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Abstract 40 

Subsidence related to multiple natural and human-induced processes affects an 41 

increasing number of areas worldwide. Although this phenomenon may involve surface 42 

deformation with 3D displacement components, negative vertical movement, either 43 

progressive or episodic, tends to dominate. Over the last decades, Differential SAR 44 

Interferometry (DInSAR) has become a very useful remote sensing tool for accurately 45 

measuring the spatial and temporal evolution of surface displacements over broad areas. 46 

This work discusses the main advantages and limitations of addressing active 47 

subsidence phenomena by means of DInSAR techniques from an end-user point of 48 

view. Special attention is paid to the spatial and temporal resolution, the precision of the 49 

measurements, and the usefulness of the data. The presented analysis is focused on 50 
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DInSAR results exploitation of various ground subsidence phenomena (groundwater 51 

withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence and 52 

volcanic deformation) with different displacement patterns in a selection of subsidence 53 

areas in Spain. Finally, a cost comparative study is performed for the different 54 

techniques applied. 55 

 56 

Keywords: subsidence, DInSAR, settlement, remote sensing, Spain, technique-cost 57 

 58 

1. Introduction 59 

The term subsidence refers to the sudden sinking or gradual downward settling of the 60 

ground surface with little or no horizontal motion (Jackson 1997). Active subsidence 61 

may be related to multiple natural and anthropogenic processes (Corapcioglu 1989; 62 

Waltham 1989; Galloway et al. 1999). The risk to people and their infrastructures posed 63 

by subsidence phenomena in remote and non-inhabited areas is generally negligible. 64 

However, active subsidence in developed areas may cause significant damage to human 65 

structures, often involving multi-million dollar losses (e.g. Kappel et al. 1999; Autin 66 

2002; Gutiérrez et al. 2009; Mancini et al. 2009). Wu (2003) points out that subsidence 67 

constitutes a hazard for bridges, roads, railways, storm drains, sewers, canals, levees, 68 

buildings and well pipes, and increases the susceptibility to tidal flooding in low-lying 69 

coastal areas. Moreover, catastrophic subsidence may result in human life lost (Guerrero 70 

et al. 2008; Galve et al. 2012). For instance, in the Far West Rand of South Africa, 71 

sudden sinkholes induced by dewatering of dolomite aquifers for gold mining have 72 

caused a total of 38 fatalities (De Bruyn and Bell 2001).  73 

Land subsidence is the surface evidence of shallow or deep-seated deformation induced 74 

by a wide variety of natural or anthropogenic subsurface processes. Following 75 
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Prokopovich’s genetic classification of subsidence (1979), endogenic subsidence is 76 

associated with internal geological processes such as faulting, folding, isostatic 77 

adjustments and volcanism. Exogenic subsidence is related to anthropogenic or natural 78 

processes involving the creation of cavities and/or the removal of material from the 79 

subsurface. The main causal mechanisms of exogenic subsidence include dissolution, 80 

degradation of organic matter, piping, thawing of ground ice, bioturbation, piezometric 81 

falls related to reduced aquifer recharge, fluid withdrawal (e.g. water, petroleum and 82 

gas), underground mining, tunnelling (Waltham 1989; Galloway et al. 1999; Gonzalez 83 

de Vallejo and Ferrer 2011).  84 

In the pre-mitigation investigation phase, a combination of scientific understanding of 85 

these processes and a careful management can minimize the subsidence. Then, 86 

subsidence investigations are important to delineate the extent of the affected area, 87 

measuring the surface displacements (magnitude, rate and temporal and spatial 88 

variability), determining the strain mechanisms and identifying precursory/premonitory 89 

displacement indicative of potential catastrophic subsidence events in order to propose 90 

and design mitigation measures. Once mitigation measures are applied, subsidence 91 

monitoring allows evaluating the effectiveness of the adopted corrective or preventative 92 

measures, and forecasting the future behaviour of the subsidence phenomena. Numerous 93 

techniques are used for measuring and mapping spatial gradients and temporal rates of 94 

regional and local subsidence (Galloway et al. 1998; Galloway and Burbey 2011). The 95 

approaching selection is generally based on several key factors (Tomás et al. 2008; 96 

Galloway and Burbey 2011) including: 97 

1) the cost, usually the most relevant conditioning parameter; 98 

2) the required accuracy and resolution, conditioned by the type of subsidence 99 

phenomenon; 100 
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3) the type of data (punctual, linear, spatially distributed) and measuring frequency 101 

(time between measurement acquisitions), which are largely determined by the 102 

subsidence pattern (extent, rate, spatial and temporal variability); 103 

4) land cover (rock outcrops, forest, urban, etc.), and weather conditions; 104 

5) flexibility of the method, related to the possibility to selecting the time and location 105 

of the measurement acquisition, the data availability (ease of access to the data), as well 106 

as the acquisition time (time required to complete a measurement campaign); and  107 

6) geometry and the kinematics of the subsidence phenomenon. 108 

This paper reviews DInSAR data exploitation related to different ground subsidence 109 

phenomena (groundwater withdrawal, soil compaction, mining and evaporite 110 

dissolution subsidence and volcanic deformation) investigated in nineteen areas of 111 

Spain (Figure 1). Targeted subsidence areas differ in their extent, subsidence rates, and 112 

temporal evolution. This work highlights the main advantages and limitations of 113 

addressing the investigation of active subsidence with DInSAR techniques from an end-114 

user point of view; i.e. spatial and temporal resolution, precision of the measurements, 115 

and utility of the data. Finally, a discussion on the cost-effectiveness of the different 116 

monitoring techniques used in Spain is presented. 117 

 118 

Figure 1. Subsidence areas investigated by means of the Differential SAR 119 

Interferometry (DInSAR) technique in Spain and reported in this work.  120 

 121 

2. A brief introduction to DInSAR  122 

Synthetic Aperture Radar (SAR) and its derived techniques, like SAR interferometry 123 

(InSAR), have been widely addressed and reviewed in the scientific literature 124 

