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I.	 INTRODUCTION

Two recent NASA earth-orbiting satellites, GEOS-3 and SEASAT-1,

have carried pulsewidth-limited radar altimeters with provision for

sampling a number of points in the individual radar return waveforms 1.

For these and similar systems, the mean return waveform is [1] the

`	 convolution of: A) the average impulse response of the quasi-calm sea

surface, B) the sea surface elevation distribution, and C) the radar

system point-target response (transmitted pulse as affected by transmitter

and receiver bandwidths;. The first term, A, includes effects of antenna

beamwidth and off-nadir pointing angle; "quasi-calm" emphasizes that an

incoherent surface scattering process is assumed but that the sea surface

elevation distribution is separately written in B in the above convolution.

A number of papers have descr i hed the extraction of ocean significant

waveheight (SWH) from altimeter waveform samples r2-7]. SWH is directly

related to the second moment of the surface elevation distribution;

there is also a preliminary altimeter measurement [5] of the surface

skewness, related to the third moment of the surface elevation distribution.

All of these papers use the same basic procedure: a specific probability

distribution form (usually a simple Gaussian) is assumed for the ocean

This work was supported by the National Aeronautics and Space Administration,

Wallops Flight Center, under Contract NAS6-2810.

1 GEOS-3 had 16 waveform sample-and-hold (S&H) gates at 6.25 nanosecond

spacing, while SEASAT-1 had 60 S&H gates at 3.125 ns spacing.



surface, amplitude and timing biases are removed from waveform sampler

data if necessary, a suitable waveform sample averaging time is chosen,

and the av-rage sampled mean return waveform is "best-fitted" by a

theoretical template through some process of varying the template parameters

until some typical least-squares error criterion is satisfiLsd 1 . In

several cases [3,7] differences between adjacent sampled waveform values

•	 are fitted to the derivative of the theoretical return waveform, but

this is a n;in ror modification of the basic template-fitting procedure. In

the general template-fitting, either a simplified form is assumed for

the different convolution terms so that the final expression will be

simple and suited to easy computer implementation and fast computer

running time, or a more general, more complete template is used at the

expense of having to do several numerical convolutions for each sample

point within the linefitting process.
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	 This paper presents general expressions for the radar mean return

waveform for the case in which the ocean surface elevation distribution

and the radar system point-target response can both be represented by a

modified Gaussian form including skewness and kurtosis terms, and the

antenna pattern can be assumed to be Gaussian in angle; these expressions

give the mean return waveform at the times of interest in the region of

One exception to the template-fitting procedure is described in [II] in

which Priester and Miller describe work intended to estimate the surface

height probability density function without the necessity of assuming a

specific functional form; this method is difficult to implement and

interpret and will not be considered for purposes of this paper.
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i
the risetime portion ("ramp portion") of the waveform for small off-

nadir angles. These general expressions should be useful in either

waveform parameter estimation from experimental data, or for waveform

generation as part of design studies of system trade-offs for future	 1,

radar altimeters. Comparable results can be obtained from numerical

convolution but the expressions in this paper have the strong practical

advantages of reducing computational time and of avoidina the detailed

questions of sample density and round-off problems which should be part

of any numerical convolution modeling study.

II. EVALUATION OF MEAN RETURN WAVEFORM

This work is based on Brown's 1977 paper [1] which reviewed the

assumptions and limitations of the convolutional model for near-normal-

incidence rough-surface backscattering of short-pulse radar waveforms.

The general square-law-detected waveform W(t) is given by the convolution

W(t) = PFS(t)*qs(t)*sr(t)

where PFS (t) is the average flat-surface impulse response, q s (t) is

related to the surface elevation probability density of scattering

elements ("specular points"), and s r (t) is the radar system point target

response which includes the transmitted pulse shape. Each of the three

terms in (1) will be separately discussed; then through a small-argument

series expansion for Brown's P FS (t), the W(t) of (1) will be expressed

as a power series for which the first four terms are evaluated in this

paper.



