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Abstract: As the real electromagnetic environment grows complex and the quantity of radar

signals turns massive, traditional methods, which require a large amount of prior knowledge,

are time-consuming and ineffective for radar emitter signal recognition. In recent years, convolutional

neural network (CNN) has shown its superiority in recognition so that experts have applied it

in radar signal recognition. However, in the field of radar emitter signal recognition, the data are

usually one-dimensional (1-D), which takes more time and storage space than by using the original

two-dimensional CNN model directly. Moreover, the features extracted from convolutional layers are

redundant so that the recognition accuracy is low. In order to solve these problems, this paper proposes

a novel one-dimensional convolutional neural network with an attention mechanism (CNN-1D-AM)

to extract more discriminative features and recognize the radar emitter signals. In this method, features

of the given 1-D signal sequences are extracted directly by the 1-D convolutional layers and are

weighted in accordance with their importance to recognition by the attention unit. The experiments

based on seven different radar emitter signals indicate that the proposed CNN-1D-AM has the

advantages of high accuracy and superior performance in radar emitter signal recognition.

Keywords: radar emitter signal recognition; one-dimensional convolutional neural network;

attention mechanism

1. Introduction

Radar emitter signal recognition is a technology used to obtain information about radar systems

by intercepting and analyzing their signals. The features of radar signals are always extracted manually

based on traditional methods. Much research has been done on feature extraction. Bouchou et al. [1]

calculated eight key features, including higher-order cumulants (HOC), and used stacked sparse

autoencoder (SSAE) to recognize seven different digital modulation signals. Park et al. [2] used wavelet

features and support vector machines (SVM) to recognize eight different digital modulation signals.

However, as the real electromagnetic environment grows complex and the quantity of radar signals

turns massive, the performance of traditional methods, which require a great deal of prior knowledge

and time, is poor when the radar emitter signals are on low signal-to-noise ratio (SNR).

It is expected to develop a generic and effective method that can automatically extract features

from radar signals. Deep learning [3] has attracted great attention in the field of artificial intelligence,

and convolutional neural network (CNN) [4,5] performs well in recognition. A large amount of research

on radar emitter signal recognition has been carried out using CNN. Qu et al. [6] trained a CNN

model and deep Q-learning network, which use time-frequency images extracted by Cohen class
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time-frequency distribution as the input. Shao et al. [7] proposed a deep fusion method based on

CNN, which provides competitive results in terms of classification accuracy. Wang et al. [8] combined

the time-frequency maps and instantaneous autocorrelation maps of radar signals and used the joint

feature maps as the input of CNN, which overcomes the weakness of a single feature map for the

classification. Liu et al. [9] proposed an algorithm of radar emitter signal recognition, which uses the

time-frequency images as the input of CNN. Cain et al. [10] combined radar frequency, pulse width and

pulse repetition interval and used CNN for individual radar identification. Xiao et al. [11] proposed

a method based on CNN, which uses the frequency features of automatic dependent surveillance

broadcast (ADS-B) signal. Akyon et al. [12] classify the intra-pulse modulation of radar signals based

on feature fusion and CNN.

However, in the field of radar emitter signal recognition, most of the sampled radar signals are

one-dimensional (1-D) time-domain sequences. If we use the original two-dimensional (2-D) CNN

models directly, it will take more time and storage space to transfer the sequences from 1-D form to 2-D

form. Moreover, the dimensional transformation will result in poor real-time performance when the 2-D

CNN models are used in practical applications. Although CNN models focus on global information and

are able to extract features, the weights of the features are not the same, which means that the redundant

and useless features can make recognition accuracy suppressed. Considering these limitations, this

paper proposes a novel one-dimensional convolutional neural network with an attention mechanism

(CNN-1D-AM) to extract features directly from original radar signals sequence in the time domain and

focus on the key information of extracted features for radar emitter signal recognition.

The contribution of this paper can be concluded as follows:

(1) The 1-D convolutional layers can directly extract the feature from the time-domain sequences

of radar signals. Moreover, compared with 2-D structure, 1-D convolutional layers save time in the

dimensional transformation of radar signals, which makes the model better real-time performance in

practical applications.