(Massonnet and Feigl 1998; Bamler and Hartl 1998; Ferretti et al. 2001; Hanssen 2001; 125 
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Crosetto et al. 2005b; Kampes 2006; Simons and Rosen 2007; Prati et al. 2010; Hooper 126 

et al. 2012). One of the main applications of SAR interferometry is the detection of 127 

Earth´s surface displacements through Differential Interferometry (DInSAR), which has 128 

shown to be a tool of great potential over the last decades. Initial single interferogram 129 

DInSAR techniques, commonly referred to as conventional DInSAR techniques, 130 

(Massonnet et al. 1993; Peltzer and Rosen 1995) evolved to advanced DInSAR 131 

techniques which provide information on the temporal evolution of the ground 132 

displacement, with a theoretical millimetric precision under favourable conditions. 133 

According to Sansosti et al. (2010), advanced DInSAR techniques can be grouped into 134 

two main categories: Persistent Scatterers (PS) methods that work on localized targets 135 

(Ferretti et al. 2001; Arnaud et al. 2003; Werner et al. 2003), and Small Baseline (SB) 136 

methods that utilize spatially distributed targets (Lundgren et al. 2001; Berardino et al. 137 

2002; Mora et al. 2003; Schmidt and Bürgmann 2003; Prati et al. 2010). Such 138 

techniques have been applied to ground displacements related to active tectonics, 139 

seismic events, volcanism, anthropogenic subsidence and uplift, landsliding or glacier 140 

dynamics.  141 

The basic concept of the DInSAR techniques is to monitor an area through time on a 142 

regular basis. The SAR images acquired in different dates are then combined in pairs to 143 

generate a set of differential interferograms that contain information on the 144 

interferometric phase (int). Ideally, differential interferograms should contain only the 145 

ground displacement component between the acquisition times of the two SAR images. 146 

However, in practice, there are other terms contributing to the interferometric phase that 147 

can mask the desired ground displacement information, e.g. phase contributions from 148 

atmospheric water vapour (atmos). The goal of the different processing techniques is to 149 

accurately isolating the displacement term from the remaining components. The 150 
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interferometric phase can be expressed as the sum of the following terms (Hanssen 151 

2001): 152 

noiseatmosmovtopoflat  int  (1) 153 

where flat is the flat-earth component related to range distance differences in absence 154 

of topography, topo is the topographic phase, mov is the phase contribution due to 155 

ground displacement occurring between the two SAR image acquisitions, measured 156 

along the line of sight (LOS), atmos is the phase component due to atmospheric 157 

disturbances or artefacts, and noise includes the remaining noise sources. The first two 158 

terms in (1) can be expressed analytically and topo can be extracted from an 159 

independent DEM.  160 

The degradation of the quality of the interferometric phase (decorrelation) has a non-161 

uniform impact on the interferograms. Depending on several factors like the land cover, 162 

presence of human structures, surface changes due to human or natural activity, some 163 

areas may have a better quality phase. Consequently, a selection of the more reliable 164 

pixels from a set of interferograms has to be performed. The pixel selection criterion 165 

can be established based on the estimation of their phase quality using two different 166 

approaches: the coherence stability and the amplitude dispersion. For the former, a 167 

multi-looked pixel is selected if it presents coherence values higher than an established 168 

threshold in a certain percentage of interferograms (Berardino et al. 2002; Mora et al. 169 

2003). For the latter, the phase standard deviation of each pixel is assumed to be related 170 

to its temporal radar signal amplitude stability (low dispersion) and selected if it 171 

exceeds a certain threshold (Ferretti et al. 2001). The selection criterion determines the 172 

nature of the targets to work with. While the amplitude dispersion selects ideal point-173 

like targets at the maximum spatial resolution of the SAR image, the coherence stability 174 

implies an averaging of a set of pixels, leading to a lower spatial resolution product. 175 
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Depending on the setting, it may be necessary to decrease the number of selected points 176 

by employing a coherence approach, rather than having the maximum spatial resolution 177 

information provided by the amplitude approach. For instance, in volcanic areas where 178 

rock outcrops have large extent and temporal stability, the coherence-based processing 179 

is generally more appropriate. In contrast, in urban areas where man-made targets are 180 

more likely to be found, the amplitude-based processing is typically better suited.  181 

Another decisive issue is the number of available images. A reliable relationship 182 

between amplitude and phase stability cannot be obtained with a limited number of 183 

images. On the other hand, the coherence estimator is more robust when dealing with a 184 

low number of interferograms. Considering both criteria, a compromise between the 185 

number of pixels selected and their reliability should be found. 186 

For measuring ground displacement, satellite-based DInSAR techniques present three 187 

immediate advantages compared to classical ground-based methods such as the 188 

Differential Global Positioning System (DGPS): low-cost, measurement repetitiveness 189 

and availability of historical data. Firstly, they provide, at a low cost, displacement 190 

measurements across wide areas and with a high spatial density, as opposed to the 191 

discrete point data supplied by instrumental techniques, restricted to benchmarks with a 192 

much lower density and generally covering smaller areas. For instance, the widely used 193 

SAR images acquired by the European ERS or ENVISAT and the German TerraSAR-X 194 

satellites cover an area of 100 km by 100 km and 30 km by 50 km respectively. 195 

Secondly, orbital sensors have a short revisiting time period, which makes it possible to 196 

monitor at selected locations with a high frequency. Thirdly, the low incidence angle 197 

(i.e. the angle between the satellite line-of-sight (LOS) and a line perpendicular to the 198 

land surface) makes InSAR technique very sensitive to vertical displacements produced 199 

by subsidence. Finally, the relatively long archive of SAR images acquired since 1992 200 
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allows studying, at least in Europe, almost any area since that date. Nevertheless, 201 

