
RAD: Reflector Attack Defense Using Message
Authentication Codes

Erik Kline† Matt Beaumont-Gay† Jelena Mirkovic? Peter Reiher†
†Laboratory for Advanced Systems Research ?Information Sciences Institute

UCLA Computer Science USC School of Engineering
{icebeast, mattb, reiher}@cs.ucla.edu mirkovic@isi.edu

Abstract—Reflector attacks are a variant of denial-of-service
attacks that use unwitting, legitimate servers to flood a target. The
attacker spoofs the target’s address in legitimate service requests,
such as TCP SYN packets. The servers, called “reflectors,” reply
to these requests, flooding the target.

RAD is a novel defense against reflector attacks. It has
two variants – locally-deployed (L-RAD) and core-deployed (C-
RAD). Local RAD uses message authentication codes (MACs)
to mark outgoing requests at their source, so the target of a
reflector attack can differentiate between replies to legitimate
and spoofed requests. MACs can be validated either at the target
machine or on a gateway router at the target’s network. Core
RAD, which is deployed at the AS level, handles larger attacks
that overwhelm L-RAD. The source AS marks each packet it
sends with a hash message authentication code (HMAC) and
core ASes filter packets that carry incorrect HMACs. C-RAD
prevents reflector attacks by filtering spoofed requests, rather
than filtering reflected replies.

We tested both variants using the DETER testbed by replaying
backbone traces from the MAWI project archive in a congestion-
responsive manner. Our tests show that Local RAD is better
than the no-defense case, but gets overwhelmed when the at-
tack exceeds the target’s network capacity. Core-deployed RAD
successfully handles attacks of all rates.

Index Terms—RAD, Reflector Attack, DoS, MAC, IP Spoofing

I. INTRODUCTION

Denial-of-service (DoS) attacks have grown more popular
and disruptive. Originally intended for revenge or bragging
rights, they are now a tool for criminal extortion. DoS attacks
can overwhelm a target’s network connection with sheer
volume of packets, or can exhaust some other resource at the
target, such as SYN table entries. Network-based DoS attacks
have two main attack vectors: direct and reflected [22]. In a
direct attack, one or more machines directly attack the victim.
In a reflected attack, the attacker uses intermediary machines
to attack the victim. The attacker sends a request message to
the reflector machine, spoofing the source address of the target.
The reflector responds, sending the reply packet back to the
victim. The attacker can send requests to multiple reflectors,
flooding the target with replies. Reflector attacks are especially
nefarious since they enlist the aid of unwitting machines to
actually commit the attack.

Reflector attacks are difficult to detect at the reflector.
Suppose the attacker controls 1,000 bots. Each bot sends one

This research is supported by the National Science Foundation, grant CT-
ISG 0716829.

packet per second to ten different reflectors. The bot can
rotate through a list of reflectors, sending to different reflectors
every second. There are millions of possible reflectors, so each
reflector may only get one request packet. The request appears
legitimate, so the response will be sent. However, the target
receives 10,000 response packets per second. A reflector attack
is illustrated in Figure 1.

For a reflector attack to work, the attacker(s) must be able
to spoof the victim’s IP address. The Spoofer project [32]
investigates the question of how much spoofing is possible in
the Internet by allowing volunteers to download test software
and analyzing the results. Their results show that roughly 80%
of probed networks filter randomly spoofed traffic. However,
their study only covers around 1,500 autonomous systems
(AS), about 3% of all ASes today. Furthermore, even if only
20% of all networks allow spoofing, they can still generate
significant amounts of spoofed traffic. Analysis of backscatter
traffic [20] shows that a significant number of DoS attacks use
spoofing.

We propose the Reflector Attack Defense (RAD), consisting
of a local defense and a core defense. Local RAD uses the
tendency of protocols to repeat values from the request packet
in the reply. Examples include the ID field in DNS requests
and ICMP ECHO requests and the initial sequence number in
a TCP SYN, which is incremented by one and repeated in the
SYN/ACK. We use these repeated fields to carry a message
authentication code (MAC). When a request is generated, the
MAC is placed in the field. When a reply is received, the
MAC is validated and invalid packets are discarded. Thus, a
source can determine if reply packets truly correspond to sent
requests. The MAC can be validated at the source’s gateway
or border machines, filtering attack traffic prior to disrupting
the target machine.

However, if the attack completely overwhelms the target’s
bandwidth, Local RAD will also be overwhelmed. Core RAD
addresses this problem by allowing an AS to mark all of its
outbound IP traffic with a MAC. IP traffic from this source can
then be verified in the core and spoofed traffic can be filtered.
Unlike some other defenses, Core RAD provides ASes the
capability of directly defending themselves from IP spoofing.

II. LOCAL RAD

Local RAD (L-RAD) allows machines to validate whether
reply messages correspond to request messages they generated,



Fig. 1. Illustration of a Reflector Attack. The botmaster signals his bots to
initiate the attack on the victim. The bots send out spoofed request messages
with the victim’s source address to the reflectors. The reflectors respond by
sending replies to the victim, causing a flood-based DoS.

dropping those that do not. This can be accomplished in two
ways. First, when a request is sent, state is kept in a table.
When the reply is received, check for a matching request
in the state table. This approach has a few drawbacks. We
must generate and store the state table, which many existing
protocols do already, e.g. TCP. However, lookup in a state
table can be costly. During normal behavior, this cost is only
incurred for legitimate replies. The cost comes during an
attack, when the table is constantly searched for non-existent
requests. The problem is worse if the victim responds to the
false replies. For example, TCP sends a RST message if a
unexpected SYN/ACK is received. During an attack, TCP will
be generating a large number of RSTs, adversely affecting the
target’s normal outbound traffic.

We chose a stateless approach, so the response must contain
information to tie it to the request. Luckily, most reflector
message types carry a repeated value in both requests and
replies. For example, ICMP ECHO packets have a 16-bit
identifier field that is repeated in the ECHO REPLY. Similarly,
the initial sequence number in a TCP SYN is incremented
by one and repeated in the corresponding SYN/ACK. L-RAD
generates a message authentication code (MAC) that can be
placed in these repeated fields and be validated in the response.
The MAC can also be validated at other locations, such as the
gateway routers for the source’s local network. These routers
need to only keep minimal state themselves, but can dropping
the attack packets prior to the source receiving them.

