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Radar coincidence imaging (RCI) is a high-resolution staring imaging techniquewithout the limitation of the target relativemotion.
To achieve better imaging performance, sparse reconstruction is commonly used.While its performance is based on the assumption
that the scatterers are located at the prediscretized grid-cell centers, otherwise, o
-grid emerges and the performance of RCI
degrades signi�cantly. In this paper, RCI using frequency-hopping (FH) waveforms is considered.	e o
-grid e
ects are analyzed,
and the corresponding constrained Cramér-Rao bound (CCRB) is derived based on the mean square error (MSE) of the “oracle”
estimator. For o
-grid RCI, the process is composed of two stages: grid matching and o
-grid error (OGE) calibration, where two-
dimension (2D) band-excluded locally optimized orthogonal matching pursuit (BLOOMP) and alternating iterationminimization
(AIM) algorithms are proposed, respectively. Unlike traditional sparse recovery methods, BLOOMP realizes the recovery in the
re�nement grids by overwhelming the shortages of coherent dictionary and is robust to noise and OGE. AIM calibration algorithm
adaptively adjusts the OGE and, meanwhile, seeks the optimal target reconstruction result.

1. Introduction

Radar coincidence imaging (RCI), originated from the opti-
cal coincidence imaging, is a staring imaging technique
which can obtain focused high-resolution image without
the limitation of the target relative motion [1–3]. RCI can
operate under the nonideal observing geometry of forward-
looking/staring, with signi�cant potentials for resolution
enhancement, interference, and jamming suppression. 	e
essential principle of RCI is to produce time-space indepen-
dent signals in the imaging area, while the frequency-hopping
(FH) waveforms are good candidates because they are easily
generated andhave constantmodulus [4, 5]. Besides, compar-
ing with the linear frequency modulated (LFM) waveforms
which are oen used in the traditional radar systems, FH
waveforms can suppress the range ambiguity, decouple the
range and Doppler, and are also attractive for their merits on
electronic counter-countermeasures (ECCM) and reducing
interference between adjacent radar systems for sharing the
frequency spectrum [6]. Hence, we focus on RCI using FH
waveforms (FH-RCI) in this paper.

In RCI, the continuous target space needs to be dis-
cretized to a �ne grid and the target-scattering centers are

assumed to be exactly located at these prediscretized grid-cell
centers [3]. 	en, the detecting signals at di
erent grid-cell
centers can be formed as the atoms of sparse representation
dictionary. Meanwhile, the scatterers of target are oen
distributed sparsely inmost radar imaging applications.	us,
sparse recovery approaches and compressive sensing (CS)
[7, 8] are suitable for RCI by exploiting the sparsity of target
in the target space. In the sparse reconstruction theory, signal
reconstruction depends on presetting an appropriate spar-
sifying dictionary which is supported on the assumed grids
and de�nes the signal sparsity. However, as the scatterers
are distributed in a continuous scene, the scattering centers
are generally located o
 the grid-cell centers, no matter
how �ne the grid is; therefore, o
-grid yields [9]. 	en, the
performance of RCI would be severely a
ected.

O
-grid would lead to the mismatch between the
assumed and actual sparsifying dictionaries directly, which
causes the performance of conventional sparse recovery
methods to degrade considerably [10–13]. Intuitively speak-
ing, the sparse elements in the signal may not lie on the
assumed grids and not perfectly match the dictionary; thus,
the true signal is not exactly supported on the assumed
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dictionary. Moreover, the signal recovery is robust to the
mismatch in the sense that the recovery error grows with
the mismatch level and is independent of the sparsity of the
original signal. 	us, the sparse reconstruction performance
of radar imaging degrades severely [3, 9, 14–17].

Considering the o
-grid, several algorithms have been
proposed. One simple approach is to use multiresolution
re�nement strategy and decrease the grid size iteratively
[18]. Nevertheless, a �ner grid may enhance the coherence
between the columns of dictionary and increase the com-
putational complexity and numerical instability of recon-
struction [17]. Modeling the o
-grid as a multiplicative
perturbation, the sparse total least squares (S-TLS) [19] and
joint correlation-parameterization (CP) [3] algorithms are
proposed. However, the algorithms are ine�cient without
considering possibly available a priori information and the
performance degrades rapidly when the o
-grid is signi�-
cant. To explore the structure of dictionary mismatch, the
support-constrained orthogonal matching pursuit (SCOMP)
[16] and joint sparse signal recovery methods [20] are
proposed based on the �rst-order Taylor expansion to utilize
the support constraint, while the methods eventually break
down when the gridding error dominates the data. Lately,
from the sparse Bayesian learning (SBL) perspective, several
approaches are proposed, such as o
-grid sparse Bayesian
inference (OGSBI) [21], sparse adaptive calibration recovery
via iterative maximum a posteriori (SACR-iMAP) [9], and
variational expectation-maximization [10, 22] algorithms, to
achieve joint sparse recovery. In the SBL framework, the
sparsity is exploited in the signal of interest. 	e merit of
SBL is its �exibility in modeling sparse signals that can not
only promote the sparsity of its solution but also exploit the
possible structure of the signal to be recovered [21], whereas
it o
ers few guarantees on the signal recovery accuracy.

Another way to sidestep the o
-grid is to work directly
on the continuous parameter space. An atomic norm mini-
mization approach [23], which yields an in�nite dictionary of
continuous atoms and arbitrarily high coherence, is proposed
to exactly identify the unknown parameters directly. In [24],
the continuous basis pursuit (CBP), which uses a dictionary
with an auxiliary interpolation function to overcome the
o
-grid, is proposed to overcome the limitation of BP.
However, any noise will make the exact results unidenti�able,
and the computational burden and numerical instability are
signi�cant.