DInSAR techniques should be considered as complementary, rather than a complete 202 

replacement of the ground-based techniques. 203 

 204 

3. Advantages and limitations of DInSAR from the end-user point of view 205 

In the last 20 years the importance of DInSAR as a subsidence monitoring tool has 206 

increased significantly. In Spain, nineteen areas affected by active subsidence have been 207 

studied using different DInSAR techniques. These studies exploit radar data from seven 208 

sensors, which include satellite- and ground-based (Tables 1 and 2). These case studies 209 

deal with subsidence due to groundwater withdrawal, mining activity, volcanism, 210 

impoundment of water reservoir, evaporite dissolution, and the superposition of some of 211 

the above mentioned processes. Although most of these subsidence cases were 212 

previously known and characterized, the application of DInSAR techniques allowed 213 

gaining greater insight into the deformation patterns, specially providing quantitative 214 

strain data. In this section, the main advantages and limitations of the DInSAR 215 

techniques from an end-user point of view are discussed and illustrated through 216 

subsidence case studies from Spain.  217 

 218 

Table 1. Radar systems employed in the reported subsidence studies in Spain. ESA: 219 

European Space Agency; DLR: German Aerospace Center; JAXA: Japan Aerospace 220 

Exploration Agency; UPC: Universidad Politécnica de Cataluña; ASI: Italian Space 221 

Agency. 222 

 223 

Table 2. DInSAR technique and pixel selection criteria implemented in the software 224 

packages applied to study subsidence in Spain. Software developer is also indicated. 225 
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 226 

3.1 Spatial resolution 227 

The spatial resolution of DInSAR data is crucial in subsidence studies with an applied 228 

objective. The spatial resolution of the ground displacement data depends on the radar 229 

sensor and the processing algorithm. The pixel selection methods based on amplitude 230 

criteria allow keeping the original resolution of the SAR image. On the other hand, by 231 

definition, coherence selection techniques involve an averaging of adjacent pixels of the 232 

original image with the consequent degradation in spatial resolution. Using the 233 

coherence approach, typical resolutions of DInSAR maps obtained from ERS and 234 

ENVISAT data are 60 m  60 m, 80 m  80 m and 100 m  100 m. These values 235 

correspond to the multilook averaging of 3  15, 4  20, and 5  25 pixels in azimuth 236 

and range respectively. Spatially restricted subsidence phenomena, such as those related 237 

to evaporite dissolution-induced sinkholes in the Ebro Valley (Castañeda et al. 2009b) 238 

or a salt mine below Sallent village (López et al. 2010), usually affect areas smaller than 239 

1 km2. Consequently, they require an appropriate compromise between resolution and 240 

electromagnetic response stability. As an example, the 80-m pixel-sized DInSAR map 241 

of Figure 2 provides partial displacement data on a subsidence basin induced by 242 

underground mining but does not allow analysing subsidence at a building scale 243 

(Herrera et al. 2012). DInSAR applications for built areas and infrastructures require 244 

very high resolutions in order to obtain information on individual buildings or elements 245 

of a structure rather than an averaged subsidence rate for an area including several 246 

constructions. For Murcia city (Figure 3), Herrera et al. (2009b) demonstrated that 247 

amplitude techniques, which work at full resolution, provide a higher density of reliable 248 

points than coherence based techniques. Moreover, using different bands TSX has 249 

demonstrated to provide the highest PSs density (Crosetto et al. 2010; Herrera et al. 250 
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2010). Figure 3 shows that the X-band based PSs density is at least ten times higher 251 

than the PSs density provided by C-band satellites (Herrera et al. 2010). 252 

 253 

Figure 2. Detail of the 80-m pixel-sized DInSAR map of mining subsidence in La 254 

Unión for the period 2005-2008. Grey line corresponds to the 1:5000 topographic map. 255 

 256 

Figure 3. DInSAR maps showing subsidence rates caused by aquifer overexploitation in 257 

the Vega Media of the Segura River (Spain) obtained from images acquired by different 258 

sensors and for three successive of time periods: a) 1995-2005 period (ERS and 259 

ENVISAT sensors). b) 2005-2008 period (ENVISAT sensor). c) 2008-2009 period 260 

(TerraSAR-X sensor). d) Temporal evolution of the subsidence from 1995 to 2009, 261 

plotted alongside the variations in the piezometric level. Syr
-1 is the average number of 262 

SAR images per year, and dgp is the existing maximum temporal gap (expressed in 263 

days) between two SAR images. 264 

 265 

3.2 Temporal resolution 266 

The temporal resolution of the ground displacement data depends on the satellite 267 

revisiting period (Table 1) that determines the availability of SAR images of the study 268 

area. Consequently, generally the shorter the revisiting time the more accurate may be 269 

the analysis of the temporal evolution of the subsidence phenomenon. In areas with high 270 

subsidence rates the revisiting period should be as short as possible in order to avoid 271 

aliasing problems. Aliasing is introduced when the sampling frequency is too low and 272 

affects  the motion of ground targets or pixels with LOS displacement between the two 273 

dates under study is greater than the system resolution; i.e. half the radar wavelength 274 

(λ/2). Moreover, shorter revisiting periods improve the ability to identify non-linear or 275 
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seasonal displacement patterns. COSMO SkyMed and TerraSAR-X, with the shortest 276 

revisiting periods (Table 1), are more appropriate systems to study non-linear and 277 

episodic subsidence phenomena than e.g. ALOS-PALSAR with longer revisiting 278 

periods, although they are more prone to temporal decorrelation in non-urban areas due 279 

to their sensitivity of phase values to any change in scatterers distribution (Prati et al. 280 

2010). As an example, La Unión area (Figure 4) exhibits significant gaps of 281 

displacement information due to high deformation rates (4.8 cm per month) related to 282 

mining subsidence (Herrera et al. 2007).  283 

The acquisition time of terrestrial sensors (Ground based SAR- GBSAR), which is 284 

selected by the user, allows to define the time between successive acquisitions as much 285 

as few minutes. However, although radar sensors can be strategically placed in 286 

prominent locations in order to get an optimal LOS they are generally limited by the 287 

high incidence angle (Pipia et al. 2007; 2008; Monserrat 2012). ERS and ENVISAT 288 

satellites provide a long historical archive of radar data for almost all the Spanish 289 

territory between 1992 and 2012 with a gap during 1994, allowing to retrospectively 290 

processing data in areas where ground-based data is lacking. Historical data are 291 

necessary for the long-term monitoring of areas with low subsidence rate and for the 292 

application of advanced DInSAR techniques which require a large number of images. In 293 

contrast, TerraSAR-X data is limited to the areas where acquisitions have been 294 

previously requested; i.e. on-demand system. The same applies to GB-SAR, since also 295 

data availability is limited to planned images in monitored areas.  296 

Another important issue for DInSAR subsidence analysis is the sensor wavelength (λ). 297 