The L-RAD technique resembles SYN cookies [4], which
also generate a hash using the source and destination IP
addresses, ports and a counter. However, SYN cookies are
designed to stop SYN floods, and thus their application is
different. SYN cookies are placed in SYN/ACKs, while L-
RAD MACs are placed in SYNs.

One benefit of L-RAD is that no new infrastructure is
required. L-RAD can be deployed on only one machine,
providing that machine with protection. Or it can be deployed
to protect an entire network using the gateway router filtering
method.

Local RAD has three components: MAC generation for
request packets, MAC validation for reply packets, and packet

filtering at gateway routers using the MAC.

A. Request MAC Generation

In L-RAD, every request message must carry a MAC that
is difficult to forge without secret source information. To
accomplish this, the source generates a random secret. To
generate the MAC, we hash over the secret, some values from
the request packet header, and a counter.

The MAC must be unique for each request, to prevent an
attacker from reusing an intercepted MAC to generate reflector
attacks to many different hosts. To accomplish this, we gen-
erate a 512-bit block consisting of source and destination IP
addresses, as well as the ports. This method is still vulnerable
to a replay of a captured request packet, so we also add a
local counter to the block. Every time the counter increments,
the hash generated for the same destination changes. This
system also allows us to prevent collisions for the generated
MACs. Since the MACs are used as identifications values and
initial sequence numbers, they should be distinct from previous
values sent to the same destination. Finally, we fill the rest of
the block with the randomly generated secret, which is 384
bits. We then generate a SHA-11digest and use the first 16
bits (for ICMP and DNS) or 32 bits (for TCP) as our MAC2.

ICMP messages do not have ports. For them, we use
only the source and destination IP addresses and the counter
to calculate the MAC. We place this MAC in the 16-bit
identification field and randomly pick a seed sequence number.

The counter value must be incremented frequently enough
to encompass the round-trip time (RTT), but not so often as
to create a large chance for collisions and a large vulnerability
window. Since 90% of all TCP bytes transferred have a RTT
of under 500 ms [11], and only 15% of connections have a
median RTT greater than one second [1], we chose a counter
increment time of two seconds. However, the counter incre-
ment time is configurable. In a particularly lossy environment,
one may increase the counter increment time at the cost of
security.

B. Reply Validation

Reply validation checks if the request and reply MAC
match. When the reply is received, we use the packet header
values and the counter to calculate a new MAC, which
we compare to the reply MAC. If equal, we process the
packet normally. If not, we drop the packet. Requests may
be generated at the edge of the counter window resulting in
an incremented counter and the dropping of legitimate replies.
To solve this, we check the MAC with both the current and
previous counter values. This slightly increases the window
for which replayed packets will avoid filtering.

1SHA-1 is vulnerable to collision attacks [6]. In a collision attack, an
attacker uses a valid MAC and an input to create another input that hashes
to that MAC. In our system, if the attacker has a valid MAC, he can already
attack us, without needing a second input. Also, a second input may be useless
if it cannot be used to construct an attack packet.

2We used the chi-square randomness test to show that truncating the SHA-1
digest still results in uniformly distributed output.



C. Gateway Filtering

In L-RAD gateway filtering, the source generates the initial
MAC, but its gateways or border routers validate replies.
Gateway filtering has multiple benefits. First, reflector attacks
can overwhelm the victim with pure packet volume. If we
filter and drop the packets at the target, it may be too late.
Filtering at the gateway takes the load off the target. Assuming
the gateway has more processing power or bandwidth, the
target can continue to operate normally without experiencing
the brunt of an attack, while the gateway continues to filter.
Second, if the target has multiple gateways, each gateway will
only have to filter a portion of the source’s traffic. In either case
(larger bandwidth or multiple gateways), an attacker would
have to generate more traffic to overwhelm the gateways than
it would to overwhelm the target. Third, a gateway can defend
multiple machines, rather than each machine fending for itself.

In a stateful gateway system, the gateway makes a table
entry for each outgoing request packet. When a reply packet
is received, it checks for a corresponding entry. However, this
system has a few problems, beyond the basic table storage
and lookup problems with stateful systems. First, a request
and reply pair may take different routes, so one gateway might
receive the request while another would receive the reply. This
would require synchronization between the gateways. Aging
table entries is also important. One could just remove an
entry when the reply is received. But in TCP, if the ACK
completing the three-way handshake is lost, the server will
send a new SYN/ACK which would not have an entry in the
gateway’s table. Finally, this solution may not be applicable
if the source wishes to be protected by its service provider.
A service provider, while having more resources to protect
the source, may not be willing to set up firewalls that may
adversely affect others’ traffic. They may be more willing to
set up a stateless filtering system that only affects the source’s
traffic (and malicious traffic).

Therefore, we designed a stateless system. This system
validates MACs in reply packets just as source-based filtering
does, which requires that the gateways know the source’s
secret and counter value. All other validation information is
present in the reply packet. We could distribute the secret using
a simple reliable protocol to talk to each gateway, or we could
broadcast the secret periodically. A gateway will only begin
filtering once the secret is received. Finally, we could manually
configure the secret on both the source and the gateways. We
currently use the first option.

If the source believes that the secret is compromised,
the secret is changed. Compromising the secret requires the
attacker to determine 384 bits. Compromising a filtering node
or using brute force are the only methods we have found for
learning a secret. Brute force is not feasible, as it would take
2383 attempts. Since we believe filtering node compromise will
be rare, the secret does not have to be changed frequently.

We also address counter synchronization. During secret
distribution, we also inform the gateways of the initial counter
value. The gateway sets its counter value and increments

every counter interval (two seconds), as does the source. To
synchronize, the source sends a beacon with its current counter
value using UDP. When a request packet is to be sent, if more
than a minute has passed since the last beacon, the source will
send out a new beacon. Because these gateways are on the
source’s local network, the chances of losing the beacon are
low. If the beacon is lost, the gateway should still be roughly
in sync based on its old counter value.

With the secret and the current counter value, the gateway
can filter incoming reply packets. Any packet with an in-
valid MAC is dropped, while all other packets are forwarded
normally. Gateway filtering checks the MAC with the cur-
rent, previous and next counter values, to handle minor de-
synchronizations arising from the use of a relatively large
counter interval. Checking the next value also lessens the
effects of losing a beacon since the valid counter window is
longer.