In conclusion, there are variable methods to solve the
o
-grid. However, most algorithms provide no performance
guarantees on signal recovery and the performance deterio-
rates signi�cantly when the o
-grid error (OGE) increases.
Furthermore, most approaches cannot be applied to o
-grid
RCI directly, as they are proposed forDOAor spectral estima-
tion applications without considering the speci�c problems
existing in RCI, such as the coupling among the parameters
in 2D/3D imaging. Moreover, the computational complexity
increases signi�cantly in 2D/3D case.

	us, we investigate the o
-grid FH-RCI in this paper
and present an o
-grid imaging approach. 	e main contri-
butions of this paper are as follows.

(a)	e o
-grid e
ect is investigated.	e o
-grid FH-RCI
model is derived and the methodology to analyze the o
-
grid is established.	e relative imaging error (RIE), gridding
error, and signal-error-ratio (SER) are introduced to model
the OGE. 	e gridding error is seriously sensitive to the
OGE and induces the imaging quality to degrade drastically.
Furthermore, the corresponding constrained Cramér-Rao
bound (CCRB) is also derived to analyze the o
-grid e
ect.

(b) A novel sparse recovery approach for o
-grid RCI is
presented.O
-gridRCI is a nonconvex optimization problem
and can be solved by two stages. (1)	e�rst is gridmatching;
that is, the scatterers are captured by the closest grid-cells.	e
band-excluded locally optimized orthogonal matching pur-
suit (BLOOMP) approach [25] is introduced and extended
to 2D version which is operated on range-azimuth space
for RCI. (2) OGE calibration, namely, estimate the OGE
between the actual scatterer location and its closest grid-cell
center. 	e sparse alternating iteration minimization (AIM)
approach is used. Numerical experiments show that the

proposed method realizes the target reconstruction robustly
and achieves both high-resolution and outstanding imaging
quality and is also simple to implement.

	e rest of the paper is organized as follows. Section 2
presents the o
-grid FH-RCI model in the range-azimuth
space. Section 3 investigates the o
-grid e
ects by both
numerical simulations and theoretical derivations. 	en, the
image reconstruction method is proposed in Section 4. In
Section 5, some numerical examples are given to verify
the performance of the presented method. Finally, some
comments and conclusions are shown in Section 6.

A comment on notation: we use boldface lowercase letters
for vectors and boldface uppercase letters for matrices. (⋅)�,(⋅)−1, and (⋅)† denote the transpose, inverse, and pseudoin-
verse of a matrix, respectively. diag(⋅), ⊙, and vec(⋅) are
the diagonalization, Hadamard product, and vectorization
operation, separately. Finally, ‖ ⋅ ‖2 denotes the Euclidean
norm of a vector.

2. Problem Formulation

2.1. Signal Model. RCI can be realized by a multiple-input
multiple-output (MIMO) radar system to transmit time-
independent and group-orthogonal signals [1].	us, the spa-
tial variety of wavefront increases, and the scatterers within
a beam then re�ect di
erent detecting signals according to
their respective locations. So the superresolution within the
beam emerges. Compared with conventional MIMO radar
which focuses on multiple paths or multiple observation
angles, RCI needs the interference of transmitted waveforms
to make the wavefront show spatial �uctuation and increase
the spatial variety of detecting signals. Besides, the com-
ponents of each path are separated utilizing the waveform
orthogonality in conventional MIMO radar, while the com-
ponents are not separated in the whole RCI procedure.

In this paper, a RCI system with �� transmitters and�� receivers is considered; each transmitter emits an inde-
pendent FH waveform. Assume that both transmitters and
receivers are con�gured as a uniform linear array (ULA)
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Figure 1: Geometry of o
-grid RCI.

and the interelement spacings of the transmit and receive
antennas is�� and��, respectively.	e�th transmitter emits
constant modulus FH waveform ��(	). Assuming 
 pulses
comprise a waveform, the signal from the �th transmitter is
[4]

�� (	) = �−1∑
�=0
�� (	 − �) , (1)

where ��(	) = ∑�−1�=0 �	2
��,�Δ��(	 − �Δ	) and

� (	) ≜ {{{
1 0 < 	 < Δ	
0 otherwise, (2)

where �, Δ	, and Δ� denote the pulse repetition interval
(PRI), FH duration, and FH interval, respectively. ��,� ∈{1, . . . , �} is the FH code which speci�es the transmitted
frequency during each hopping interval, where� is a positive
integer.� is the length of the code.	us, the PRI is � = �Δ	.

To ensure the orthogonality of waveforms, for each
hopping interval, the codes are assumed to be constrained to
satisfy [5]

��,� ̸= ��� ,�, for � ̸= ��, ∀�. (3)

��,� can be arranged into an�×� dimensional code matrix
specifying the transmitted frequencies.

Without loss of generality, the target is assumed to consist
of several ideal point scattering centers for an enough high
carrier frequency, which is widely used in the imaging radar
system. Furthermore, there are � scatterers which are widely
separated to provide some performance guarantee.

	e target scene is considered to be a 2D range-azimuth
space as illustrated in Figure 1. RCI discretizes the continuous
target scene and generates a number of grid points, and the
scatterers are assumed to be located at the grid-cell centers.
	us, the scene is discretized with  azimuth bins, ! range
bins, and associated bin sizes Δ � and Δ�. Hence, the number
of grid-cells is " =  !. 	e #th scatterer is located at the
grid-cell center ($�, %�) = ($0+�(�)Δ �, %0+V(�)Δ�), where $0
and %0 are reference values in the respective domains and the
pair (�(�), V(�)) represents the #th grid-cell in the discretized
scene. As the scatterers possess nonzero scattering coe�cient&� which is proportional to the radar cross section (RCS), the
associated &� = 0 means that there is no scatterer at the #th
grid-cell center. Denote by ' = {# ∈ {1, 2, . . . , "} : &� ̸= 0}
the index set of scatterer location.