Most studies reviewed in this work are based on C-band sensors due to high data 298 

availability. However, DInSAR based on C-band radar data is frequently limited due to 299 

the incoherence/decorrelation related to the land covers. In this sense, in Sant Quirte del 300 
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Valles (see location in Figure 1), Blanco et al. (2008) observed that L band–based 301 

DInSAR (λ = 23 cm) provides coherent information where C band–based DInSAR (λ = 302 

5.6 cm) measurements are predominantly incoherent showing that a significant part of 303 

the backscattered echo arrives from the ground rather than from vegetation in agreement 304 

with other authors (Colesanti and Wasowski 2006; e.g. Raucoules et al. 2007; Hooper et 305 

al. 2012) .  306 

 307 

Figure 4. Detail of C-band DInSAR map of La Unión, showing the effect of aliasing on 308 

the availability of Persistent Scatterers due to for high subsidence rates related to 309 

mining. The lack of colored pixels (displacement data) in the urban area of Lo Tacón is 310 

due to the loss of coherence. Levelling isolines indicates cumulative displacement in cm 311 

during the time period 1998-2000 and show a displacement rates higher than 40 312 

mm/year (Rodríguez-Estrella et al. 2000).  313 

 314 

3.3 Influence of the terrain characteristics on persistent scatterers detection  315 

The backscattering of the microwave signals depends on the characteristics of the 316 

terrain and the weather conditions at the acquisition time. Generally, vegetated areas 317 

and water bodies disperse the radar emitted SAR signals, reducing the amount of 318 

returned signal to the satellite (Ulaby et al. 1982; Henderson and Lewis 1998). In some 319 

areas the changes in the vegetation between two radar acquisitions can produce such a 320 

significant loss of coherence that the displacement information is almost impossible to 321 

obtain. On the contrary urban areas, or rock outcrops provide a stable electromagnetic 322 

response through time, being considered more suitable for applying DInSAR 323 

techniques. This circumstance is illustrated by studies carried out in the subsidence 324 

areas of Orihuela village (Tomás et al. 2007; 2010b), where PS densities from 0 to 10 325 
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PS per km2 have been obtained in rural areas, whereas more than 100 PS per km2 were 326 

obtained in urbanized areas and zones dominated by rock outcrops (Figure 5). Rocky 327 

areas like the Tenerife Island and urban scenarios such as Murcia city, Orihuela village 328 

or Sallent village provide a high amount of PS points. However, the proportion of PS 329 

points is reduced considerably in the agricultural areas of Vega Media and Baja of the 330 

Segura River (Herrera et al. 2009b; Tomás et al. 2010b), Granada basin (Fernandez et 331 

al. 2009; Sousa et al. 2010) and the Ebro valley (Castañeda et al. 2009b) (see Figure 1 332 

for locations). 333 

The weather conditions also affect the transmission of the microwaves producing 334 

atmospheric artefacts which may limit the use of DInSAR techniques. Variations in 335 

water vapour, temperature, and pressure along the distance travelled by the signal within 336 

the atmosphere can produce a delay in the transmission of the microwaves affecting the 337 

interferometric phase and distorting the phase related to the actual ground displacement. 338 

This fact has been observed in the Ebro valley (Figure 6), where a significant proportion 339 

of the interferograms was affected by atmospheric artefacts (Castañeda et al. 2011). 340 

 341 

Figure 5. Detail of DInSAR map based on the Coherent Pixel Technique (CPT) 342 

showing the water withdrawal induced subsidence measured along the LOS in the city 343 

of Orihuela and surrounding areas from 1993 to 2009. Note the high and a low density 344 

of PSs in the urban/rocky and agricultural areas, respectively. The lack of PSs in the SE 345 

slope of the mountain is related to its non-favorable orientation with respect to that of 346 

the LOS.  347 

 348 

Figure 6. a) Location of three areas areas affected by active ground deformation in the 349 

Ebro Valley analysed using conventional (interferograms) and SBAS techniques. b) 350 
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Mixed urban-agricultural area with active sinkholes related to evaporite dissolution in a 351 

mantled karst setting. c) Mixed agricultural and natural vegetated area showing active 352 

landslides in a gypsum escarpment affected by river undercutting. d) Area with natural 353 

xerophytic vegetation showing subsidence induced by salt room and pillar mining. On 354 

the numbers on the left images, indicate subsidence rates measured using SBAS. In the 355 

central images, every color fringe corresponds to a 2 phase change (2.6 cm). The plots 356 

show displacement time series for selected points (highlighted in green) from 1995 to 357 

2000. 358 

 359 

3.4 Type of results 360 

Generally, DInSAR provides a great deal of information on subsidence distribution, 361 

magnitude and kinematics, as well as on the processing quality. These data, measured 362 

along satellite LOS, are generally represented as maps that show the displacement 363 

spatial distribution, either average rate or accumulated magnitude. The former 364 

corresponds to the average displacement rate for the considered period of time, 365 

expressed in mm/year or cm/year (e.g. Figure 4), whereas the latter is the total amount 366 

of subsidence with respect to the first SAR acquisition, usually expressed in mm or cm 367 

(e.g. Figures 2 and 4). When conventional interferometry is used, the results can be also 368 

depicted using fringes that represent a 2 phase change (Figure 6), which corresponds to 369 

a displacement of /4 meters, where  is the wavelength (in meters) of the microwave 370 

used by satellite. Note that ALOS-PALSAR satellite (L-band) has a wavelength of 23.6 371 

cm whilst TerraSAR-X or Cosmo-Skymed-1 satellites (X-band) have a wavelength of 372 