(2) A unit that employs an attention mechanism [13,14] is added to automatically weight the

feature maps given by 1-D convolutional layers so that the important features can obtain more weights

and the features which have negative impacts on recognition can be inhibited. The experimental results

show that the proposed CNN-1D-AM can achieve high accuracy and has superior performance in

radar emitter signal recognition.

This paper is organized as follows: In Section 2, the proposed CNN-1D-AM, which uses 1-D

convolution and an attention mechanism, is introduced in detail. The experiments and discussions

of the proposed methods and other compared methods are shown in Section 3. The conclusion is

presented in Section 4.

2. One-Dimensional Convolutional Neural Network with Attention Mechanism (CNN-1D-AM)

2.1. One-Dimensional Convolution

CNN are usually designed to process 2-D data, especially images. As radar emitter signals are

mainly in 1-D form and dimensional transformation is time-consuming, this paper proposed 1-D

convolutional layers for feature extraction. The 1-D convolutional layers decrease the number of

parameters compared with traditional 2-D convolutional layers. Moreover, the 1-D signals in the time

domain are no longer converted into 2-D feature maps, which saves time and storage space.

Given the 1-D signal sequences {xi}Ni=1 where xi is the ith sample and N is the number of sequences.

Assume that there are K filters in the first 1-D convolutional layer and L is the length of one signal

sequence, which is the same as the input shape of the layer. Then the output of the filter in 1-D

convolutional layer can be written as follows:

yk
i = f

(
wk ∗ xi + bk

)
(1)
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where yk
i

denotes the output of the kth filter, f (·) is the activation function, wk and bk are the weight

and bias of the kth filter, and ‘∗’ means convolution computation. When padding the edge of output

result with zero, the output of 1-D convolutional layer can be written as Y ∈ RL×K.

Similar to 2-D CNN, a pooling layer is connected after the convolutional layers in 1-D CNN.

The output of 1-D pooling layer can be written as Ỹ ∈ R
L
r ×K, where r is the rate of downsampling.

A typical structure of CNN can be written as follows:

xi→ Y1 → Ỹ1 → Y2 →

Ỹ2→ . . .→ Yi → Ỹi → . . .
(2)

where Yi denotes the output matrix of the ith convolutional layer and Ỹi is the output matrix of the ith
pooling layer.

2.2. Attention Unit

In recent years, Woo et al. [15] proposed the convolutional block attention module (CBAM) in

a 2-D CNN. CBAM has proven that the order of the channel attention first and the spatial attention later

performs better. This paper proposes the one-dimensional attention unit (AU-1D), which is similar to

the order of the original CBAM. The AU-1D is added between the last pooling layer and the first full

connection layer, where the unit helps to capture the essential features and suppress the less important

information. The structure of the proposed AU-1D is shown in Figure 1.
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Figure 1. The structure of a one-dimensional attention unit (AU-1D).

Given a feature map Fin ∈ RW×C, where W is the length of the map, and C is the number of

channels. AU-1D first extracts the channel features by two ways of pooling. The max-pooling function

and average-pooling function in the channel domain can be written as follows:

c1 = MaxPool(Fin)= max(Fin(1 ≤ i ≤W, C)) (3)
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c2 = AveragePool(Fin)=
1

W

W∑

i

Fin(i, C) (4)

where c1 ∈ R1×C and c2 ∈ R1×C are two different vectors calculated by different ways of pooling.

Then, a multilayer perceptron (MLP) is used to extract features from c1 and c2 further. By activating

the vector which is merged by two output feature vectors from MLP, the map of channel attention

Out_c ∈ R1×C is produced. This process is shown as follows:

Out_c = Activate(MLP(c1) + MLP(c2)) (5)

The map of channel attention can be considered as a feature detector [16]. It refers to the weight

for each channel in the feature map. Different convolutional kernels extract different information in the

channel domain. The map of channel attention refers to the weight of each channel. The more useful

information the channel brings, the more weight the channel obtains.