	e received demodulated baseband echo is a linear
combination of all the scatterers re�ected waveforms from
all the transmitters. Although contributions to the echo only
result from the� scatterers, it is unknown a priori which &� is
nonzero. 	us, we sum over all " possible locations, and the
received baseband signal at the *th receiver can be expressed
as

-� (	) = ��∑
�=1

�−1∑
�=0

�−1∑
�=0
∑
�∈�
&��	2
��,�Δ(�−��−���,�)� (	 − �Δ	 − � − 3��,�) �−	2
�(��+���,�) + 5� (	) , (4)
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where �� is the carrier frequency. 5�, an independent com-
plex Gaussian random process with zero-mean and variance62, denotes the noise at the receiver. 3��,�, de�ned as (5),
is the relative propagation delay corresponding to the �th
transmitter and the *th receiver with respect to the #th grid-
cell center, where � is the speed of wave propagation:

3��,� = 1� (�(�)�,� + �(�)�,�) ,

�(�)�,� = √(%� sin $� + (� − 1) ��)2 + (%� cos $�)2,
�(�)�,� = √(%� sin $� + (* − 1) ��)2 + (%� cos $�)2.

(5)

	en, we sample the received signal with the interval 	�
and obtain; samples. Aer that, stack {-�(1), . . . , -�(;)}�	�=1
and {5�(1), . . . , 5�(;)}�	�=1 into column vectors y and w,
respectively, via the vectorization operation vec(⋅),

A� = vec(��∑
�=1

�−1∑
�=0

�−1∑
�=0
�	2
��,�Δ(��
−��−���,�)� (*	� − �Δ	 − � − 3��,�) �−	2
�(��+���,�))

�	�×1

. (6)

	e column vectorA� is the detecting signal correspond-
ing to the #th grid-cell. 	en, we arrange {A�}��=1 into an��;×" dimensional matrixA = (A1 A2 ⋅ ⋅ ⋅ A�), which
is oen referred to as a dictionarymatrix and de�nes the basis
elements of the sparse representation.

Denote � = [&1, . . . , &�]�; � is an unknown vector to
be recovered. 	en, the measurement model reduces to (7),
which is a familiar linear model used in most applications of
sparse modeling:

y = A� + w. (7)

Hence, the estimation of scattering coe�cients is reduced
to recover the nonzero entries and the support set of the
sparse vectors from themeasurement vector y and dictionary
A.

2.2. O�-Grid RCI Model. 	e imaging equation presented in
(7) is derived under the grid matching condition. However,
in most cases of radar imaging, the scatterers are distributed
in a continuous scene. Regardless of how �nely the imaging
scene is gridded, the scatterers may not lie at the grid-cell
centers; then, the o
-grid problem yields. Considering the
o
-grid, the actual scatterer location of the #th scatterer can
be expressed as

($̑�, %̑�) = ($� + C��Δ �, %� + C��Δ�) , (8)

where {C��, C��} ∈ [−0.5, 0.5] denotes the ratio between the
position perturbation and grid size. 	en, the measurement

model in (7) could be concisely rewritten as y = Ȃ� + w,

where Ȃ is the actual dictionary with respect to the actual
scatterer location.

	e OGE can be compensated by estimating the per-
turbation {C��, C��}. In other words, the o
-grid RCI is a

joint estimation problem to recover {&�, $�, C��, %�, C��}��=1
associated with the nonzero &�. However, the estimation of

{C��, C��} is nonlinear optimization problem which is ana-
lytically intractable. 	en, the �rst-order Taylor expansion is
employed to approximate the model linearly:

�−	2
(�+��,�Δ)�̑��,� ≈ �−	2
(�+��,�Δ)���,� (1
− H2I (�� + ��,�Δ�)
⋅ ( J3��,�J$

KKKKKKKKKK�=�� Δ �C�� +
J3��,�J%

KKKKKKKKKK�=�� Δ�C��)) ,
J3��,�J$

KKKKKKKKKK�=�� =
1� ((� − 1) ���(�)�,� + (* − 1) ���(�)�,� )%� cos $�,

J3��,�J%
KKKKKKKKKK�=�� =

1� (%� + (� − 1) �� sin $��(�)�,�
+ %� + (* − 1) �� sin $��(�)�,� ) .

(9)

De�ne �� = [C�1, . . . , C��]� and �� = [C�1, . . . , C��]�.
	en, the actual dictionary Ȃ could be approximated as a
linear combination of {��, ��}:

Ȃ ≈ A + A� ⋅ diag (��) + A� ⋅ diag (��) , (10)

whereA is the samematrix as in the grid matching scene and
A� and A� are matrixes of size��;×" whose columns are

A��

= vec
{{{
��∑
�=1

�−1∑
�=0

�−1∑
�=0
�	2
(��,�Δ(��
−��)−���)�−	2
(�+��,�Δ)���,�

⋅ � (*	� − �Δ	 − � − 3��,�) ⋅ [[−H2I (�� + ��,�Δ�)

⋅ J3��,�J$
KKKKKKKKKK�=�� Δ �

]
]
}}}�	�×1

,
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A��

= vec
{{{
��∑
�=1

�−1∑
�=0

�−1∑
�=0
�	2
(��,�Δ(��
−��)−���)�−	2
(�+��,�Δ)���,�

⋅ � (*	� − �Δ	 − � − 3��,�) ⋅ [[−H2I (�� + ��,�Δ�)

⋅ J3��,�J%
KKKKKKKKKK�=�� Δ�

]
]
}}}�	�×1

.
(11)

Denote �� = �� ⊙ � and �� = �� ⊙ �. Hence, the
measurement model is also approximated by

y ≈ A� + A��� + A��� + w. (12)

Obviously, �� and �� are also sparse vectors sharing the
same support with �. Hence, (12) means that the imaging
equation can be sparsely approximated using three known
dictionaries {A,A�,A�}. Now, the o
-grid RCI becomes a
joint sparse recovery problem to recover {�,��,��} jointly.
3. Off-Grid Effects

To reconstruct the target, some sparse recovery algorithms
are commonly used. If the targets are located at the grid-
cell centers, the sparsity requirement is satis�ed and sparse
recovery works. However, the o
-grid exists in general. In
this section, the performance of the sparse-based estimation
approaches is analyzed, by both mathematical analysis and
numerical simulations.