3.1 cm (Table 1). As a consequence, it can be stated that L-band satellite is less 373 

sensitive to the displacement (one fringe corresponds to 11.8 cm instead of the 1.6 cm 374 

of X-band satellites).  375 
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The temporal evolution of subsidence for a given point can be represented when a set of 376 

images is used in the processing. Therefore, for every radar measurement we provide: 377 

(1) the position of the PS: three geographical coordinates and (2) the temporal evolution 378 

of the displacement over the processed/analysed time period (e.g. Figure 3d). 379 

 380 

 381 

3.5 Applications of DInSAR information  382 

A close cooperation between DInSAR specialists and end-users (geoscientists, civil 383 

engineers, land-use planners, Civil Protection Authorities, insurance companies, etc.) is 384 

necessary in order to fully exploit the high capability and practicality of these remote 385 

sensing techniques. In Spain, DInSAR has been used for the monitoring of known 386 

subsiding areas, providing spatially denser displacement information of the area of 387 

interest than ground-based techniques. However, one of the most interesting 388 

applications of these interferometric techniques is the early detection of unknown 389 

ground motion (e.g. Crosetto et al. 2005a; Mora et al. 2007; Castañeda et al. 2009a; 390 

Castañeda et al. 2009b; Fernandez et al. 2009; González et al. 2010; González and 391 

Fernández 2011a; Pulido-Bosch et al. 2011). Some Spanish institutions, such as the 392 

Institut Geologic de Catalunya, IGC, (Mora et al. 2007) have periodically and 393 

systematically monitored wide geographical areas in order to recognize areas affected 394 

by subsidence or other ground instability processes in Catalonia. The Geological 395 

Hazard Prevention Map of Catalonia (MPRGC 1:25000) includes the DInSAR 396 

information. This open-accesses cartographic database allows the public to consult, via 397 

the IGC, ground displacement results (Oller et al. 2011). 398 

Another interesting application of DInSAR in Spain is the incorporation of ground 399 

displacement data in the development of susceptibility and risk maps. In Sallent village, 400 
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severely affected by subsidence due to salt mining, DInSAR data has been integrated 401 

into a Geographical Information System (GIS) together with abundant spatial data 402 

(geological, geotechnical, geophysical, topographic levelling, extensometer and 403 

inclinometer measurements, etc.) in order to analyse and manage different scale spatial 404 

data for risk analysis and mitigation (Marturià et al. 2006; Palà et al. 2006; Marturia et 405 

al. 2010). Subsidence modelling, aimed at reproducing and/or predicting displacements 406 

under certain conditions, is generally a complicated task. In Spain, DInSAR has shown 407 

to be a useful tool for calibrating and validating subsidence models. In Murcia city, 408 

affected by subsidence due groundwater withdrawal and aquitard consolidation (Mulas 409 

et al. 2003), InSAR data have been used to validate numerical geotechnical models 410 

(Herrera et al. 2009a) and to calibrate hydrological models that predict future scenarios 411 

of piezometric level change (Tomás et al. 2010a) (Figure 7). DInSAR data, jointly with 412 

in-situ measurements (piezometric level and geological-geotechnical information), are 413 

being used by the Vega Baja and Media of the Segura river local authorities for water 414 

supply management. In Sallent, the geometry of mining and karstic cavities in a salt 415 

formation have been modelled to match topographic levelling (López et al. 2010). In the 416 

Sant Feliu del Llobregat pilot site, water extraction volumes have been incorporated 417 

into geological models to match DInSAR data with water pumping points and volumes 418 

(Concha et al. 2010). In Murcia and Orihuela DInSAR data have been used for building 419 

damage mapping (Herrera et al. 2010; Bru et al. 2013; Herrera et al. 2012; Tomás et al. 420 

2012) (Figure 8). DInSAR displacement measurements have also allowed the 421 

identification of damage on buildings and other man-made structures (bridges, 422 

sidewalks, walls, etc.). This application has been substantially improved since the 423 

launch of the TerraSAR-X satellite that provides a high spatial resolution and allows 424 
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computing the angular distortions and the differential settlement affecting the individual 425 

buildings. 426 

Recent works (Tomás et al. 2010b; Tomás et al. 2011) have analysed the influence of 427 

different triggering and conditioning factors on subsidence phenomena by integrating 428 

DInSAR data from the Segura River valley with multiple variables in a GIS 429 

environment. The cross analysis of the different factors and the subsidence maps reveals 430 

some interesting relationships between the different factors that influence subsidence. 431 

These findings can be used as the basis for the hydraulic management of the watershed. 432 

 433 

 434 

Figure 7. Modelling of subsidence caused by groundwater withdrawal in Murcia city. 435 

The model has been calibrated using InSAR data for the period 1993-1995 and 436 

extrapolated for 1995-2007. 437 

 438 

 439 

Figure 8. Detail of DInSAR map of Murcia city applied for building damage 440 

monitoring. Above: Subsidence rates measured from 1995 to 2008 (left) and from 2006 441 

to 2010 (right). Center: Cross-section depicting the surface damage observed in three 442 

adjacent buildings with different foundations along the transect X-X’ indicated in the 443 

detailed DInSAR map. Below: Profile of the subsidence magnitude recorded along X-444 

X’.  445 

 446 

Studies conducted in the Canary Islands (Fernández et al. 2002; Fernández et al. 2003; 447 

Fernández et al. 2005; Fernández et al. 2009; González et al. 2010; González and 448 
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Fernández 2011b) have shown that DInSAR is a very powerful technique for the 449 

volcano activity monitoring in an operative and systematic way. 450 

Polarimetric SAR Interferometry (PolInSAR) has been recently used by several 451 

researchers (Navarro-Sanchez et al. 2010; Navarro-Sanchez and Lopez-Sanchez 2012) 452 

in order to increase the number of PS candidates. This approach allows increasing the 453 

PS density by the identification of pixels with good phase quality after a search in the 454 

available polarimetric space.  455 

 456 

 457 

3.6 Independent validation of the DInSAR results: measurements precision  458 

Strong efforts have been done in order to assess independently the precision of the 459 

