathcote et

al. (2015) experiments used the instruction for participants

to make the PM response when the target was presented,

Strickland et al. used the ‘respond instead’ instruction, and

Heathcote et al. found that response threshold accounted for

PM costs in the Lourenço et al. experiment, in which par-

ticipants were specifically instructed to perform their PM re-

sponse after their ongoing task response. However, as PM

trials were not modeled in these studies, it would be worth-

while for future research to investigate how PM thresholds

and reactive control will operate using the alternate PM re-

sponse mode. That said, because PM RTs in the ‘PM after’

paradigm are confounded by ongoing task response produc-

tion time, it would be difficult to investigate this with deci-

sion process models of RT like the LBA.

Another possible criticism of our model is that we have

not invoked the assumption that PM errors can occur be-

cause of a complete failure of the PM process to initiate. In

the modeling we present, the PM accumulator runs on every

trial, and PM errors only occur because the PM accumulator

loses the race to response selection. It is more common to

assume that at least some PM errors are caused by the PM

process completely failing to occur (e.g., McDaniel & Ein-

stein, 2000; Smith & Bayen, 2004). It appears this assump-

tion was not necessary to predict PM accuracies in our exper-

iments. However, this may owe in part to our PM frequency

(1:14), which, although within the bounds of previous re-

search (where PM is as high as 20%, most typically the limit

is 10%), is on the higher end. Recently, authors have sug-

gested the dynamic multiprocess framework (Scullin et al.,

2013), in which PM monitoring processes only truly dissi-

pate when PM tasks are extremely infrequent, for example

when PM ratios are around 1:100. This suggests a distinc-

tion between the PM errors typically observed in laboratory

paradigms, where PM frequency tends to be much higher

than 1:100, and PM errors in everyday work or personal life,

where a PM task may only be need to be performed rarely. In

the dynamic multiprocess view, these failures of monitoring

have referred to failures to devote ongoing capacity to the

PM task, but, giving the lack of support for capacity sharing

between PM and ongoing tasks in our analyses, it might be

better to conceptualize the absence of the PM accumulator

another way, for example, as a failure to maintain the intent

to treat ongoing task items as potential retrieval cues (Tulv-

ing, 1985)

Identifying whether PM errors occurred because the PM

decision process lost a race to the ongoing task decision pro-

cess, as compared with errors that occurred because the PM

decision process failed to even enter the race, requires a pro-

cess theory of PM such as our PMDC model. The LBA

has already been successfully used to identify the propor-

tion of trials on which such failures occur in the context of

the stop-signal task, where they are referred to as “trigger

failures” (Matzke, Hughes, Badcock, Michie, & Heathcote,

2017; Matzke, Love, & Heathcote, 2017). In the context of

PM such trigger failures would correspond to trials in which

either the intent to detect PM targets is not maintained (goal

neglect; Duncan, Emslie, Williams, Johnson, & Freer, 1996)

and thus there is a subsequent complete lack of the recog-

nition of any of the PM features contained in the stimulus,

and as a consequence the PM decision process never enters

the race. Ideally, to identify such failures of the PM accu-

mulator to run, an experiment would include a manipulation

that targets PM trigger failures (e.g., introducing an unfamil-

iar ongoing task context not associated with the PM cue and

associated PM response; Smith, 2017). We recommend fu-

ture PM work pursues paradigms along these lines that, in

apparent contrast to the paradigms considered here, require

the PMDC model to include failures of the PM accumulator

to run.

Another future challenge for our framework is to distin-

guish the retrospective component of PM - remembering

what to do and when - from the prospective component of

PM - remembering that some PM action must be performed

(Einstein & McDaniel, 1990). Smith and Bayen (2004)

demonstrated that their multinomial processing tree model

of PM could disentangle the contribution of prospective and

retrospective memory processes to categorical response data

(e.g., PM accuracy, ongoing task accuracy). It may be pos-

sible to do the same, while also incorporating RT data, by

building on the PMDC model. Regarding memory for what

to do, our paradigms in the current work required a very sim-

ple PM response (as is typical in the PM literature) - e.g.,

press the ‘j’ key. This intention probably does not burden

retrospective memory, and so for our studies it made sense to
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model the entire PM decision as an evidence accumulation

process, with no subsequent failures to forget how to per-

form the PM action. However, in the real world, PM tasks

can be more complex, and it conceivable that in some in-

stances people might remember that something needs to be

done (i.e., the PM accumulator wins the race to threshold),

but subsequently fail to remember what to do. Incorporating

this type of retrospective memory failure, in which the PM

intention breaches threshold but the PM response cannot be

retrieved, may require adding a parameter for the probability

of a post-decision response-production-failure to the PMDC

model.