3.1.	eO�-Grid E�ect on Imaging Quality. To investigate the
o
-grid, the measurement model in (12) is rewritten as

y = A� + � + w, (13)

where � ≈ (A� ⋅ diag(��) + A� ⋅ diag(��))� and denotes
the gridding error caused by o
-grid. As A is priorly known
due to the prediscretized grids and the gridding error and
noise are unknown, the reconstruction performance of the
conventional sparse-based approaches would be depressed
because the actual scattering-coe�cient vector � is sparse in
the actual dictionary Ȃ.

To illustrate the o
-grid e
ect on the imaging quality,
we make a quantitative analysis for the model in (13). 	e
imaging quality discussed here is �rst indicated by the

RIE, expressed as T = 20 log10(‖�̑ − �‖2/‖�‖2) [3], where
�̑ denotes the reconstructed scattering-coe�cient vector.
	en, the modeling error, composed of gridding error and
external noise, is normalized as the SER, denoted as V =20log10(‖y‖2/(‖�‖2 + ‖w‖2)). Furthermore, the notion OGE

is de�ned as W = ∑��=1 ‖��‖2/� to measure the perturbations,

where �� = (C��, C��)�.
Next, an example is given to show how the OGE a
ects

the imaging quality. Here, we only focus on the gridding

error without external noise.	e scattering-coe�cient vector
is calculated by BP algorithm. 	e radar system consists of
eight transmitters and eight receivers with the interelement
spacings �� = �� = 1m. 	e target space is 4m × 0.04 rad
and discretized to 20 × 20 grid-cells. 	e minimum FH
interval and FH duration are Δ� = 1MHz and Δ	 = 10 ns,
respectively. 	e length of FH codes � = 400 and � = 500
and the maximum frequency is �Δ� = 500MHz. Further,
four point scatterers are presented in Figure 2.

From the example, we could conclude that the sparse
recovery performance and the imaging quality may degrade
considerably in the presence of o
-grid. As shown in Fig-
ure 2(f), the target image is badly blurred beyond recognition
when W = 0.0204. 	e signal energy spills onto the o
-
grid components, and the energy spread renders the signal
not sparse in the dictionary assumed for recovery. 	e target
image in Figure 2(c) is recognizable when W = 0.0136,
which requires V ≥ 1.656 dB. It demonstrates that BP has
low tolerance to the gridding error. A recognizable image
with a small RIE requires a small gridding error or a high
SER. However, as shown in Figure 3(a), the gridding error
is seriously sensitive to the OGE, even when a small OGE
can cause a large gridding error. 	e OGE more than 0.0204
even generates a negative SER, which means the gridding
error almost overwhelms the received signal and creates an
unfavorable condition for sparse recovery.

To realize the target reconstruction and improve the
image quality, it is natural to consider a �ne grid since
the SER increases as the grids are re�ned [25]. However,
two undesired e
ects emerge in this case: (a) the dictionary
becomes increasingly coherent, rendering the sparse recovery
ill-posed and (b) the larger size of the dictionary results in
higher computational cost of reconstruction.

Consequently, the question is presented: “is it possible
to adapt to the highly coherent dictionary based on a �ner
grid to combat the o
-grid, while achieving a robust sparse
reconstruction?” To answer the question, the sparse recovery,
based on the band exclusion (BE) and local optimization
(LO), is discussed in the next section.

3.2. 	e CCRB under O�-Grid. To investigate the o
-grid
e
ect deeply, the sparse recovery could be reformulated as a
parameter estimation problem.	e sparse vector � is viewed
as a deterministic parameter vector, and y represents the
observation data. 	e metric for the recovery performance

is mean square error (MSE), that is, ^{‖� − �̑‖22}, which is a
good way to capture the system performance and commonly
used in radar application. For MSE, its lower bound (i.e.,
CRB) has been well established for parameter vector without
further constraints. Recently, researches on the lower bound
of MSE for constrained parameter vectors (i.e., CCRB),
especially sparse parameter vectors, have been developed
[26, 27]. Hence, we focus on the theoretical CCRB of sparse
estimators in the presence of o
-grid. However, the CCRB is
complex to calculate directly. Fortunately, in the case of sparse
estimation under Gaussian noise, the CCRB is identical to
the MSE of the “oracle” estimator, which is de�ned as the
least squares solution within the true support set [28]; that is,
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Figure 2: RCI results when W = {0, 0.0113, 0.0136, 0.0158, 0.0181, 0.0204}.
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Figure 3: O
-grid e
ects on imaging quality. (a) SER versus OGE. (b) RIE versus SER.

�̑or = argminsupp(�̃)⊆�‖� − �̃‖22. 	us, the goal is changed to

achieve theMSE of the oracle estimator in the presence of o
-
grid. Using the notation introduced above, we have

(�̑or)� = A
†
�y,

(�̑or)�� = 0, (14)

where A� is the dictionary associated with the support set '
and ' is the complement of '. 	e oracle estimator is not a

true estimator as �̑or relies on the knowledge of ' which is
unknown generally.