III. CORE RAD

No matter how well Local RAD performs, it will eventually
be overwhelmed. In general, the best place to defend is closest
to the attacker, so Core RAD (C-RAD) pushes the general
RAD concept out into the core of the Internet. Once in the
core, we have the capability to see the spoofed requests, not
just the reflected replies, so we try to filter out the spoofed
requests, alleviating the burden on both the target and the
reflectors.

There are two major differences between L-RAD and C-
RAD. First, it is not feasible for core routers to do deep packet
inspection, which an L-RAD style scheme requires. Routers do
not have the time to inspect a packet, determine its protocol,
determine if it is a request, and validate the MAC. Therefore,
a C-RAD source marks all its outbound IP traffic, and C-
RAD filters validate all protected packets. Second, core routers
cannot keep information for every host. Therefore, C-RAD
marks at the AS level. An AS marks all its outbound traffic,
and core routers only store information regarding the AS and
its prefixes.

Core RAD has three major components. The first generates
the MAC and marks packets at the source AS. The second
validates the MAC on the core routers. The third synchronizes
source ASes and core routers.

A. IP MAC Generation

C-RAD’s MAC must be secure and quick to calculate. We
use a Hash Message Authentication Code (HMAC). HMACs
take a secret key as additional input, unlike L-RAD, which
has a secret added directly to the data before running the hash
algorithm. We chose the HMAC-SHA-1 hash algorithm for
our implementation, but it can be changed easily.

The HMAC must be strong enough to prevent an attacker
who has determined one valid HMAC from using it on many
attack packets. To counter this, we hash over the packet
payload, so one HMAC cannot be used for other packets.
We cannot hash over the IP header, as fields in the header
change per hop (such as TTL and checksum), invalidating



the HMAC. However, if we leave it as is, an attacker can
use one HMAC and its corresponding payload to attack many
targets. To counter this, we include the source and destination
IP addresses in the hash. If an attacker intercepts or determines
a single valid HMAC, it can only be used for one payload to
one reflector.

The HMAC must be stored in the IP header to allow for
easy extraction (without inspection). Avoiding inspection also
excludes IP options. Further, IP options are a bad candidate
because they generally force a packet to take the “slow path.”
These restrictions only leave a handful of rarely used fields
in the IP header. To provide maximum security, we chose the
largest of these, the IP ID field.

The ID field is 16 bits, so the attacker only has to iterate over
216 possible combinations to find a valid HMAC. However,
since the HMAC is tied to the source and destination IP
addresses, the attacker has difficulties validating if a guessed
HMAC worked. The attacker could continuously iterate over
the ID space, hoping the few packets that get through are
enough to generate a DoS. In this case, the attacker would
have to send out 128,000 packets per second to get a 2-packet-
per-second flood. A large number of bots, each sending at this
volume, could generate a useful attack; however, this attack
would be easily detectable. Further, a reflector attack is less
attractive with such a low yield, so an attacker would be likely
to instead send spoofed packets directly from the bots to the
target.

B. IP MAC Validation

When a core router receives a packet, it does a prefix lookup
on its source IP address, which returns the secret key for
that AS. The key, the payload and the IP addresses are used
to generate the HMAC, which is compared to the packet’s
HMAC. If they do not match, the packet is dropped.

This process must occur at line speed for C-RAD to be
effective. The bottleneck is HMAC generation. We tested our
HMAC implementation on a Dual Xeon 3 GHz machine. It
can handle about 100 Mb/s on 40 byte packets, and nearly 350
Mb/s on 1500 byte packets, because SHA-1 is more efficient
for larger data sizes. Thus, the limiting factor is small packets,
as is the case for core router forwarding.

100 Mb/s is not nearly fast enough. Current core routers for-
ward packets at 10 Gb/s. While our software implementation
may be slow, cryptographic hardware (as of 2004) can achieve
1 Gb/s [16]. Hardware is likely to continue to improve and
achieve speeds of 10 Gb/s. Also, packets can be validated in
parallel. If we use ten cryptographic components in parallel,
we can achieve 10 Gb/s. This will, of course, increase per-
packet delay, but will not reduce throughput. Note that C-
RAD has no bearing on the forwarding lookup. If C-RAD
can achieve 10 Gb/s throughput, we can run both processes in
parallel.

Our scheme resembles Packet Passports [18]. Passports
work by attaching a series of marks to a packet, each made by
a secret shared by the source and one AS on the forwarding
path. These passports are validated using an HMAC algorithm

and the system also uses a Bloom filter to detect replay attacks.
Packet Passports were able to obtain throughput on par to C-
RAD.

C. Router Synchronization

Each source AS must distribute a key to the participating
routers, and it must be able to change the key to limit replay
attacks. However, we do not want to constantly bother routers
with synchronization messages. It would be better if the
routers could determine the next key without any additional
information from the source after the initial message.

C-RAD achieves this by using reverse hash chains [10]
to determine the key. When an AS wants to use C-RAD, it
distributes the seed to the reverse hash chain and a timestamp.
The router uses the seed to generate the reverse hash chain,
using the first value as the key. After a predetermined time,
the router moves on to the next element of the reverse hash
chain.

We must change keys before an attacker can learn a valid
HMAC. An attacker can easily iterate through all possible
HMACs, but it is harder to determine if an HMAC is valid.
One method of determining this is a probing attack based
on Bellovin’s work [3] and RocketFuel [29]. In this attack,
the attacker sends a series of legitimate probe packets to
the reflector. Some hosts sequentially chose the IP ID values
to send in the response. If the value increments by more
than one, traffic from another source arrived between the
attacker’s packets. To determine an HMAC, the attacker sends
a legitimate probe, the spoofed packet, and then another
legitimate probe. If the second probe only increments by one,
the spoofed packet did not arrive. If it increments by more
than one, the spoofed packet arrived, and thus contained the
correct HMAC.

Many factors affect how long it takes this attack to suc-
ceed. For example, the attacker cannot know if the packet
was filtered or lost unless he re-tests. Further, other traffic
(”collisions”) that arrives at the reflector between the attacker’s
probe packets will disrupt the measurement. If the attacker
does not wait for one probe to complete before launching the
next, he risks colliding with his own packets, or out-of-order
packet delivery, which disrupt his measurements. The probe
must travel through the core in order to test an HMAC, so the
attacker cannot select a nearby reflector and must guarantee
some minimum round-trip time.