Regarding memory for when to perform the PM response,

that is memory for which items are PM targets, our studies

were also relatively simple: we required participants respond

to either a single target word, single target syllable, or single

target category. In contrast, some other PM paradigms re-

quire PM responses to a multi-item PM target list (e.g., Co-

hen, Jaudas, & Gollwitzer, 2008; Hicks et al., 2005; Loft,

Humphreys, & Whitney, 2008). Whereas it should be rela-

tively easy to maintain a single PM target in memory, main-

taining a list of targets might require either rehearsal of the

list, or perhaps maintaining a pointer to the stored multi-

target list (Humphreys, Murray, & Maguire, 2009). We fore-

see two ways PMDC might identify the effects of these pro-

cesses. First, high retrospective memory demands might lead

to weaker PM activation of a target from a multi-target list

when that target is encountered in the ongoing task, without

memory for the target failing entirely. This could manifest

in the capacity of the PM accumulator, with a long target

list leading to less activation for any given single processed

target due to noise from other targets in the list, slowing the

PM accumulation rate. Second, high retrospective memory

demands might result in retrospective memory lapses or fail-

ures (i.e., forgetting that an target is in the PM set). In this

case, virtually no PM evidence at all would accrue to PM tri-

als that present forgotten targets. This might manifest in the

model as ‘trigger failure’ (i.e., the PM accumulator failing

to enter the race), and so require the addition of a trigger-

failure-probability parameter.

Two further new directions may be important for future

work. One is to model the effects of PM “lures” (Knight et

al., 2011; Scullin et al., 2009; Scullin, McDaniel, & Einstein,

2010). To recap, lures can be trials that match some, but not

all, of the PM detection rule in PM blocks of trials. They can

also be trials in control blocks that present PM targets corre-

sponding to a suspended PM intention (i.e., a PM intention

that should be performed later, but not in that block of trials).

Responses are slower to both types of lure trials than to other

non-PM trials, which we conjecture is due to reactive control

of ongoing task accumulation. It would be useful to test this

quantitatively by fitting PMDC to a design with lure trials. If

lure effects are due to reactive inhibition, lure trials should

result in lower ongoing task accumulation rates than typical

non-PM trials.

Another important direction for future research is to con-

nect PMDC to neural mechanisms. The PM literature has

already accrued an interesting set of neurological findings

(Cona, Scarpazza, Sartori, Moscovitch, & Bisiacchi, 2015).

For example, the neuroimaging has revealed different pat-

terns of activation in the anterior prefrontal cortex and the

broader frontoparietal network in PM blocks of trials when

compared with control blocks of trials (e.g., McDaniel et

al., 2013). In non-PM related neuroimaging studies that

have fitted the LBA, threshold adjustments have been associ-

ated with the striatum and the pre-supplementary motor area

(e.g., Forstmann et al., 2010). It would be interesting to see

whether these regions interact when participants shift their

thresholds in PM blocks, for example if PM-related regions

(anterior prefrontal cortex and the broader frontoparietal net-

work) send signals to the striatum and the pre-supplementary

motor area to control thresholds. PM studies have also found

a diverse set of acute, transient patterns of neurological acti-

vation on PM trials (e.g., McDaniel et al., 2013), which have

been attributed to spontaneous PM processes, and/or reactive

control. It would be worth investigating which of these pat-

terns of activation are associated with the reactive inhibition

of ongoing task processing in the PMDC model. To explore

these issues further, a ‘model-based cognitive neuroscience’

(Forstmann & Wagenmakers, 2015) approach, in which neu-

ral measurements are mapped to parameter estimates from

models, would be useful. Practically speaking, mathematical

and neural approaches to PM go together well, because both

require collecting many PM trials.
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