Considering the o
-grid, the actual measurement model
is shown in (13), and then the reconstructed result is (�)� =
A†�(y − �) theoretically. However, in the mathematical model
of sparse reconstruction procedure, the echo signal is com-

posed as y = A�̑ + w. 	us, we could obtain the result of

oracle estimator (�̑)� = A†�y, as described in (14). 	en, the
MSE of the oracle estimator (i.e., CCRB) in the presence of
o
-grid can be computed directly

CCRB (�) = MSE (�̑ − �) = aaaaaa�̑ − �aaaaaa22 = aaaaaA†��aaaaa22 . (15)

	erefore, we can conclude from (15) that the CCRB
is determined by both the dictionary corresponding to the
support set and the gridding error. Notice that the gridding
error is de�ned as � ≈ (A� ⋅ diag(��) + A� ⋅ diag(��))�;
then, theOGEwould a
ect theCCRBultimately. To show this
e
ect directly, we give a numerical example and show that the
CCRB is roughly proportional to the OGE, which is shown in
Figure 4.

4. Image Reconstruction Approach

Since the SER is roughly inverse proportion to the grid size,
it is possible to improve the sparse recovery performance

by grid re�nement. However, it is still not an advisable
approach, as a denser grid may lead to higher computational
cost and dramatically enhance the mutual coherence among
the nearby columns of the dictionary which causes the
violation of restricted isometry property (RIP) condition
for reliable sparse recovery. In this section, the BLOOMP
algorithm [25], which embeds BE and LO into OMP, is
extended to 2D version and then applied to o
-grid RCI.	is
modi�ed algorithm alleviates the o
-grid e
ect and realizes
the gridmatchingwhichmeans that the o
-grid scatterers are
captured by the closest grid-cell centers. Next, following the
grid matching stage, the OGE is calibrated precisely by the
AIM algorithm.

4.1. Grid Matching Based on 2D BLOOMP. To ensure the
sparse reconstruction performance, all the columns within
A should be orthogonal. First, de�ne the coherence measure
of the dictionary A as b(A) = max� ̸=lb(#, ), where b(#, ) =|⟨A�,A�⟩|/|A�||A�|, andA� andA� denote the columns ofA. If
two columns are highly coherent, that is, b(A) ≈ 1, it is nearly
impossible to distinguish whether the signal comes from one
or the other.

As shown in Figure 2, the o
-grid scatterer will spill
nonzero values into all grid-cells. Besides, in the case of a
denser grid, the increasing coherence of dictionary makes
it hard to ensure the sparse reconstruction. To alleviate the
problem, the BE is introduced.

Firstly, de�ne the notion coherence band as [25]

e" (#) = {g | b (g, #) > i} ,
e" (') = ⋃

�∈�
e" (#) , (16)

where e"(#) and e"(') are the set of the i-coherence band
of the index # and set ', respectively. Due to the symmetry
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b(g, #) = b(#, g),∀g, #, g ∈ e"(#) if and only if # ∈ e"(g). Denote
the secondary coherence band as

e(2)" (#) ≡ e" (e" (#)) = ⋃
	∈#�(�)

e" (H) ,
e(2)" (') ≡ e" (e" (')) = ⋃

�∈�
e(2)" (#) .

(17)

If the scatterers are beyond each other’s coherence band,
it is possible to localize the scatterers within their respective
coherence bands, no matter how large the mutual coherence
is. If the scatterers are su�ciently separated with respect
to the coherence band, the support can be approximately
reconstructed. BE takes advantage of the prior information

of widely separated scatterers and can be easily embedded in
the greedy algorithm, that is, OMP.

To embed BE into OMP, the matching step is changed as

gmax = arg min
$

KKKKK⟨n�−1,A$⟩KKKKK ,
g ∈ {# = �(�) + V(�) | �(�) ∉ e(2)" ('�−1� ) , V(�) ∉ e(2)"	 ('�−1� )} , (18)

where (�(�), V(�)) represents the #th grid in the discretized
scene. i� and i� are the mutual coherence thresholds for

azimuth and range, respectively. e(2)" ('�−1� ) = ⋃�∈��−1 e(2)" (#),
where '�−1� denotes the azimuth support set in the previous(* − 1)th iteration and e(2)" ('�−1� ) is de�ned likewise. 	us,

in the current search, the double i-band of the estimated
support in the previous iteration is avoided on the azimuth
and range spaces synchronously.

If the elements of the support set are su�ciently sepa-
rated and the dynamic range is small, the demand for the
incoherence of dictionary is degraded, and the regular grid
could be denser. 	us, the o
-grid e
ect is alleviated to
a certain extent. Since dynamic range of scatterers is an
essential factor determining the performance of recovery, the
sensitivity to dynamic range can be drastically reduced by the
LO approach.

LO is a residual-reduction technique applied to the

current support set '�, where the residual ‖A�̑ − y‖2 is
minimized by varying one location at one timewhile all other

locations are �xed. In each step, the support of �̑ di
ers from'� by at most one index in the coherence band of '�, but its
amplitude is chosen to minimize the residual by solving the
least squares problem.

For the LO step, the search is also operated on the azimuth
dimension and range dimension, respectively. In the *th
iteration, the support is updated as

'� = supp (��) , where �� = arg min
�̑

aaaaaaA�̑ − y
aaaaaa2

s.t. supp (�̑)
= {# = �(�) + V(�) | �(�) = ('�−1� \ {g�}) ∪ {H�} , H� ∈ e" ({g�}) , V(�) = ('�−1� \ {g�}) ∪ {H�} , H� ∈ e"	 ({g�})} .

(19)

Finally, the 2D BLOOMP algorithm, which realizes the
grid matching by imbedding BE and LO into OMP, is
described in Algorithm 1.