DInSAR subsidence measurements. This independent validation process is usually 460 

performed by comparing DInSAR data with in situ measurements. Consequently, in situ 461 

displacements have to be projected along the LOS in order to be able to make direct 462 

comparisons. The precision of DInSAR techniques, defined as the dispersion of the 463 

displacement estimates around the expected value, depends on a number of parameters 464 

(e.g. González and Fernández 2011b; Hooper et al. 2012) whose exposition is out of the 465 

scope of this work. However, some authors (Colesanti and Wasowski 2006; Lanari et al. 466 

2007; Raucoules et al. 2007; Prati et al. 2010; e.g. Ferretti et al. 2011; Hooper et al. 467 

2012) suggested a typical precision for average displacement rate and LOS 468 

displacements values of up to 1mm/year and 5 mm respectively. So far, the direct 469 

comparison of DInSAR subsidence data with displacement values measured in situ is 470 

the most common way to evaluate the precision of these techniques. Some subsidence 471 

areas in Spain monitored with DInSAR have been compared with geodetic or 472 

topographical measurements (e.g. Tenerife Island; Fernández et al. 2003; 2009) 473 
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resulting in good sub-centimetre agreements (Figure 9). Table 3 shows the precisions of 474 

DInSAR measurements obtained by several authors. 475 

 476 

Figure 9. (a) Comparison of subsidence measurements in Tenerife Island obtained by 477 

Small Baseline InSAR and GPS. The GPS values have been projected along the LOS 478 

for direct comparison. (b) Location of the comparison points, color-coded according to 479 

the correlation index between the time series of displacements from the two techniques.  480 

 481 

Table 3. Estimated precision of subsidence measurements obtained with DInSAR in the 482 

analysed areas of Spain (See Figure 1 for locations). (*) The error is computed as the 483 

average absolute difference between the in situ and InSAR measurements for the whole 484 

available data.  485 

 486 

4 Cost analysis of InSAR 487 

A comparative summary of the different techniques most frequently used for measuring 488 

subsidence is presented in Table 4. The characteristics summarized for each technique 489 

include accuracy, displacement component, survey scale, conditions and characteristics 490 

of the operating environments, degree of automation and sampling frequency. A 491 

detailed description of some of these techniques employed for subsidence monitoring 492 

can be found in Galloway (1998) and Galloway and Burbey (2011).  493 

 494 

Table 4. Comparative of method for measuring ground subsidence. G: Good; MD: 495 

Medium; P: Poor; MN: Manually; A: Automatic; SA: Semiautomatic. 496 

 497 
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A comparative study of the eight techniques used for monitoring the subsidence in 11 498 

case studies in Spain was performed for estimating their cost. Monitoring parameters 499 

not considered in Table 4, such as the temporal frequency of the measurements (time 500 

interval between consecutive measurements) and the mapped point density (number of 501 

measurements per unit area), were also included. The evaluation of the cost for the 502 

different techniques (levelling, InSAR, GPS, etc.) is heterogeneous because of the 503 

distinct operational context. For this reason we assume a similar post-processing cost 504 

for the different techniques. Therefore, the cost calculation is based on the commercial 505 

(non-scientific) SAR image price or the value of every field campaign. In the case of the 506 

geodetic station of Lanzarote and the automatic extensometer of Sallent, the value has 507 

been computed considering the annual maintenance cost of these instruments.  508 

The following economic parameters have been estimated: (a) the annual cost per 509 

measurement point; (b) the difference between the annual costs of each approach and 510 

the cost using ERS-ENVISAT-based InSAR. This parameter provides an idea about 511 

how costly or inexpensive are the considered techniques in comparison with InSAR 512 

ERS-ENVISAT processing through a year; (c) the annual cost per unit area (km2) with 513 

respect to ERS-ENVISAT-based InSAR processing; and (d) the annual cost per 514 

measurement point relative to the price estimated for monitoring the same point by 515 

means of ERS-ENVISAT images. For all of them, the maximum, minimum and mean 516 

values have been computed. 517 

The results of the analysis are shown in Figure 10. Figure 10a shows the mean 518 

measurement frequency (per year) of eight techniques considered. The acquisition 519 

frequency is crucial for identifying and analysing subsidence phenomena with non-520 

linear or episodic kinematics. Excluding the continuous acquisition systems that are 521 

usually installed in areas affected by rapid subsidence and where a high risk for 522 
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population exists, the highest measurement frequencies correspond to CosmoSkyMed 523 

(up to 15 possible measurements per year) and TerraSAR-X (8.7 - 21.6 measurements 524 

per year). ERS-ENVISAT processings provide between 6 and 10 measurements per 525 

year. Usually, levelling, GPS and extensometers are used for providing 1 or 2 526 

measurements per year. 527 

The point density (number of points with subsidence measurement per square 528 

kilometre) is critical for identifying the spatial subsidence patterns (Figure 10b). The 529 

highest point density is provided by the TerraSAR-X satellite (average, minimum and 530 

maximum density of 825, 701 and 916 points per square kilometre, respectively) due to 531 

its high resolution. CosmoSkyMed and the automatic total stations also provide a high 532 

point density. However, the latter has the disadvantage of measuring benchmarks 533 

located at short distances (< 1 km). Levelling and ERS-ENVISAT InSAR provide a 534 

similar point density, with mean values of 93 and 51 points per square kilometre, 535 

respectively. GPS, extensometer and geodetic stations provides the lowest density of 536 

subsidence measurements, with maximum values of 4 points per square kilometre. The 537 

geodetic station has been included in the cost analysis. It is a singular laboratory located 538 

under exceptional environmental conditions which includes high-precision geodetic 539 

instrumentation (e.g., tiltmeters, strainmeters, gravimeters, GPS, etc.) with continuous 540 

acquisition data systems. The geodetic station is not only used to carry out the study of 541 

the geodynamics processes but also the instrumental research. As example, the geodetic 542 

station located in Lanzarote Island (Vieira et al. 1991; Fernández et al. 1992) includes 543 

three instrumental locations dedicated to the study of the Solid Earth deformations, 544 