Then, the middle-regained feature map Fmid is obtained through the process of multiplying Out_c

and the original feature map Fin. This process is shown as follows:

Fmid = Fin ⊗Out_c= Fin ⊗ σ(WMLP(c1) + WMLP(c2)) (6)

where ⊗ stands for multiply computation, σ denotes the sigmoid function, WMLP denotes the

weights of MLP.

In spatial feature extraction, there are two ways of pooling whose pooling-axes [17] are different

from that in channel feature extraction. The max-pooling function and average-pooling function in the

spatial domain can be written as follows:

s1 = MaxPool(Fmid)= max(Fmid(W, 1 ≤ j ≤ C)) (7)

s2 = AveragePool(Fmid)=
1

C

C∑

j

Fmid(W, j) (8)

where s1 ∈ RW×1 and s2 ∈ RW×1 are two different vectors calculated by different ways of pooling.

s1 and s2 are concatenated into a fusion vector s ∈ RW×2. The Conv1d unit extracted information from

s. By activating the output of the Conv1d unit, the map of spatial attention Out_s ∈ RW×2 is produced.

This process is shown as follows:

s = [s1; s2] (9)

Out_s = Activate(conv1d(s)) (10)

where conv1d(·) is the computation of 1-D convolution.

The map of spatial attention reflects the importance of features in different areas. Not all areas in

the feature map are equally important to the recognition, but the areas which are relevant to the task of

recognition should be concerned more.

Finally, the regained feature map Fout is obtained through the process of multiplying Out_s and

the original feature map Fmid. This process is written as follows:

Fout = Fmid ⊗Out_s= Fmid ⊗ σ(Wconv1d([s1; s2])) (11)

where Wconv1d denotes the weights of convolutional layers.

Through the AU-1D, the feature maps extracted from the 1-D convolutional layers will be weighted.

The most useful information in the feature maps weights higher, and the useless information will be

suppressed. In this way, the network can extract more effective features and improve the performance

of recognition.
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2.3. CNN-1D-AM

According to the analysis of the 1-D convolution and attention unit, the structure of the CNN-1D

model with attention mechanism (CNN-1D-AM), this paper proposed is shown in Figure 2.

 

Input Conv1d Unit Conv1d Unit Conv1d Unit Conv1d Unit

Dense UnitOutput AU-1D
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in time domian
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Figure 2. The structure of one-dimensional convolutional neural network with an attention mechanism

(CNN-1D-AM).

In Figure 2, ‘Input’ is the layer, which uses the sequence of radar emitter signals in the time domain.

‘Output’ is the layer with a certain number of neurons, which refers to the number of signal types.

‘Conv1d Unit’ contains one convolutional layer, one max-pooling layer and one batch-normalization

layer. The size of the convolutional kernels is 33 in four ‘Conv1d Units,’ and the number of filters is 32,

64, 128, 256 in turns. ‘Dense Unit’ contains one full connection layer.

To reduce the influence of different amplitudes on recognition, the amplitude normalization

for the original data is needed. The original data are the radar emitter signals in the time domain.

The expression of amplitude normalization is shown as follows:

d(i, j) =
r(i, 1 ≤ j ≤ H)

max(abs(r(i, 1 ≤ j ≤ H)))
, 1 ≤ i ≤ N (12)

where r ∈ RN×H are the original data sequences in the time domain, d ∈ RN×H are the normalized

data sequences in the time domain, N is the number of samples, and H is the length of each sample.

The result of amplitude normalization is the input of the CNN-1D-AM model for recognition.

The activation function in the last layer is the ‘SoftMax’ function so that the probability for

each type of signal in recognition can be obtained. The final probability for each type of signals is

shown as follows:

ŷi = P(y = i|out) =
eouti

∑T
i=1 eouti

(13)

where ŷ = [ŷ1, ŷ2, . . . , ŷT], outi = [out1, out2, . . . , outT]. ŷi refers to the probability that the input data are

recognized as class i. outi is the output of the ith neuron in the final output layer, which contains T neurons

in total. The category corresponding to the maximum ŷ is the classification result of CNN-1D-AM.