A.	 Average Flat Surface Impulse Response Function

For cases of practical interest for satellite-carried radar altimeters,

the flat surface impulse response is given by Brown's equation (9) as

PFS (t) = A exp(-St)I 0 (t_,^s)U(t)	 (2)

in which

6 = ( 4/Y)( c/h)cos 1 2 1	
(3)

and

s = ( 4/Y) (c/h)'zsin 12^ 1 .	 (4)

In (2), U(t) is a unit step function, Ir . ';l^s) is a modified Bessel

function, and ^ is the off-nadir pointing angle. In (3) and (4), c is

the speed of light, h is the satellite altitude, a-nd -y is an antenna

beamwidth parameter defined as in Brown's equation (4) by a Gaussian
t

approximation to the antenna gain of the form

G(6) = Go exp[(2/y)sin 2 e]	 (5)

If a  is the usual antenna beamwidth, i.e., the angular full-width at

half-power points, (3) and (4) can be written as

_ In 4
e4	 (c/h)cos I2^I	 (6)
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and

=	 In 4	 (c/O sinl2CI.	 (7)
sin2(ow/2)

The amplitude term, A, in (2) actually contains a number of different

constants;

Go2x2cao ( 0)	 4	 n	 (8)
A	 4 4^r 2Lph3 exp(-^ sin)

where a = radar wavelength,

a°(0) = ocean surface backscattering cross section at normal

incidence,

Go = radar antenna	 gain at nadir,

and Lp = two-way propagation loss.

In (8), the possible variation of a' with angle of incidence (or,

equivalently, with increasing time in the return waveform) has been

ignored; this is a reasonable assumption for sea surface scattering in

the short-pulse (<20 nanoseconds pulsewidth ) radar altimeters considered

here. Because radar return signals are normalized by a typical altimeter's

AGC system, we will ignore all individual terms within the A in (8), and

will use A as just a simple amplitude scaling term.

B.	 Radar-Observed Surface Elevation Density Function

Equation (1) includes a term q s (t) which is the surface specular

z
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point density function written in the altimeter's time domain; the

conversion factor from surface elevation measurements in meters to two-

;
way ranging time in nanoseconds is c/2 = -0.15 m/ns. The negative sign

indicates that an increase in ranging time corresponds to a decrease in

surface elevation 3 . This paper makes the usual assumption that the

surface specular point density function is identical to the true (geometric)

a
surface elevation density function, but the possibility of a difference

between the radar-observed and the true geometric elevation densities

must remain an open issue for future work`'.

3 This change of sign is important only for odd moments. Specifically,

when a template-fitting procedure is used on satellite sampled waveform

data to obtain a (time-domain) estimate of the skewness contribution

from the surface, the desired surface elevation skewness will have the

same magnitude but opposite sign from the time-domain-estimated skewness

component.

If
	 Radar measurements by Yaplee et al. [15] can be interpreted [161

	

z

as showing that the mean of the scattering distribution is displaced

downward from the true water level by 20% of the rms waveheight and

recent theoretical work by Jackson [17], assuming infinitely long-

crested waves, is in agreement with these measurements. However,

preliminary results from the aircraft-borne Surface Contour Radar

experiment [18] indicate that this bias may be in range of 4-8% of

the rms waveheight with more measurements currently underway [191.
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In previous work the ocean surface elevation density function qs(t)

has been assumed to be skewed Gaussian form given in the time domain'

by

n

(t) =	 1	 j1 + 
as 

H (^/a )]exp[-^2(t /o )?],	 (9);
q s 	 ►^'as	 6 3	 s	 s

where as is a risetime, a s is the skewness, and H 3 is a Hermite polynomial.

Pierson and Mehr [9] discussed this form for radar altimeter analyses;

this is a low order case of a general probability function by Longuet-

Higgins [10] for a random variable that is weakly nonlinear. 	 The first

six Hermite polynomials for a general argument z are:

Oi l (z) = z,

H 2 (z) = z 2 - 1,

H 3 (z) = z 3 - 3z,

(10)

H4 (z) = z 4 - 6z 2 + 3,

H5 (z) = z 5 - 1Oz 33 + 15z,

and	 H6(z) = z 6 - 15z 4 + 45z 2 - 15.

The 
a  

in (9) is related to the significant waveheight (SWH) by

SWH = 4(c/2)as

in which the c/2 converts from ranging time to surface elevation, and

7



the factor of 4 is from the definition of SWH as four times the rms

waveheight; since SWH is related to a second moment, there is no sign

change from the time-domain-observed to the surface elevation quantity.

Most of the radar altimeter SWH measurements to date have been based

on the pure Gaussian resulting from setting a s = 0, but (9) is the general

form used in attempts to recover a surface skewness [5].

Equation (9) is the result from taking the first two terms only

in the general Gram-Charlier series [11]. Recent work by Huang and

Long [12], based on laboratory measurements of the surface elevation

density function for a wind-generated wave field, suggests that (9)

is an inadequate form for the surface elevation density, and that it is

necessary to use the four-term series given by

(12)

qs(t)	
2,r a_ 1 + 6s H3(t/US) + 24 H4 (t /as) + 72 H E (t/u s ) exp[-'2(t/osxl

where K s is the kurtosis with other quantities as already defined. The

general waveform result to be derived in the following portions of this

paper will be based on (12), but a s 2 terms will be kept separate from

the ^ s terms so that the final results can easily be converted to a

surface elevation density of form (9) instead of (12) if desired.