Earth Tides, sea-level variations, etc. 545 

A relevant parameter from the economic feasibility perspective is the annual cost per 546 

point, given by the ratio between the total annual cost of the implementation of the 547 
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technique in Euros, and the available number of information points. The results show 548 

that the four case studies analysed by means of TSX-InSAR provide the lowest annual 549 

cost (0.65 € per year per point) in comparison with the average cost of the eleven cases 550 

analyzed with ERS-ENVISAT-InSAR (1.20 € per year and point), and the remaining 551 

techniques (Figure 10c). Levelling, extensometers and GPS have the highest prices per 552 

measurement point and year, ranging from 220 to 1007 Euros. Figure 10f shows the 553 

annual cost per measurement point compared with InSAR. Although TSX-InSAR 554 

provides the lowest mean cost per point (Figure 10c), the relative cost per point is lower 555 

for the three case studies where both sensors (ERS-ENVISAT and TSX) were used. 556 

The annual costs of the different techniques has been also computed and compared with 557 

that of the ERS-ENVISAT-InSAR (Figure 10d). Obviously, this cost strongly depends 558 

on the number of measurements obtained each year, especially for instrumental 559 

techniques (extensometers and levelling) and for GPS. For this reason, the 560 

extensometers installed over a salt mine in Sallent, Barcelona, which provide a 561 

continuous record (8,760 measurements per year) have not been considered in the 562 

analyses. The results show that most of the techniques considered are from 4 to 10 times 563 

more expensive than ERS-ENVISAT-InSAR. However, TSX-InSAR and GPS provides 564 

the highest mean annual costs (22 and 26 times higher, respectively). 565 

Figure 10e shows the annual cost per square kilometre of each technique compared with 566 

that of ERS-ENVISAT-InSAR. These estimates depend to a large extent on the area 567 

extent surveyed. The InSAR techniques yield the lowest annual cost per square 568 

kilometre, in addition to their high point density, as mentioned above. The geodetic 569 

stations provide a low cost (6 times higher than ERS-ENVISAT-InSAR) because the 570 

whole Lanzarote Island (845 km2) is monitored with only 3 measurement points. 571 

Consequently, in this case, although the annual cost unit per square kilometre is low, the 572 
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spatial density of data is very poor. Due to the coverage of SAR images (100100, 573 

3050 and 2020 km for ERS-ENVISAT, TSX and CosmoSkyMed, respectively), 574 

DInSAR techniques are considered of low-cost for large study areas. 575 

 576 

Figure 10. Comparative cost analysis of the eight techniques used for measuring the 577 

subsidence in Spain. See explanation in the text. (*) The continuous record of the 578 

extensometer installed in Sallent has not been considered for mean estimation. (**) The 579 

measuring network extends partially within the area with DInSAR detected movements 580 

and it has set focusing in areas with detected intensive subsidence. 581 

 582 

 583 

5 Concluding remarks 584 

Since the first application of DInSAR to identify soil swelling (Gabriel et al. 1989), this 585 

useful technique has become a widespread tool for subsidence monitoring, providing a 586 

high amount of ground displacement data for wide areas and at low cost compared with 587 

ground-based techniques. Nineteen subsidence areas (mining, groundwater withdrawal, 588 

evaporite dissolution, volcanism and load-induced compaction) in Spain have been 589 

recognized and/or studied using DInSAR techniques during the last twenty years. In 590 

some cases, DInSAR has allowed the identification of previously unknown subsidence 591 

areas providing information on distribution and rate of the settlement process. In other 592 

cases, DInSAR has been used as a tool for the analysis, modelling and management of 593 

potentially hazardous subsidence processes in combination with other complementary 594 

information. The principal limitations of DInSAR techniques are the loss of coherence 595 

between two acquisitions caused by temporal decorrelation (especially in agricultural 596 

and vegetated areas), the atmospheric artefacts that affect the displacement estimation, 597 
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the availability of images that depends on the satellites repeat-orbit cycle, and the low 598 

capability to measure horizontal displacements. However, the main advantages of 599 

DInSAR are the high performance measuring vertical displacements, the low cost in 600 

comparison with other techniques especially when studying large areas, the short 601 

revisiting period compared to field techniques, the large spatial coverage, the ability to 602 

operate even at night or under adverse weather conditions, and the possibility of 603 

analysing areas retrospectively using historical data since 1992 using the ESA’s SAR 604 

archives. The cost analysis performed has allowed us to identify the strongest points of 605 

the InSAR techniques compared with other conventional techniques: (1) higher data 606 

acquisition frequency and spatial coverage; and (2) lower annual cost per measurement 607 

point and per square kilometre. The obtained results show that in many cases the clear 608 

advantages of DInSAR compensate and even get over the limitations of this technique. 609 

In Spain more than ten different DInSAR techniques have been used for the study of 610 

subsidence phenomena. Although advanced techniques are widely used due to their 611 

capability to minimize atmospheric artefacts, in some cases, conventional DInSAR 612 

techniques are required due to the high velocity of the subsidence. As a consequence, 613 

DInSAR has become an indispensable tool to satisfactorily address many subsidence 614 

studies. In the future, the development of new algorithms, the launch of new satellites, 615 

the integration InSAR data with ground-based measurements and the joint performance 616 

of ground and airborne platforms will allow improving substantially the resolution and 617 

precision of DInSAR techniques and the monitoring and managing of ground 618 

subsidence hazards. 619 
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Table 1. Radar systems employed in the reported subsidence studies in Spain. ESA: 1 

European Space Agency; DLR: German Aerospace Center; JAXA: Japan Aerospace 2 

Exploration Agency; UPC: Universidad Politécnica de Cataluña; IG: Institut de 3 

Geomàtica; ASI: Italian Space Agency. 4 

Satellite- and 

ground-based 

SAR systems 

Agency / 

Institution 

Start-

End 

Band Wavelength 

(cm) 

Revisiting 

period 

(days) 

Resolution 

(azimuth x 

range)  