The safe frequency for secret changing depends on how
quickly an attacker can find a valid HMAC with reasonable
probability. We make attacker-friendly assumptions: a round-
trip time of 100 ms, 0% chance of collisions, 0% chance of
packet losses, and no verification of success required. Because
packets must travel through the core to probe the filters, 100
ms is liberal. These variables generate the following equation.

T = Ps · 216 ·RTT

Ps is the probability of success, RTT is the round-trip time,
and T is the time to reach that probability. For example, given
our assumptions and a Ps of 50%, it takes roughly 55 minutes



TABLE I
AVERAGE, MAXIMUM, MINIMUM AND MEDIAN CPU TIME TO ACCOMPLISH THE INDICATED TASKS. ALL TIMES ARE IN µS.

Average Maximum Minimum Median
SYN Generation 16.1474 45.8544 5.8607 14.2825
SYN/ACK Handling 9.2372 35.9910 3.5102 9.0955
RST Generation 0.8832 23.4252 0.1731 0.3782
SHA-1 1.4408 - - -

to achieve a 50% chance of guessing a valid HMAC. This
gives the attacker only one HMAC, valid for one payload to
one destination. To generate an actual attack, the attacker must
run many probes in parallel to many reflectors, and then flood
those reflectors with replayed traffic. Since the replay is the
same packet per reflector, reflectors are more likely to detect
the attack. This probing method is also not stealthy. A vigilant
reflector could detect this method of probing and purposefully
collide the probes or drop them.

Thus, a reasonable frequency of change is between 30 min-
utes to an hour. This allows for much looser synchronization
than for L-RAD. If the routers are out of sync with a source
for one second, only 0.06% of that source’s packets will be
lost, assuming a 30-minute window.

Still, it is important to keep the routers and sources as
closely synchronized as possible. The sources could period-
ically beacon their current time. However, we want to limit
the communication to the routers, so we propose implicit
synchronization. The source sends out a timestamp of when
the seed was generated. After n · T seconds from the times-
tamp, everyone moves to the next key. Here n is the current
position in the reverse hash chain and T is the key validity
duration. Clock synchronization is achieved through any of
the standard time protocols, such as NTP. While not providing
100% accuracy, the source and routers are likely to stay synced
on a millisecond granularity.

How much additional storage is required by routers? When
validating the HMAC, the routers look up the prefix and get
the key. However, because each key is unique at the AS level,
we must store at most 216 keys. The routers also need to
look the key up quickly. Routing tables currently store routes
based on prefixes advertised by ASes. Since we are protecting
keys based on prefixes registered by ASes, our total prefix size
should be no greater than the forwarding table size. Therefore,
we can use the same lookup method (a trie system) and space
requirements as for the forwarding table.

We protect both initial and subsequent seed messages using
public key encryption, with public keys distributed out of
band. The expenses of public key cryptography and storing
and updating the reverse hash chain can be paid by the route
processors used to handle routing updates, with results sent to
routers via out-of-band control paths.

IV. EVALUATION

We evaluated RAD with a series of micro-benchmarks to
determine RAD’s overhead, and with core traces to replay
traffic during an attack, measuring the percentage of successful

transactions. We used the DETER testbed [34] and core traces
from MAWI [35].

A. Overhead Tests

These experiments focus on L-RAD, as the overhead con-
siderations of C-RAD have been discussed in Section III. We
must determine the overhead incurred by TCP from L-RAD
on the source machine. If it is too costly to generate the MACs
for SYNs or to validate them, we may not gain anything. We
need to know how long it takes to calculate our SHA-1 MAC,
how long to generate and send a SYN, how long to process a
SYN/ACK, and how long to send a RST. Using a Dual Xeon 3
GHz machine running an instrumented Linux 2.6.12-1 kernel,
we generated 20,000 SYNs, responded to 20,000 SYN/ACKs
and generated 20,000 RSTs. To time calculation of a SHA-1
MAC, we ran one million iterations and calculated the average
run time. The results are shown in Table I.

It takes, on average, 16.15 µs to send a SYN, 9.23 µs to
process a SYN/ACK and 1.44 µs to run SHA-1. Therefore, we
are adding an 8.92% overhead to the SYN generation, and a
23.39% overhead to the SYN/ACK processing. In our traces,
only 4.14% of our TCP packets are SYNs, in line with Shin
et al. [27], who found that 3.5% to 4.5% of packets are SYNs.
2.10% of our packets were SYN/ACKs. Thus, on average, we
are increasing the overhead of TCP by 0.86%. Furthermore,
since we drop invalid SYN/ACKs and do not generate RST
packets, we do not pay the RST cost. As machines improve in
speed and specialized cryptographic hardware becomes more
prevalent, the cost of running RAD should also decrease.

What about the source AS’ costs for C-RAD? Fortunately,
end host ASes are not nearly as speed-dependent as core
routers. These ASes can do more processing, as shown by
recent traffic shaping endeavors [8]. Speeds of 1 Gb/s should
be more than fast enough for end host ASes. Finally, the
end host ASes need not keep much state. They only need
the current key, their position in their hash chain, and the
timestamp.

B. Replay Experimental Setup

To determine the effectiveness of both RAD schemes,
we tested them with real traffic, with and without attacks.
We replayed backbone traces from MAWI on the DETER
testbed. We processed the traffic with a specialized parser
using CAIDA’s CoralReef package [33]. The parser searches
the trace for two-way TCP flows, generating session info for
each flow. The IP addresses for all end hosts in the flows are
then grouped into sets whose members do not communicate



Fig. 2. The Replay Setup. In this diagram, black nodes represent the target
nodes and gray nodes represent the gateway nodes. The white nodes are the
remaining nodes, which participate in the traffic replay and generate attack
traffic, but are not being measured.

with each other. We used SEER [26] to map each set of IP
addresses to a single node on DETER; thus, the number of
sets we generated was based on the number of nodes used in
the replay.

We used SEER’s replay tool to replay traffic. This tool
is similar to Swing [30]. Like Swing, it replays traffic in
a congestion-responsive manner with each connection state
dictated by the TCP implementations on the end machines, but
with some differences : (1) Swing uses derived distributions of
traffic parameters to create new traffic during replay. SEER’s
replay tool extracts connection dynamics features from back-
bone traces and replays connections exactly as they occurred
in the trace. (2) Swing has a stricter criteria for selection of
connections to replay. (3) Swing uses the 10.0.0.0/8 address
range, while SEER keeps original IP addresses and service
ports from the trace.