The cross-entropy (CE) function is selected as the cost function. The CE function is written

as follows:

L(θ) = −
T∑

i=1

yi ln(ŷi)= −
T∑

i=1

yi ln(g
(
θ, x)i

)
(14)

where y is the one-hot coded result of data label, g(θ, x) denotes the output of CNN-1D-AM with x as

the input, θ is the weights of the model, L(θ) is the result of the CE function.

Adaptive moment estimation (ADAM) [18] is chosen as the optimization algorithm. According to

(14), this algorithm can be written as follows:

g← ∇θL(θ) (15)

m← β1m + (1− β1)g (16)

v← β2v + (1− β2)g2 (17)

m← m/
(
1− βT

1

)
(18)
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θ← θ− α ·m/
(√

v + ε
)

(19)

where g is the gradient of L(θ) by its gradient operator ∇θ, m and v are the moment vectors with

0 as their initial value, β1 and β2 are constants, usually set to 0.9 and 0.999, α is the learning rate,

ε is a smoothing parameter, typically set to 10−8.

3. Experiments and Discussions

The experiment platform parameters for algorithm implementation are shown in Table 1.

Table 1. Experiment platform parameters.

Project Parameter

CPU Intel Silver 4110

GPU P400 + P40

RAM 64 GB

System Version Centos 7

Simulation Software MATLAB2020a, Python3.7, Keras 2.2.4

3.1. Dataset

Seven different varieties of radar emitter signals were used to validate the effectiveness of

the proposed algorithm, namely, continuous wave (CW), linear frequency wave (LFM), nonlinear

frequency wave (NLFM), binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK),

binary frequency shift keying (BFSK) and quadrature frequency shift keying (QFSK). These seven

different types of modulation are commonly used in radar systems. The specific parameters of the

signals are shown in Table 2. The carrier frequency and frequency bandwidth change within a certain

range, which meets the changing characteristics of the electromagnetic environment.

Table 2. Specific parameters of seven types of radar emitter signals.

Signal Type Carrier Frequency Parameter

CW 200 MHz~220 MHz None

LFM 200 MHz~220 MHz Frequency bandwidth: 50 MHz to 60 MHz

NLFM 200 MHz~220 MHz
Frequency of modulation signal
ranges from 10 MHz to 12 MHz

BPSK 200 MHz~220 MHz
13-bit Barker code

Width of each symbol is 0.038 us

QPSK 200 MHz~220 MHz
16-bit Frank code

Width of each symbol is 0.03 us

BFSK
200 MHz~220 MHz
300 MHz~320 MHz

13-bit Barker code
Width of each symbol is 0.038 us

QFSK

100 MHz~110 MHz
150 MHz~160 MHz
200 MHz~210 MHz
250 MHz~260 MHz

16-bit Frank code
Width of each symbol is 0.03 us

Note 1: The pulse width for each type signal is 0.5 us; Note 2: Sampling frequency is 2 GHz.

The datasets in the experiment were produced like this:

(1) First, we generated seven types of radar emitter signals with different values of SNR. The type

of noise was Gaussian white noise, and the passband ranged from 90 MHz to 340 MHz. The SNR for

each type of signal ranged from −10 dB to 0 dB with 1 dB step, totaling 11 values. The number of

samples for each type of signal with each value of SNR was 7000.
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(2) Second, we divided the samples into three different datasets. As (1) shows, 7000 samples for

each type of signal with each value of SNR were divided into training dataset with 1600 samples,

validation dataset with 400 samples and testing dataset with 5000 samples.

(3) Third, we made the final datasets. The final training dataset with 123,200 samples, the final

validation dataset with 30,800 samples and the final testing dataset with 385,000 samples were combined

by the datasets in (2).