ERS 1-SAR ESA 1991-

2000 

C 5.6 35 4 m x 20 m 

ERS 2-SAR ESA 1995-

2010 

C 5.6 35 4 m x 20 m 

ENVISAT-

ASAR 

ESA 2002-

2011 

C 5.6 35 4 m x 20 m 

TerraSAR-X DLR 2007-

2012 

X 3.1 11 2 m x 3 m 

ALOS-

PALSAR 

JAXA 2005- L 23.6 46 10 m x 10 m 

GBSAR UPC 2007 X 3.1 User-defined 0.5 m x 0.5 m 

IG 2008- Ku 1.8  User-defined 0.5 m x 0.0044 

rad 

Cosmo-

Skymed-1 

ASI 2007- X 3.1 < 24 hours < 1 m x 1 m 

 5 

6 
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Table 2. DInSAR technique and pixel selection criteria implemented in the software 7 

packages applied to study subsidence in Spain. Software developer is also indicated. 8 

Technique Pixel 

selection 

criteria 

Software name Developer 

Conventional 

DInSAR 
Coherence 

DIAPASON (Differential 

Interferometric Automated 

Process Applied to Survey 

Of Nature) 

Centre National de la 

Recherche Scientifique, 

France 

SARscape SARMAP, Switzerland 

DORIS (Delft Object-

Oriented Radar 

Interferometry Sotfware) 

Technical University of 

Technology, The 

Netherlands 

EPSIE  Indra, Spain  

Advanced 

DInSAR 

Amplitude 

SPN (Stable Point 

Network ) 

Altamira Information, 

Spain 

Delft PSI software 

Technical University of 

Technology, The 

Netherlands 

Amplitude 

and 

coherence 

IGPSI (Persistent Scatters 

Interferometry chain of the 

Institute of Geomatics)  

Instituto de Geomática, 

Spain 

Coherence 

CPT (Coherent Pixel 

Technique) 

Universidad Politécnica 

de Cataluña, Spain 

DISSIC 
Instituto Cartográfico 

de Cataluña, Spain 

SBAS  (Small Baseline) 

Institute for 

Electromagnetic 

Sensing of the 

Environment (IREA-

CNR.), Italy  

Coherent Target 

Monitoring 

Atlantis Scientific Inc., 

US. 

Interferometric Stacking 
Instituto de Astronomía 

y Geodesia, Spain 

Multi-Temporal InSAR 

Analysis Package 

(MTIANPAC) 

Instituto de Astronomía 

y Geodesia, Spain 

Phase 

stability 

Stanford Method for 

Persistent Scatterers 

(StaMPS) 

Stanford University, US 

 9 

 10 

11 



3 

 

Table 3. Estimated precision of subsidence measurements obtained with DInSAR in the 12 

analysed areas of Spain (See Figure 1 for locations). (*) The error is computed as the 13 

average absolute difference between the in situ and InSAR measurements for the whole 14 

available data.  15 

Study site 

Field 

complementary 

measurements 

Period studied Error (*) 

Barcelona (Sant Feliu de 

Llobregat pilot site) 
Levelling 

2008-pres. ± 2 mm 

Cambrils Levelling 2008-pres. ± 2 mm 

Cardona GPS 1997-pres. 50 mm 

Cardona Levelling 2006-pres. ± 1.2 mm 

Girona Levelling 2008-2010 ± 2 mm 

La Palma GPS 1994-2008 ≤ 10 mm 

La Unión 
Levelling 2003-2004 5.0  3.0 mm 

Extensometers 2003-2010 - 

Sabadell-Sant Quirze del 

Vallès 
Levelling 

2008-2010 ± 2 mm 

Sallent 

Levelling 1997-2004 < 2 mm / year 

Extensometers 2004-2010 ± 0.1 mm 

Inclinometers 2008-2010 0.01 mm / 500 mm 

GB-SAR 2006-2007  

Santa Perpetua de 

Mogoda 
Levelling 

2008-pres ± 2 mm 

Súria GPS 2006-2008 12 mm 

Tenerife GPS 1994-2007 ≤ 10 mm 

Vega Media of the 

Segura River Basin 
Extensometers 

2001-2005 

2001-2007 

2001-2003 

2000-2007 

5.0 ± 2.8 mm 

3.9  3.8 mm 

< 2.4 mm 

4.5 ± 4.1 mm 



4 

 

3  Table 4. Comparative of method for measuring ground subsidence. G: Good; MD: Medium; P: Poor; MN: Manually; A: Automatic; SA: 16 

Semiautomatic. 17 

Method 
Precision 

 

Displaceme

nt 

component  
Survey 

scale 

Conditions and operating environment 
Degree of 

automation 
Usual sample 

frequency  Rural 

(woody) 

Rural 

(scrub) 
Urban Hilly 

Adverse 

weather 

conditions 

Noctur

nal 

Data 

acquisiti

on 

Post-

processi

ng 

Trigonometric 

levelling 
cm 

Vertical Line 

network 
MD-P MD-P G-MD G P P MN SA Monthly-annual 

Geometric levelling mm 
Vertical Line 

network 
MD-P MD-P G-MD P P P MN SA Monthly-annual 

Settlement cell mm Vertical Point G G G G MD-G MD-G MN-A MN-SA Monthly-continuous 

Borehole 

extensometer 
mm 

Vertical 
Point G G G G MD-G MD-G MN-A MN-SA Monthly-continuous 

Differential GPS mm 
Vertical and 

horizontal Point MD-P G-MD MD-P G G-P G MN-A MN-A 
Monthly-annual 

(or continuous) 

Conventional 

DInSAR 
mm 

Range Map 

pixel 
P MD-P G 

G-

MD 
G G A SA-A 

Monthly-weekly 

(variable) 

Advanced DInSAR mm Range Map 

pixel 
MD-P MD-P G 

G-

MD 
G G A SA-A 

Monthly-weekly 

(variable) 

GBSAR mm Range Map 

pixel 
MD-P MD-P G G G G A SA-A Hourly-daily 

LIDAR/ALS/ALT

M 
dm 

Range Map 

pixel 
MD MD G G MD-P G-MD A SA-A Monthly-annual 

 18 
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