As Figure 2 shows, the nodes are clustered into three
groups. Each node is connected to a router, which connects
to a central monitoring and measurement machine. Attack
nodes and reflector nodes have been added. The attack nodes
generate spoofed traffic and send them to the reflectors. The
reflectors respond to the requests and send replies to the
spoofed victim machine(s).

Each trace we use contains fifteen minutes of traffic, an
average of roughly 6.4 million TCP packets. We use ten
different traces for a total of 150 minutes worth of replayed
traffic. The traces are split into twenty nodes, giving each node
an average one-way throughput of roughly 500 kb/s. Five of
the twenty nodes are randomly selected to be measured during
different attack levels, giving a total of 750 minutes worth of
traffic data to be measured. We only use five nodes because we
are trying to determine the benefit of RAD to a single machine.
If we attack and measure too many nodes, the cumulative
attack will affect the overall traffic and the results will not
accurately reflect the situation we are trying to measure.

The five nodes are given gateway routers that are used
in our L-RAD gateway filtering experiments and our C-
RAD experiments. Each gateway runs the Click Modular

Router [13], with filtering performed by our Click element.
The gateways have twice the bandwidth of the nodes, to
simulate the situation where a target has multiple gateways or
a gateway with more bandwidth. All other nodes besides the
gateways and the targets have gigabit connections, to ensure
that congestion at these nodes does not affect the outcome of
our measurements.

We use Tcpdump [36] to collect the packets at each target
node, parsing the dump to determine the number of suc-
cessful transactions. A transaction is a payload packet and
a corresponding acknowledgement. A successful transaction
is any transaction that avoids congestion control (i.e., three
duplicate acknowledgements or a timeout retransmission). We
filter out the failed transactions, as well as the excess caused
by the failed transaction (e.g., duplicate ACKs), and count the
successful transactions.

C. Local RAD Experiments and Results

For Local RAD replay experiments, each of the five target
nodes is given 5 Mb/s of bandwidth, about ten times the
bandwidth that their average throughput requires. The gate-
ways have twice the bandwidth, or 10 Mb/s. In this group,
three experiment sets are run: one without RAD, one with L-
RAD local filtering, and one with L-RAD gateway filtering.
For each set, we run five attack patterns per target: no attack,
3,000 packets per second (pps), 6,000 pps, 9,000 pps, and
12,000 pps. We aggregate our data for each attack pattern by
summing the total successful transactions for each node, then
summing all the successful transactions across traces, giving
us the total successful transactions by all target nodes from
all traces for each attack. We normalize these values by the
total successful transactions from the no-attack data set, giving
us the percentage of successful transactions for each defense.
We tested two types of attack traffic, TCP SYN/ACK reflection
and a DNS response reflection. Figure 3 shows the results from
the TCP SYN/ACK test.

0

0.2

0.4

0.6

0.8

1

1.2

%
of

Su
cc

es
sf

ul
T
ra

ns
ac

ti
on

s
%

of
Su

cc
es

sf
ul

T
ra

ns
ac

ti
on

s

No Attack 3,000 pps 6,000 pps 9,000 pps 12,000 pps

No Defense Local L-RAD Gateway L-RAD

Fig. 3. Percentage of Successful Transactions During a TCP SYN/ACK
Flood Using the Local RAD Defense.

When not under attack, all three schemes work well. Local
filtering has a 1% performance loss due to the computation
cost. In the 3,000 pps attack, none of the schemes suffer,
because the attack is not large enough to affect TCP. As
the attacks increase, TCP congestion control kicks in and the
number of successful transactions begins to decrease. Local



filtering performs well, providing about a 15% gain in the
largest attack, because RAD drops traffic before having to
process it for TCP state, and because it does not send out RST
replies. Suppressing RSTs may amplify the inbound attack
by causing SYN/ACKs to get retransmitted, but it quashes a
locally generated outbound flood of RSTs. Recall that a RST is
sent for every unexpected SYN/ACK, so during a 12,000 pps
SYN/ACK flood, the outbound links are also being flooded
with 12,000 pps of RSTs.

Gateway filtering performs best in nearly all cases, with
an approximate average of 98%. Due to Click limitations,
the performance cannot reach 100%. Since the gateway has
more bandwidth, it can absorb a larger attack. In the last
attack (12,000 pps), the attack is so large that it begins to
overwhelm the gateway, but at a significantly lower level than
when the target deploys the defense. In our tests, gateway
filtering outperforms no defense by 30 – 50% and outperforms
local filtering by 25 – 35%, depending on the attack size.

0

0.2

0.4

0.6

0.8

1

1.2

%
of

Su
cc

es
sf

ul
T
ra

ns
ac

ti
on

s
%

of
Su

cc
es

sf
ul

T
ra

ns
ac

ti
on

s

No Attack 3,000 pps 6,000 pps 9,000 pps 10,500 pps

No Defense Local L-RAD Gateway L-RAD

Fig. 4. Percentage of Successful Transactions During a DNS Response Flood
Using the Local RAD Defense.

We also tested a reflected flood using DNS, demonstrating
reflector attack amplification. In our experiments, we send out
a 58 byte DNS query for the address “www.yahoo.com.” The
DNS response for this query is approximately 400 bytes. This
amplifies our DNS query by about seven, or 10 compared to
a non-amplifying SYN/ACK reflector attack. Our 12,000 pps
SYN/ACK flood resulted in roughly 5 Mb/s at the target. A
12,000 pps DNS response flood results in about 50 Mb/s at
the target. A minor caveat is while we send out 12,000 pps
requests in our largest attack, our DNS servers could not keep
up, converging at a rate of about 10,500 pps. We again perform
all the experiment sets for each trace. The aggregate results
are shown in Figure 4.

Any attack quickly overwhelms no defense, and local fil-
tering does little better. Once the attack grows past 3,000
pps, it overwhelms the gateway’s connection. Local filtering
outperforms gateway filtering in the final test due to limitations
in Click. If both could operate at the same efficiency, their
results should be the same, as in the 9,000 pps attack. Even
though L-RAD does not perform well, it outperforms no
defense. L-RAD can provide a decent defense against some
attacks, but like any “edge” solution, its bandwidth can be

overwhelmed.