3.2. Experiments of CNN-1D-AM

The model CNN-1D-AM was trained based on the preprocessed data in Section 3.1. The number

of parameters and training time per epoch for CNN-1D-AM is shown in Table 3.

Table 3. Quantity of parameters and training time per epoch for CNN-1D-AM.

Model CNN-1D-AM

Quantity of parameters 3,554,504

Time per epoch 55 s

As shown in Table 3, the training time of CNN-1D-AM for each epoch with 123,200 samples was

less than one minute, which means that the model was lightly designed and was on low incremental

resource consumption.

The average recognition rates for the training dataset and validation dataset during the training

session are shown in Figure 3.

 

Figure 3. The average recognition rates of CNN-1D-AM on the training dataset and validation dataset

with different quantity of training epochs.

Figure 3 shows that after training 50 epochs, the recognition accuracy of CNN-1D-AM on the

training dataset reached nearly 100%. Moreover, the recognition accuracy of the model on the validation

dataset was over 96%, which denotes that the model converged.

The weights of the neural network with the highest recognition rate on the validation dataset

were saved. Under this circumstance, the recognition rate of CNN-1D-AM with 11 values of SNR on

the validation dataset is shown in Figure 4.
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Figure 4. The recognition rates of CNN-1D-AM with 11 values of signal-to-noise ratio (SNR) on the

validation dataset.

Figure 4 indicates that the model acquired nearly 100% accuracy when the SNR was above −6 dB.

Moreover, the accuracy was less than 90% only when SNR was lower than −9 dB.

In the real applications, the number of samples which need to be tested is always larger than that

on the validation dataset. Therefore, the testing dataset with large-scale samples was used to validate

the exact real performance of the model. The recognition rate of CNN-1D-AM with 11 values of SNR

on the testing dataset is shown in Figure 5.

 

−
−

−
− −

Figure 5. The recognition rates of CNN-1D-AM with 11 values of SNR on the testing dataset.

As shown in Figure 5, the average recognition rate of CNN-1D-AM decreased compared with

Figure 4. This is because the number of samples on the testing dataset was about 12.5 times more than

that on the validation dataset and 3.125 times more than that on the training dataset. This is equivalent

to the situation that a model is trained with fewer samples and is tested with a huge number of samples.

When SNR was above −5 dB, the accuracy of recognition on the testing dataset was still close to 100%.

Interestingly, the recognition rate fell nearly 1% when the SNR rose from −5 dB to −4 dB.

To figure out the specific recognition results of CNN-1D-AM, the confusion matrix for average

recognition performance based on the testing dataset is shown in Figure 6. It was found that the part

of low recognition rates could be attributed to the classification of BFSK signals. A portion of the

BFSK signals was mainly misidentified as CW signals and BPSK signals. Apart from this, the average

recognition rates of the other six types of signals were over 93.5% by calculating.
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Figure 6. The confusion matrices of CNN-1D-AM, based on average recognition rates.

3.3. Learned Features

In this section, the extracted features of signals by the proposed CNN-1D-AM were investigated.

Specifically, a sample from the testing dataset was sent to the CNN-1D-AM model. Some features

filtered by the layer before the attention unit and weighted by the attention unit are plotted in Figures 7

and 8. The weights of the attention unit are also shown in Figure 9.

Figures 7 and 8 indicate that the features in different channels and different positions of space

were weighted by the attention unit. The relative values of features in some certain channels and

in some positions of space turned to zero. Moreover, Figure 9 shows that the features in different

positions of space and channels gained weights differently based on the attention unit.

 

 
Figure 7. The features filtered by the layer before the attention unit.
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Figure 8. The features weighted by the attention unit.

 

Figure 9. The weights of the attention unit.

3.4. Comparison of Other Methods

To further evaluate the effectiveness of the proposed method, some traditional methods and

state-of-the-art deep learning-based models were used as a comparison.

The traditional methods include SVM [19], which uses seven HOC features as the input; SSAE1,

which uses spectral power feature, amplitude feature in the time domain and six HOC features as

input. Moreover, the deep learning-based models include CNN and deep neural networks (DNN) [20],

stacked autoencoder (SAE) [21].