For the 2D BLOOMP, the two critical parameters, that is,
the radius of excluded band in BE and radius of searching
band in LO, should be con�rmed �rst.

As assumed above, the scatterers should be well sepa-
rated more than the resolution limit (RL), to con�rm that
the target image is well reconstructed. 	e RL is closely

related to the decay property of the mutual coherence b(A)
in the sparse setting. Accordingly, the coherence band can be
obtained aer b(A) is calculated.	e radius of excluded band
should be larger than the coherence band.	e spacing among
the scatterers should be more than two times the radius of
excluded band, or the scatterers would be badly separated.
As the local search grid varies through the resolution cell,
the radius of LO should be also larger than the coherence
band.
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Input: A, y, i�, i�
Initialization: �0 = 0, r0 = y and '0 = ⌀
Iteration: For * = 1, . . . , �
(1) gmax = argmin$|⟨n�−1,A$⟩|, g ∈ {# = �(�) + V(�) | �(�) ∉ e(2)" ('�−1� ), V(�) ∉ e(2)" ('�−1� )}
(2) '� = supp(��), where �� = argmin�̑‖A�̑ − y‖2, s.t. supp(�̑) = {# = �(�) + V(�)},�(�) = ('�−1� \ {g�}) ∪ {H�}, H� ∈ e" ({g�}) and V(�) = ('�−1� \ {g�}) ∪ {H�}, H� ∈ e"	({g�})
(3) �� = argmin�̑‖A�̑ − y‖2, s.t. supp(�̑) ∈ '�
(4) r� = y − A��

Output: ��

Algorithm 1: 2D BLOOMP algorithm.

Input: A, A�, A�, y, gmax, '
Output: (�̑�)�, (�̑�)�, (�̑)�
Initialization: (�̑)(0)� , (�̑�)(0)� = 0 and (�̑�)(0)� = 0, where (�̑)(0)� is achieved at the grid matching stage.

Iteration: For g = 0 to gmax

(1) (�̑)($)� = argmin ‖(A� + (A�)� ⋅ diag((�̑�)($)� ) + (A�)� ⋅ diag((�̑�)($)� ))� − y‖22, update (�̑)�
(2) (�̑�)($)� = argmin ‖(A� + (A�)� ⋅ diag((�̑�)�) + (A�)� ⋅ diag((�̑�)($)� ))� − y‖22, s.t. |�̑�| < 0.5, update (�̑)�
(3) (�̑�)($)� = argmin ‖(A� + (A�)� ⋅ diag((�̑�)($)� ) + (A�)� ⋅ diag((�̑�))�)� − y‖22, s.t. |�̑�| < 0.5, update (Ȓ)�
(4) (�̑)($)� = (�̑)($−1)� + (�̑�)($)� ; (Ȓ)($)� = (Ȓ)($−1)� + (�̑�)($)�

end

Algorithm 2: AIM algorithm.

Even if the performance of 2D BLOOMP is improved
signi�cantly, the performance guarantee is hard to prove
theoretically. In general, 2D BLOOMP enhances the success
probability of recovery and is robust to noise and dynamic
range.

4.2.OGECalibration. 	e2DBLOOMPalgorithmpresented
as Algorithm 1 could alleviate the o
-grid and realize the grid
matching in the case of a denser grid. 	e rough image of
the target is achieved and associated with the actual image in
the absence of o
-grid. However, the reconstructed image is
not the same as the actual image when o
-grid exists, as the
location perturbation {C��, C��} is not calibrated. 	erefore,
the OGE calibration should be executed.

In this part, the o
-grid is compensated by creating the
dictionary iteratively, with both azimuth and range varying
at each iteration. 	is allows us to create the dictionary
with varying mismatch iteratively using previous computed
dictionary.

Remark. When &� = 0 for certain #, C�� and C�� can take any
value without any contributions to the observation vector y,
so recovering such C�� and C�� is unnecessary. 	us, only the
entries of C�� and C�� related to nonzero entries of �, denoted
as (��)� and (��)�, are recovered, respectively.

In this stage, for the grids which are achieved by 2D
BLOOMP and close to the scatterers, alternating iterations

are run to �nd the actual scatterers within the corresponding
grid-cells. Here, the idea is to �nd (��, ��) that minimizes the

residual ‖Ȃ�̑ − y‖2. 	is is achieved by iteratively calculating
the dictionary at the current location, starting from the
current grid-cell center, and estimating ((��)�, (��)�). 	e
iterations can be terminated if the residual is smaller than a
predetermined threshold. In the proposedmethod, themodel
data corresponding to the �nal locations are generated, and
the residual is calculated by projecting the measurements to
the span of model data.	is procedure provides a better �t to
the measurements by decreasing the gridding error.

Notice. To reduce computation complexity, the range and
azimuth locations are estimated separately. Furthermore,
the scattering-coe�cient vector � is also updated at each
iteration.

Consequently, the OGE calibration method, called AIM
algorithm, is proposed in Algorithm 2.

5. Discussion and Numerical Analysis

In this section, the performance of the proposed method is
analyzed for o
-grid FH-RCI.

An X-band RCI radar system with carrier frequency of
10GHz is considered. Both the transmitters and receivers are
con�gured as ULAs with the numbers of elements �� =�� = 8 and interelement spacings �� = �� = 1m. 	e
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Figure 5: 	e PSF of point (0.02 rad, 2m); (b) is the top view of (a).

minimum FH interval is Δ� = 1MHz and the maximum
frequency is 500MHz. And the waveforms are comprised
by � = 400 hopping frequencies with the FH durationΔ	 = 10 ns. A 2D range-azimuth target space, covering 4m ×
0.04 rad, is discretized to 20 × 20 grid-cells, each of which
is 0.2m × 0.002 rad. Further, there are supposed to be four
widely separated point scatterers which are randomly located
within the grid-cells.