D. Core RAD Experiments and Results

We made minor changes for the C-RAD experiments. First,
each attack packet has a randomly chosen IP ID field. So, on
average, 1 in ∼64,000 packets will get past the filters. Second,
unlike L-RAD, the gateways in the C-RAD tests generate the
HMACs and mark the packets, simulating the case where the
target node is an AS, and the gateway is that AS’ border router.
In this case, the gateways also must send the synchronization
messages to the core routers (see Section III). Finally, while
there are only 20 nodes in our replay, each node replays
hundreds or thousands of IP addresses. Therefore, each core
router is responsible for maintaining C-RAD state information
for all of these IP addresses, not just 20 nodes.

0

0.2

0.4

0.6

0.8

1

1.2

%
of

Su
cc

es
sf

ul
T
ra

ns
ac

ti
on

s
%

of
Su

cc
es

sf
ul

T
ra

ns
ac

ti
on

s

No Attack 3,000 pps 6,000 pps 9,000 pps 12,000 pps

No Defense Core RAD

(a) Percentage of Successful Transactions During a TCP
SYN/ACK Flood.

0

0.2

0.4

0.6

0.8

1

1.2

%
of

Su
cc

es
sf

ul
T
ra

ns
ac

ti
on

s
%

of
Su

cc
es

sf
ul

T
ra

ns
ac

ti
on

s

No Attack 3,000 pps 6,000 pps 9,000 pps 12,000 pps

No Defense Core RAD

(b) Percentage of Successful Transactions During a DNS Re-
sponse Flood.

Fig. 5. Percentage of Successful Transactions Using the Core RAD Defense.

Figure 5(a) shows the results of the C-RAD TCP SYN/ACK
flood test. C-RAD defeats the attack. There is a 1% drop
in performance compared to no defense, which is due to
the queuing required to use our Click module. This drop is
constant regardless of the attack size.

Figure 5(b) shows that C-RAD defeats the DNS attack,
while no defense is overwhelmed. From C-RAD’s perspective,
the SYN/ACK and the DNS response flood are the same. All
it sees is a series of small invalid request packets that it drops.

Our experiments show that our routers filtered 99.98% of
the attack request packets. We expected 1 in 64,000 packets,
or 0.001% of the packets, to make it through.



V. DEPLOYMENT

What is an adequate deployment for each system to be
effective? Local RAD does not require any infrastructure
deployment. Anyone can deploy L-RAD on their system or
network to get the protections that it provides. Unlike some
other spoofing-related schemes, such as ingress filtering, the
benefit of deploying L-RAD is primarily to the sites choosing
to deploy it.

The question is more complicated for the Core RAD system.
[19] shows that 95% of all Internet traffic passes through just
50 ASes. We could get effective coverage by only deploying
C-RAD filters at these 50 ASes. This deployment level is also
easier for the source ASes, which only need to coordinate
with a small set of core ASes, rather than every core router.
Furthermore, if the source AS deploys L-RAD as well as C-
RAD, they can provide a defense for the 5% of traffic that
does not pass through these 50 ASes.

While further deployment would provide better coverage,
possibly converging near 100%, it may not be worth the addi-
tional required nodes. The more routers added to the filtering
scheme, the more coordination required with the source ASes.
Furthermore, it increases vulnerability by allowing attackers
to test with closer nodes and therefore smaller RTTs. It also
increases the number of nodes that could be compromised,
exposing the source’s secret.

The ASes required for C-RAD may choose to deploy it to
reduce spoofed traffic on the Internet (since spoofed traffic is
rarely of value to them or anyone else), or they may choose
to offer C-RAD as a service that edge ASes can purchase
to obtain greater protection against spoofing-based denial-of-
service attacks. Since there exists only a small set of ASes
that can effectively filter, they have financial power over the
service. Further, while service providers may purchase the
service from those Core ASes, they can in turn charge their
customers who wish to be protected by the service.

VI. LIMITATIONS AND FUTURE WORK

There are a few limitations to our work. Our experiments
only test reflector attacks on TCP traffic, because TCP makes
up 80% to 90% of our test traffic. To test the effect on DNS,
for example, we would have to artificially generate legitimate
DNS requests, which may not represent reality. Also, the
process we use to divide the trace into nodes and replay traffic
only currently works for TCP traffic. While our scheme should
work with the majority of traffic types, we must evaluate it on
alternative legitimate traffic types.

L-RAD violates the TCP specification [25]. According to
the standard, TCP should send a RST in response to an unex-
pected SYN/ACK. We quash this as part of our defense. This
action can be justified because the SYN/ACK is perceived as
a apparent attack vector and we are simply defending against
it. We could reduce the problem by having RSTs sent until
the unexpected SYN/ACK volume gets too high, after which
they are quashed, handling the case where an unexpected
SYN/ACK is received rather than a reflector attack. We could
also modify the gateways to send RSTs in a similar manner.

Another limitation of L-RAD is the occasional legitimate
retransmission of a SYN/ACK that misses the counter window.
The MAC contained in this retransmitted SYN/ACK is no
longer valid, so it will be lost. We can fix this problem by
picking a new initial sequence number (a valid MAC) for the
eventually retransmitted SYN. We did not study the effect
of lost legitimate SYN/ACKs in our experiments. While it
probably occurred during our attacks, it did not noticeably
affect the benefits of L-RAD.

C-RAD will not work with IP fragmentation. Because C-
RAD uses the IP ID field for its HMAC, any actual fragmen-
tation will invalidate the HMAC. We justify our technique
for the following two reasons: First, IP fragmentation is not
very common. In our traces, only 0.05% of the traffic was
fragmented. Second, IP fragmentation can be prevented with
path MTU discovery. Since anyone who is running C-RAD
knows this is a limitation, they should also deploy path MTU
discovery to overcome this minor problem.

VII. RELATED WORK

Much research has focused on defeating IP spoofing and
DoS attacks. Since reflector attacks require IP spoofing, work
to defeat IP spoofing defeats reflector attacks. Early work
was targeted toward identifying sources. Ingress filtering [9],
for example, prevents hosts from spoofing addresses that
cannot exist on that subnet. Park and Lee propose RBF [21],
leveraging the fact that most of the traffic a router sees from
a source comes in on the same interface. If RBF sees packets
from that source on a different interface, it filters the packet.
Park and Lee analyze the effectiveness of RBF but do not
propose a deployment strategy. Duan and Yuan propose IDPF
[7] which uses BGP information to build a relaxed RBF table.
However, IDPF is slow to respond to routing changes, and may
drop legitimate traffic. While RBF allows same path spoofing
(i.e., if A and B come from the same interface, A can spoof B),
IDPF allows spoofing from multiple possible paths, lowering
effectiveness.