C.	 Effect of Radar System Point Target Response

The radar system point target response s r (t) -is primarily the

transmitted radar pulse shape but also includes effects of the bandwidths

of the 'Lransmitter and receiver. When the system point target response

is nearly Gaussian, the same general form can be used as already

discussed for the surface elevation density,

8



(13)

n

W_

Kr
	 2

sr(t) = 1	 1 + 6 
H3

(t/ar ) + 24 H4 (t/ar ) + 72 H6(t/ar)
 ex C- (t/ar)2^.

^'^ ar

In this case, the convolution in (1) of q s (t) *s r(t) can imwasdiately

be written as

B(t) = qs(t)*sr(t)

;;7. a 1 + 6 H
3 ( t/a) 

+ 24 H
4(t/a) + 72 H6 (t/a) exp [- 'z(t

/a)2],
	

(14)

in which a, a, and K (with no subscripts) are the composite risetime,

skewness, and kurtosis; these composite quantities can easily be

shown to be related to the contributing surface elevation and point

target quantities by

a2 = a
s 
2 + (y 2 ,	 (15)

X = a s las
/ ,j) 3 

+ X  (ar/a) 3 ,	
(16)

and	 K = KS(as/a)4 + Kr((5r/ a ) 4 .	 (17)

In a practical radar altimeter, the waveform sampling gates

will be positioned by a range tracker having its own range-noise

(jitter) characteristics, and the probability density function of the tracker

jitter must be included as an additional term in the convolutional

description of the mean return waveform. For this paper the jitter will

be assumed negligible in comparison to the other terms5.

Usually when the jitter can not be treated as negligible, it can be

described by a near-Gaussian form with its own aj, x  and Kj and (15),

(16), and (17) will each have one additional term of the same form as the

two terms already written. For instance, (15) will become a2 = a 
s 
2 + a 

r 
2 + aj2.

9
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D.	 Expansion and Solution for W(t)

The waveform W(t) is given by the convolution of the P FS ( t) of (2)

with the B(t) of (14),

W(t) = PFS(t)*B(t)

{ls)
=	 (z) B(t--z)dz,j PFS 

_0,

but the ,presence of the Bessel function 
1  

in PFS (t) prevents the easy

integration of the integral in (18). For the waveform regions of

interest in the case of short-pulse radar altimeters in this paper, it

is possible to expand the I o in a small -argument series expansion,

given by expression 9.6.10 in [13],

To(z) =	 .1 (z2/4 )n ( 1	 2	 (19)

n=o

and this will lead to a term -by-term integration in (18) with the

result

W(t) =6exp[-d(T + d/2)] n10 (n,)2 (a	 a ) n Cn (t)	 (20)

where

Cn(t) = C no 
4 KCnl + X2Cn2	

(21)

T

Cno = 1	 (r-Z)n 6 + A (z+d) LI_
Z2/2 dz	 (22)

,_m

fT	 _Z2/2
Cni I	 (T-z) n H4 (z+d) e	 dz	 (23)

^2T r-

10



T
2

and	 ;n2 = ij ( z -z) n H6 (z+d) a-z /2 dz,	 (24)
2_^

t 
with	 T =	 Q- ° - d,	 (25)

and	 d = 6a.	 (26)

Notice that an arbitrary time origin shift- to , has been written in

(25); in template-fitting for parameter recovery from altimeter data, to

is one of the parameters to be varied for the fi.,al solution since in

most altimeter designs the altitude tracker moves the waveform sampler

set back and forth in (time) position relative to the true mean waveform.

Carrying out the integrations indicated in (22), (23), and (24) for

any given n will produce results in terms of G(T) and P(T), where G(z)

is the Gaussian, G(T) = (2r) -zexp(-T 2/2), and P(T) is the Probability

Integral 6 ; two new functions of time, Dnm and Enm , are then defined by

Cnm

	

	 D P (T) + Enm G (T)	 for m=0,1, and 2. 	
(27)

nm

These Dnm and Enm have been worked out for n = 0,1,2, and 3, with the

following resul ts :

6 Often the error function erf(T) is written instead of P(T). These

are related by erf( T) = 2P(2 2T) - 1. P(T) can be implemented in a

computer through the series expansions given by expression 26.2.17

in [131.