5.1. Veri�cation of 2D BLOOMP. In this part, we verify
the performance of 2D BLOOMP by numerical simula-
tions. Besides 2D BLOOMP, other typical algorithms will be
involved, that is, Matched Filter (MF), OMP, Basis Pursuit
Denoising (BPDN), S-TLS [20], and CP [3].

At �rst, the OGE is assumed to be W = 0.2546 and the
external noise is �xed at SNR = 20 dB. 	e coarse grid is
re�ned by 5 times. Before the numerical experiments, the
radii of BE and LO should be con�rmed �rst. As the analytical
expression of b(A) is di�cult to calculate, the point spread
function (PSF) is simulated to investigate the pairwise coher-
ence between one grid-cell center and others. As shown in
Figure 5, the PSF of location (0.02 rad, 2m) presents amarked
peak and the side lobe could be ignored; thus, the resolution
performance of FH waveforms is excellent comparing with
other waveforms, that is, LFM waveforms. According to the
main lobe of PSF in Figure 5(b), the resolution cell is about0.6m × 0.0064 rad. 	e radii of excluded band in BE and
searching band in LO could be set up as n1 = 8 and n2 = 10,
respectively, according to the aforementioned method.

Figure 6 shows the target images reconstructed by the
six algorithms, where the white circles represent the actual
location of scatterers. As presented in the �gure, the target
images by MF and BPDN nearly fail and the energy spills
over the target space, because of the o
-grid. Compar-
ing with Figures 6(a) and 6(c), the image quality shown
in Figures 6(b), 6(d), and 6(e) is improved signi�cantly,
mainly as the prior knowledge of sparsity is utilized and

the corresponding algorithms are stable to o
-grid to some
extent. However, there are several “illusive” scatterers around
the true scatterers, which will lead to failure in picking
up the scatterers without other prior knowledge (i.e., the
number and scattering coe�cient of scatterers). In contrast,
for Figure 6(f), the image quality is the best among Figure 6,
the scatterers are located more precisely, and the “illusive”
scatterers are not quite signi�cant. Consequently, comparing
with other algorithms tested above, 2D BLOOMP shows the
best performance.

5.2. Performance Experiments of 2D BLOOMP. In this sub-
section, the performance of 2D BLOOMP is investigated
by numerical experiments and comparing with other algo-
rithms. 	e performance is evaluated by RIE with respect to
SNR and OGE, as they are clearly essential factors determin-
ing the reconstruction performance.

Figure 7(a) shows the RIEwith respect to the SNR varying
from 0 dB to 40 dB.	e RIE is averaged over 50 trials. In each

trial, the OGE is �xed at a small value W = 1.4 × 10−4; thus,
the SER is dominated mainly by the external noise, not the
gridding error.

As shown in Figure 7(a), MF is robust to noise for
the RIE remains nearly unchanged, while other algorithms
are sensitive to noise and the image quality is improved
signi�cantly as SNR increases. 2D BLOOMP performs the
best among the listed algorithms when SNR is smaller than
16 dB. However, the RIE does not decrease for SNR of over
16 dB, while other algorithms, especially S-TLS and BPDN,
continue to improve the quality because they can cope with
perturbations present in both the received signal and the
dictionary. As there exists external noise, the RIE could not
be arbitrarily low.

	en, it seems that the presented 2D BLOOMP does
not perform much better than other algorithms. However,
the algorithm is operated in the re�nement grid, which
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Figure 6: O
-grid RCI results. (a) MF, (b) OMP, (c) BPDN, (d) S-TLS, (e) CP, and (f) 2D BLOOMP.
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Figure 7: Results of performance experiments. (a) RIE versus SNR in the presence of o
-grid. (b) RIE versus OGE (W = 0∼0.059). (c) RIE
versus OGE (W = 0.566∼0.625).

still performs well and localizes the scatterers precisely.
While for OMP, BPDN, S-TLS, and CP, the performance will
degrade rapidly when the target scene is re�ned and the OGE
increases, as shown in Figure 8.

Another performance criterion is the RIE under di
erent
OGEs. Figures 7(b) and 7(c) present the corresponding
results where the RIE increases rapidly with OGE, which
means that the image quality is worse. When OGE is larger
than 0.02, RIE is over 0 dB indicating that the imaging error‖�̑ − �‖2 almost overwhelms ‖�‖2; thus, the o
-grid e
ect
emerges. Interestingly, the RIE remains unchanged at 0 dB
for BPDN; the reason is expressed by Figure 6(c): the energy
spills all over the target space and the amplitudes are slight.
	e phenomenon can explain the o
-grid e
ect to some

extent. 2D BLOOMP, whose performance is the same as
OMP, does not show the advantage over other algorithms
except MF, because the OGE is small and the scatterers are
distributed within the re�ned grid-cells. However, when the
OGE increases beyond the re�ned grid-cells, the advantage
of 2D BLOOMP emerges, as shown in Figure 7(c). For other
algorithms, the RIEs maintain a high level when the OGE
increases, while the RIE for 2DBLOOMPbecomes small.	e
reason is that theOGE increases and the scatterers are located
within the coarse grid-cells; the gridding error also increases.
However, 2D BLOOMP is operated in the re�nement grid
during the increasing process; the scatterers may be beyond
the re�ned grid-cells but captured by other grid-cells. Fur-
thermore, the SER increases aer the grids are re�ned.