For the CNN part, the VGG network [22] and ResNet [23] were chosen as the comparison models.

As the structure of the proposed CNN-1D-AM is not complicated, for this paper, we chose the specific

VGG network, which includes 13 weight layers (VGG13) and the specific ResNet, which includes

18 layers (ResNet18). To make the comparison between methods as fair as possible, both of VGG13 and

ResNet18 were transferred from 2-D forms, and the parameters were reset properly according to the

literature. Moreover, to investigate the impact of the attention mechanism, a CNN-1D model, which is

transferred by deleting the attention unit from the proposed models, was also used as a comparison

(CNN-1D-Normal).

For the DNN part, four different models were chosen, and the detail of these models is shown in

Table 4. The adjacent layers were fully connected. The differences among the four DNN models were

the quantity of layers and the number of neurons in the layers.

In addition, three SAE models were chosen, and their structure is shown in Table 5. The SAE models

included at least one autoencoder and one classifier. Moreover, the adjacent layers of autoencoders

and the classifier were fully connected.

The datasets used in this session were the same as before. The input of CNN, DNN and SAE

models in comparison was the sequences of radar emitter signals in the time domain. Moreover,

the input data of SVM and SSAE were calculated according to the same datasets.
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Table 4. The detail of four deep neural networks (DNN) models for radar emitter signal recognition.

Neurons of the Layers DNN1 DNN2 DNN3 DNN4

Input layer 1024

First hidden layer 512 512 256 512

Second hidden layer 256 256 64 256

Third hidden layer 128 N/A N/A 128

Fourth hidden layer N/A N/A N/A 64

Output layer 7

Table 5. The structure of the stacked autoencoder (SAE) model for radar emitter signal recognition.

SAE Model Parts of SAE First Auto-Encoder Second Auto-Encoder Third Auto-Encoder Classifier

SAE1

Input layer 1024 512 256 128

Hidden layer 512 256 128 N/A

Output layer 1024 512 256 7

SAE2

Input layer 1024 512
N/A

256

Hidden layer 512 256 N/A

Output layer 1024 512 7

SAE1

Input layer 1024
N/A

512

Hidden layer 512 N/A

Output layer 1024 7

Figure 10 shows the recognition accuracy of different methods and models with each value of

SNR on the testing dataset. By analysis, the accuracy of convolutional neural network models was

higher than other methods, and the performance of CNN-1D-AM this paper proposed was superior

to those of other models above-mentioned. Moreover, the comparison between CNN-1D-AM and

CNN-1D-Normal shows that AU-1D could improve the recognition accuracy of the network.

 

 

 

Figure 10. Recognition accuracy of different methods and models (CNN-1D-AM, CNN-1D-Normal,

ResNet18, VGG13, SSAE, SVM, DNN1, DNN2, DNN3, DNN4, SAE1, SAE2, SAE3) with each value of

SNR on the testing dataset.

Table 6 shows the number of parameters and training time per epoch for convolutional neural

network models, which indicated that the CNN-1D-AM model was of higher efficiency and lower

consumption of computation.
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Table 6. The number of parameters and training time per epoch for convolutional neural network models.

Model CNN-1D-AM CNN-1D-Normal ResNet18 VGG13

Quantity of parameters 3,554,504 3,520,903 4,465,543 5,761,863

Time per epoch 55 s 50 s 101 s 80 s

4. Conclusions

This paper proposes a novel CNN-1D-AM for radar emitter signal recognition. The designed

1-D convolutional layers especially could directly extract features from the time-domain sequences

of radar emitter signals. The attention unit was integrated into the CNN-1D model so that the

recognition accuracy of a neural network could be improved further. The experimental results

indicated that CNN-1D-AM could achieve high accuracy of recognition on seven different radar signals.

The comparison results with some traditional methods and deep learning-based models show the

superior performance of CNN-1D-AM. In future work, we hope to propose a CNN-1D model with

a new attention mechanism, which can increase the accuracy of recognition further.
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