Jin et al. propose HCF [12], which works by associating
sources with hop counts instead of interfaces. If a packet
comes from a source with a different hop count, the packet
is dropped. Like RBF, two nodes with the same hop count
can spoof each other. Further, if the attacker can guess the
right hop count for a spoofed source, he can fool this system.
Similar to L-RAD, HCF can only provide limited protection at
end hosts before the host is overwhelmed. This scheme could
be used in the core; however the core experiences asymmetric
routing, which causes this scheme to fail.

SPM [5] and SAVE [15] work by coordinating between
senders and receivers. SPM has ASes exchange cryptographic
secrets, and then marks packets between them. If an invalid
mark is detected, the packet is dropped. The primary problem
with this is that only packets between SPM participants can
be defended. SAVE works by sending periodic advertisements
to all destinations about their prefixes. Filters use the adver-
tisements to learn the arrival interface for that prefix, and then
RBF can be used. However, incomplete tables can form via



routing changes; these tables can limit the effectiveness of
SAVE. Further, SAVE requires complete, or at least contigu-
ous, deployment.

Many defenses for DoS have been used. L-RAD uses similar
techniques to SYN cookies [4], which defend against SYN
floods. SYN cookies work well against a SYN flood until the
target’s bottleneck link is overwhelmed by the attack volume,
but the technique only protects against this particular attack.

Peng et al. propose a distributed reflector attack defense in
[23]. Reflectors monitor traffic for RST traffic. The reflectors
raise detection signals when RST traffic becomes too high. The
reflector attack mentioned in the introduction can overcome
this approach with effective reflector scattering. This approach
also cannot distinguish between legitimate and spoofed traffic.

SNF [2] uses a special sequence number similar to the
request mark. Any SYN/ACK that does not have the pattern
is filtered. The authors propose ISP filtering, where the secret
pattern is shared with the ISP, similar to gateway filtering.
However, the change interval needs to be reasonably long, on
the order of minutes, to reduce the communication overhead,
and this increases the vulnerability window. In contrast, L-
RAD uses a counter and a secret, where the counter only
needs to be time-synchronized after secret dissemination. As
with the other security properties discussed in L-RAD, a small
counter window leads to a small vulnerability window. Also,
the SNF scheme only works with TCP, where RAD works
with multiple traffic types. Finally, RAD offers a higher level
of security through multiple levels of filtering.

Some methods may require significant changes to infras-
tructure to defend against DoS. In TVA [31], a source at-
taches capabilities to each packet, and each router verifies
one capability. The capabilities are route-dependent, so if
the route changes or multipath forwarding exists, legitimate
traffic is dropped. Stack-Pi [24] associates a source address
with a mark in the IP header. The mark is jointly created by
Stack-Pi routers that forward the packet. During a DoS attack,
marks can be used to filter paths with a large traffic volume.
The filtering, however, inflicts collateral damage on legitimate
traffic on those paths.

BASE [14] leverages capabilities of both Stack-Pi and IDPF,
while solving several issues such as route asymmetry. First,
they distribute marking values among BASE filters for each
source AS. The marking value is computed by hashing a secret
key and the mark of the previous filter along the path. When
a BASE-enabled AS is attacked, the victim invokes marking
and filtering through a BGP update. BASE edge routers create
the initial mark for any packet they believe to be legitimate.
BASE-enabled transit ASes validate a mark, and then the
router replaces the mark with its mark and forwards it. Thus
every packet with the same source address will have the same
mark when it leaves a BASE node. Since BASE uses BGP
updates to invoke filtering, the system is vulnerable to policies
that do not forward these updates, leading to improper filtering
and dropped legitimate traffic. BASE is also vulnerable to the
probing scheme in Section III. Because they only redistribute
marks during routing changes, a learned mark can be used

until the next routing change on that path. This learned mark
can be used for many different packets, unlike C-RAD.

Shue et al. propose a system similar to BASE using tags
[28]. Here, routers close to end hosts tag legitimate outbound
traffic. When a packet arrives at another filtering node, it
validates the current tag. If the tag is valid, it replaces the tag
with a new tag. Tags, like BASE marks, are distributed via
BGP updates. They solve route asymmetry and BGP policy
issues by giving routers the capability for learning tags of
other nodes. This learning capability requires some packet
inspection, which requires extra processing for core routers.
They also discuss multiple options for where to place the tag.
If the tag is placed as an IP option, the packet risks being
placed on the slow path. If the tag is placed in the IP ID field,
the authors’ system is vulnerable to the probing technique
discussed in Section III.

Both BASE and Shue’s system require a minimum level of
deployment. Their systems require initial filters close to the
edges to determine the legitimacy of the traffic generated there
and apply the initial mark. If initial filtering occurs too far into
the core, it will be difficult for the initial filter to determine
a packet’s legitimacy. Thus, neither system could adequately
filter by only using the 50 core ASes required by RAD. BASE
requires only 30% deployment to obtain reasonable filtering,
but this is still on the order of thousands of ASes. While Shue’s
system requires a smaller deployment then BASE, between 10
– 30%, this is still greater than the 50 ASes required by C-
RAD.

Finally, StopIt [17] deploys a new infrastructure service
at each AS. When a node is under attack, it sends out a
StopIt request. This request is disseminated to routers along
the forwarding path and eventually to the source AS. If the
source AS is well behaved, it stops the traffic itself. Otherwise,
filtering nodes along the path will filter the traffic out. Such
a system only works if the deployment level is high and IP
spoofing is impossible. StopIt solves the IP spoofing problem
using route-dependent passports [18], as discussed in Section
III-B. In contrast, neither version of RAD is route-dependent.

VIII. CONCLUSION

The Reflector Attack Defense defends against reflector
attacks both locally and in the core. In Local RAD, message
authentication codes mark requests and validate the MACs on
the replies. We showed how to generate the MACs using a
secure hash, as well as how to validate them. We also showed
how sources can synchronize with their local gateways or
border routers, so these locations can filter the packets for
them. By doing so, the routers allow us to filter the traffic
upstream, taking the burden off the targets.