International Journal of Antennas and Propagation 13

0 0.02 0.03 0.040.01

Azimuth (rad)

0

0.5

1

1.5

2

2.5

3

3.5

4
R

an
ge

 (
m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

0 0.02 0.03 0.040.01

Azimuth (rad)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

ge
 (

m
)

0.1

0.2

0.3

0.4

0.5

(b)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.01 0.02 0.03 0.040

Azimuth (rad)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

ge
 (

m
)

(c)

0 0.02 0.03 0.040.01

Azimuth (rad)

0.1

0.2

0.3

0.4

0.5

0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

ge
 (

m
)

(d)

0 0.02 0.03 0.040.01

Azimuth (rad)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

ge
 (

m
)

0.1

0.2

0.3

0.4

0.5

(e)

0 0.02 0.03 0.040.01

Azimuth (rad)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

ge
 (

m
)

0.8

0.6

0.4

0.2

0

(f)

Figure 8: RCI results when W = 0.61. (a) MF, (b) OMP, (c) BPDN, (d) S-TLS, (e) CP, and (f) 2D BLOOMP.
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Figure 9: O
-grid RCI results. (a) Reconstructed image by OMP. (b) Reconstructed image by 2D BLOOMP. (c) Result of AIM algorithm.
(d) Top view of (c).

Figure 8 shows the reconstructed target image whenOGE
is 0.61 in the coarse grid. As shown in Figures 6 and 8,
MF is robust to o
-grid while the resolution degrades. 	e
target images reconstructed by OMP, BPDN, S-TLS, and CP
become worse because of the signi�cant o
-grid, while 2D
BLOOMP performs the best among the listed algorithms, as
the reconstructed target image is better. However, another
problem is raised: “the reason why the performance of 2D
BLOOMP is excellent is the grid re�nement?” 	is is partly
true. Precisely speaking, the presented algorithm could real-
ize the sparse recovery in the re�nement grid and overcome
the e
ect of coherent dictionary. Moreover, the computation
complexity does not increase signi�cantly. CP, BPDN, and
S-TLS are time-consuming as the dimension increases with
the grid re�nement and the performance is not guaranteed.
	e greedy algorithm, that is, OMP, tends to be much faster
than BPDN. However, the coherence of dictionary may not

satisfy the requirement due to the grid re�nement. 	us, the
reconstructed result of OMPmay deteriorate signi�cantly, as
Figure 9(a) shows.

5.3. Performance of OGECalibration Algorithm. 	enumeri-
cal experiments show that the gridmatching could be realized
by the tested algorithms and the scatterers are captured by
the nearby grid-cell centers. However, the OGEs are not
calibrated, so the imaging performance can be improved
further. In Section 4, AIM algorithm is introduced to itera-
tively calculate the range, azimuth, and scattering-coe�cient
vector separately. 	en, the algorithm is tested to show that
the target image is precisely reconstructed based on the grid
matching algorithm.

In the simulation, the target space is changed to 0.5m ×
0.05 rad, and other parameters keep unchanged, comparing
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with the parameter set presented above. 	us, the range grid
is much �ner than the target space of 4m × 0.04 rad, which
will show the performance advantage of BLOOMP more
signi�cantly. 	e OGEs are uniformly distributed within the
grid-cell in the re�nement grid; that is, C�� and C�� are i.i.d.
uniform random variables in [−0.5, 0.5].

Figures 9(a) and 7(b) are the target images reconstructed
by OMP and 2D BLOOMP directly in the re�nement grids,
where the white circles represent the reconstructed scatterers.
	e actual target scene is shown in Figure 9(d). As shown by
the comparison of Figures 9(a) and 9(b), OMP fails in target
imaging, while 2D BLOOMP still performs well. We then
highlight that the advantage of the presented algorithm is not
merely based on the grid re�nement. 	e AIM calibration
result is presented in Figures 9(c) and 9(d), where the
locations and amplitudes of scatterers are estimated exactly.
Moreover, during the experiments, the convergence behav-
ior of AIM algorithm performs well. 	e relative residual,

de�ned as ‖Ȃ�̑ − y‖2/‖w‖2, reduces rapidly and changes
slightly aer about merely 9 iterations. In conclusion, the
AIM algorithm could converge fast and calibrate the OGE
precisely.

6. Conclusion

	is paper investigates the high-resolution o
-grid RCI using
FH waveforms. 	e o
-grid FH-RCI model is set up in the
range-azimuth space �rst.	en, we analyze the o
-grid e
ect
on the image quality and conclude that the image quality
deteriorates signi�cantly. Furthermore, the CCRB under o
-
grid is derived based on the MSE of oracle estimator. For o
-
grid target reconstruction, the process is composed of two
stages: grid matching stage and OGE calibration stage, where
2DBLOOMPandAIMalgorithms are proposed, respectively.
Unlike traditional sparse recovery methods, 2D BLOOMP
realizes the recovery in the re�nement grids by overwhelming
the e
ect of coherent dictionary and is robust to noise and o
-
grid. AIM calibration algorithm adaptively adjusts the OGEs
andmeanwhile seeks the optimal target reconstruction result.
Numerical simulations illustrate the validity of the method,
which shows the potential for the method to be applied in
practical radar systems.

Although only FH-RCI is considered, the framework in
this paper can be extended to other imaging radar systems,
such as MIMO radar imaging and passive radar imaging.
However, the scatterers are assumed to be widely separated to
guarantee the imaging in the proposed method, which limits
the resolution. Another problem is that some information
(i.e., the number of scatterers) should be priorly obtained to
improve the performance signi�cantly. Moreover, the imag-
ing results di
er for di
erent FH codes; thus, the waveform
design is a critical issue which will be investigated in the
near future. At last, in the o
-grid model formulation, the
scatterers andOGEs are jointly sparse and share the common
support. Inspired by recent works on block and structured
sparsity, our future work is to fully explore the joint sparsity
to improve the reconstruction performance.
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