11
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D00 = 6 + ad3,

E00 = a(1-3d2-3dT-T2),

DO` = d4/4,

EQ1 = (d-d 3 ) + (4 - ^ 2 ) •r -- dT 2 - 4 
3	

(28)

D02 = d6/12,

3
E02 = (- 5d3+2-	 --d 5-) +( 2F

5	 15d 2	5d4
+-	 - -T )T

+ (3d - 3 3)T2 + (6 - 32)T3 -
	 T 4 - 125,

D; q _ -3ad 2 + (6 + Xd3)T,

E10 = (6 + 3ad + ad 3 ) + XT,

D11 M -d 3
 + 44T,	 (29)

E11 = (- 4 - 3d 2 + 4
4

) + dT + T
2

_ _ d 5	 d6•r
D12	 2 + 12

2	 4	 6
E12 = ( - -54d + 3 + d2) + (- 2 + 3 

3
d )

+ (- 2 + 32)T2 + 2 3 + -4'

D20 = (6 + 6ad +Xd 3 ) - 6ad 2 T + (6 + ad3)T2,

E20 = (-2X - 6ad 2 ) + (6 + Xd3)T,

D21 = (3d2 + 44 ) - 2d 3 T + d4T2,

	 (30)

E21 = (-2d - 20) + (_1 + 24 )T,

12



D22 = (,	 1d	 - d5T 
+ T2 `t2^	 (30 cont'd.)

E22 = (
d - ^:3 - d5) + (,£ - ^' +T2)T - d i  --6

D30 = (-6X - 9.\d 2 ) + (18 + 18Ad + 3ad 3 )7 - 9ad 2.r 2 + (6 + Nd3)13,

E30 = (12 + 18ad + 2ad 3 ) - 9ad 2 T + (6 + ad3)i2,

D31 = (-6d - 30) + (9d 2 + 3̂d 4 ) .r - 3d 3 T 2 + d'IT 3,

E 31	 +9d=	 (^^^)3	 + - 3d 3T + 4 T 2 ,

(31)

D32 = (-lOd 3 - y 5 ) +D32 (^ 4 +	 6 )T 3d5 6
+ i7 1 3,

E32 = (-Z + 12d 2 + lOd 4 + 6/ + (3d - 3-5 )T + ( 2 + 1-2.,

i'
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III. SUMMARY AND EXAMPLES

In brief review, the waveform is given by (20), with the number of

terms required being a function of time, pointing angle, and antenna

beamwidth7 . For each term C n (t), (21) gives C n (t) in terms of cn0'

Cnl , and Cn2 with these three quantities in turn given by (27) which

uses (28), (29), and (30), or (31) for n=0,1,2, or 3, respectively. This

procedure may appear cumbersome and it does assume the use of a computer,

but these results are very much easier to use and produce answers in far

less computer time than the numerical convolutions that would otherwise

be needed8.

7	 For instance, a single term is adequate for the GEOS-3 altimeter

waveforms at any time within the span covered by the individual sampling

gates for pointing angles within 1° of nadir, while SEASAT-1 with its

smaller beamwidth and larger sampling gate span in time requires the

first three terms in (20) for any position within the sampling gate span

and for pointing angles within 1° of nadir.

B	
One of the uses of the waveform expansion (20) is as the template to

fit to radar altimeter data. Typical non-linear iterative least-squares

linefitting routines require the derivatives of the waveform expression

with respect to the individual parameters as evaluated at each input

sample point. Such derivatives may be estimated by numerical differences,

varying each parameter concerned. Alternatively, the derivatives may be

obtained by differentiating (20). While the resulting expressions are

probably not of sufficient general interest to justify their appearing

in this paper, they have been worked out and checked and are being used

in linefitting routines by the author; these derivative expressions will be

mailed upon receipt of a request.

14
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Figures 1-6 provide examples of mean return waveforms calculated

from (20) for a radar altimeter having an antenna beamwidth 0  = 1.6
degrees at a height 8 x 10 5 meters above the ocean and having a pure

Gaussian radar system point target response of 3.125 nanoseconds full-

width at '2 height so that a r = 1.327 ns, and x  = Kr = 0 in (14). These

numbers are nominal SEASAT-1 values j141, and these Figures predict

O.
	 SEASAT-1 measured mean return waveforms for the limit of infinite averaging

time9

" The actual SEASAT-1 mean return waveforms will differ from this

paper's Figures because of the distinctly non-Gaussian sidelobe structure

in f he transmitted pulse shape. MacArthur, on pg. 4-50 of [14], describes

an attempt to treat this sidelobe structure by increasing the effective

width of the Gaussian used to represent the transmitted pulse; however,

a discussion of the full consequences of the actual SEASAT-1 transmitted

pulse shape is beyond the scope of this paper.

1.5
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