Our L-RAD experiments show that the cost of generating
the MAC is acceptable and will decrease as technology
improves. Replay traffic experiments show the benefits of L-
RAD, both locally and at gateways. Local filtering prevents
the use of resources or backscatter associated with an attack.
Gateway filtering provides more substantial protection limited
only by the speed of receiving and filtering packets.



In C-RAD, we use HMACs to mark all outbound IP packets
from an AS. Core routers use the HMAC to validate the source
and filter. We show how source ASes and core routers can
synchronize the required information to perform filtering. We
discuss the speed and scaling issues faced by core routers,
and how to overcome them. Our experiments show that C-
RAD can completely quash an attack, even when L-RAD is
overwhelmed.

The goal of RAD is to allow individual networks more
control over their own protection. Unlike ingress filtering,
which relies on everyone to do their part, only the local AS and
the participating members of the core need to cooperate. We
envision dual deployment of Local and Core RAD. Core RAD
provides the majority of the protection. Local RAD filters any
remaining reflector attack packets that Core RAD cannot filter.
Furthermore, Local RAD can protect individual networks or
machines without any new infrastructure, even if their ISP
or AS is unwilling to deploy Core RAD. By deploying both
Core and Local RAD, we can greatly reduce the effectiveness
of both reflector attacks and IP spoofing.

REFERENCES

[1] J. Aikat, J. Kaur, F.D. Smith, and K. Jeffay. Variability in TCP Round-
trip Times. In Internet Measurement Conference, 2003.

[2] D. Basheer and G. Manimaran. Victim-assisted Mitigation Technique
for TCP-Based Refelector DDoS Attacks. In 4th IFIP-TC6, Networking,
pages 191–204, 2005.

[3] S. Bellovin. A Technique for Counting NATted Hosts. In IMW
’02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, 2002.

[4] D.J. Bernstein. SYN Cookies, 1997.
[5] A. Bremler-Barr and H. Levy. Spoofing Prevention Method. In

INFOCOM, 2005.
[6] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics:

General Results and Applications. In ASIACRYPT, 2006.
[7] Z. Duan, X. Yuan, and J. Chandrashekar. Constructing Inter-Domain

Packet Filters to Control IP Spoofing Based on BGP Updates. In
INFOCOM, 2006.

[8] P. Eckerlsey, F. von Lohmann, and S. Schoen. Packet Forgery By ISPs:
A Report On The Comcast Affair. Electronic Frontier Foundation,
November 2007.

[9] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing. RFC
2267.

[10] Y. Hu, M. Jakobsson, and A. Perrig. Efficient Constructions for One-Way
Hash Chains. In Applied Cryptography and Network Security, 2005.

[11] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-Trip
Times. ACM SIGCOMM Computer Communications Review, 32(3):75–
88, 2002.

[12] C. Jin, H.Wang, and K.G. Shin. Hop-Count Filtering: An Effective
Defense Against Spoofed DDoS Traffic. In 10th ACM conference on
Computer and Communications Security, 2003.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kasshoek. The Click
Modular Router. In ACM Transactions on Computer Systems (TOCS),
2000.

[14] H. Lee, M. Kwon, G. Hasker, and A. Perrig. BASE: An Incrementally
Deployable Mechanism for Viable IP Spoofing Prevention. In ASIAN
ACM Symposium on Information, Computer and Communications Secu-
rity, 2007.

[15] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE: Source
Address Validity Enforcement Protocol. In INFOCOM, 2002.

[16] R. Lien, T. Grembowksi, and K. Gaj. A 1 Gbit/s Partially Unrolled
Architecture of Hash Functions SHA-1 and SHA-512. In RSA Cryptog-
raphers’ Track, 2004.

[17] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer
DoS Defense Against Multimillion-node Botnets. In ACM SIGCOMM,
2008.

[18] X. Liu, X. Yang, D. Wetherall, and T. Anderson. Efficient and Secure
Source Authentication with Packet Passports. In SRUTI, 2006.

[19] J. Mirkovic and E. Kissel. Comparative Evaluation of Spoofing De-
fenses. Technical Report ISI-TR-655, Information Sciences Institute,
2009.

[20] D. Moore, C. Shannon, D.J. Brown, G.M. Voelker, and S. Savage.
Inferring Internet Denial-of-Service Activity. ACM Transactions on
Computer Systems (TOCS), 24(2), May 2006.

[21] K. Park and H. Lee. On the Effectiveness of Route-Based Filtering for
Distributed DoS Attack Prevention in Power-Law Internets. In ACM
SIGCOMM, 2001.

[22] V. Paxson. An Analysis of Using Reflectors for Distributed Denial-
of-Service Attacks. In ACM SIGCOMM Computer Communications
Review, 2001.

[23] T. Peng, C Leckie, and R. Kotagiri. Detecting Refletor Attacks by
Sharing Beliefs. In IEEE Global Communications Conference, 2003.

[24] A. Perrig, D. Song, and A. Yaar. StackPi: New Packet Marking and
Filtering Mechanisms for DDoS and IP Spoofing Defense. IEEE Journal
on Selected Areas in Communications, 24(10):1853–1863, October 2006.

[25] J. Postel. Transmission Control Protocol. RFC 793.
[26] S. Schwab, B. Wilson, C. Ko, and A. Hussain. Seer: A Security

Experimentation EnviRonment for DETER. In DETER Community
Workshop on Cyber Security Experimentation and Test, 2007.

[27] S. Shin, K. Kim, and J. Jang. Analysis of TCP SYN Traffic: An Em-
pirical Study. In International Conference on Advanced Communication
Technology, 2005.

[28] C. A. Shue, M. Gupta, and M. P. Davy. Packet Forwarding with Source
Verification. Computer Networks, 52(8):1567–1582, 2008.

[29] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In ACM SIGCOMM, 2002.

[30] K. Vishwanath and A. Vahdat. Realistic and Responsive Network Traffic
Generation. In ACM SIGCOMM: Proceedings of the 2006 conference
on Applications, technologies, architectures, and protocols for computer
communications, 2006.

[31] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. In ACM SIGCOMM, 2005.

[32] Advanced Network Architecture Group. ANA Spoofer Project.
http://spoofer.csail.mit.edu.

[33] CAIDA CoralReef. http://www.caida.org/tools/measurement/.
[34] DETER testbed. http://www.isi.edu/deter.
[35] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp.
[36] Tcpdump. http://www.tcpdump.org/.


