
 Open access Journal Article DOI:10.1002/NAV.10103

Radar pulse interleaving for multi-target tracking — Source link

Moustafa Elshafei, Hanif D. Sherali, J. Cole Smith

Institutions: King Fahd University of Petroleum and Minerals, Virginia Tech, University of Arizona

Published on: 01 Feb 2004 - Naval Research Logistics (Wiley Subscription Services, Inc., A Wiley Company)

Topics: Fire-control radar, Interleaving, Radar tracker, Radar and Lagrangian relaxation

Related papers:

 On the complexity of coupled-task scheduling

 Approximation algorithms for UET scheduling problems with exact delays

 Scheduling for a multifunction phased array radar system

 Multitarget interleaved tracking for phased-array radar

 Optimal radar pulse scheduling using a neural network

Share this paper:

View more about this paper here: https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-
3qync5s0vb

https://typeset.io/
https://www.doi.org/10.1002/NAV.10103
https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb
https://typeset.io/authors/moustafa-elshafei-2wr5sfzln5
https://typeset.io/authors/hanif-d-sherali-5cbw51fphv
https://typeset.io/authors/j-cole-smith-28brtgr3a3
https://typeset.io/institutions/king-fahd-university-of-petroleum-and-minerals-2tk0okhr
https://typeset.io/institutions/virginia-tech-1qdxqc03
https://typeset.io/institutions/university-of-arizona-3bsodx28
https://typeset.io/journals/naval-research-logistics-3fs69pos
https://typeset.io/topics/fire-control-radar-3mr52b5x
https://typeset.io/topics/interleaving-2lxz6cdp
https://typeset.io/topics/radar-tracker-1hoa2mab
https://typeset.io/topics/radar-2ss4gg1b
https://typeset.io/topics/lagrangian-relaxation-25w5hbo7
https://typeset.io/papers/on-the-complexity-of-coupled-task-scheduling-3dc7tmu3a5
https://typeset.io/papers/approximation-algorithms-for-uet-scheduling-problems-with-4p28af0j04
https://typeset.io/papers/scheduling-for-a-multifunction-phased-array-radar-system-qaa61dlyr9
https://typeset.io/papers/multitarget-interleaved-tracking-for-phased-array-radar-33bngjsv8s
https://typeset.io/papers/optimal-radar-pulse-scheduling-using-a-neural-network-2vadg791v9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb
https://twitter.com/intent/tweet?text=Radar%20pulse%20interleaving%20for%20multi-target%20tracking&url=https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb
https://typeset.io/papers/radar-pulse-interleaving-for-multi-target-tracking-3qync5s0vb

Radar Pulse Interleaving for Multi-target Tracking

⋆ Moustafa Elshafei

⋆⋆ Hanif D. Sherali

⋆⋆⋆ J. Cole Smith

⋆ Department of Systems Engineering

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

⋆⋆ Grado Department of Industrial and Systems Engineering (0118)

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

⋆⋆⋆ Department of Systems and Industrial Engineering

University of Arizona

Tucson, AZ 85721

Acknowledgment: Dr. M. Elshafei acknowledges the King Fahd University of Petroleum

and Minerals for its support in conducting this research. Dr. H.D. Sherali also acknowledges

the support of the National Science Foundation under Grant Nos. DMI-9812047 and DMI-

0085640.

Abstract

In a multifunction radar, the maximum number of targets which can be managed or

tracked is an important performance measure. Interleaving algorithms developed to operate

radars exploit the dead-times between the transmitted and the received pulses to allocate

new tracking tasks that might involve transmitting or receiving pulses, thus increasing the

capacity of the system. The problem of interleaving N targets involves a search among

N ! possibilities, and sub-optimal solutions are usually employed to satisfy the real-time

constraints of the radar system. In this paper, we present new tight 0-1 integer programming

models for the radar pulse interleaving problem, and develop effective solution methods based

on Lagrangian relaxation techniques.

Key Words: Radar tracking, pulse interleaving, 0-1 integer programming, Lagrangian

relaxation.

1 Introduction

A multifunction radar, which is based on an electronically phased array, can steer the

antenna beam toward any direction almost instantaneously [13]. Because of this feature, a

multifunction radar can simultaneously perform two kinds of tasks: surveillance and track-

ing. Air defense radars may also be required to perform additional tasks, including missile

midcourse guidance and target-via-missile (TVM) operations. Such tasks are used for ex-

ample, in the Patriot air defense system [2, 8].

The last decade has witnessed a significant enhancement in the technology of ballistic

missiles (BM) and atomic warheads, which pose a serious challenge for defense systems.

Further technologies such as the Multiple Independently Targeted Re-entry Vehicle (MIRV)

that can dispatch several nuclear warheads from a single in-flight missile, and the Russian-

built fractional orbit bombardment system (FOBS) that permits missiles or warheads to

remain in earth orbit before beginning their descent, also represent a serious threat to defense

systems. Such an FOBS technology provides the ability to launch a massive attack from any

direction rather than just depending on a ballistic pathway arching over the North Pole.

The task of tracking these multi-targets can be even harder in the presence of debris, chaff,

decoys, and Electronic Counter Measures (ECM). Due to the enormous speed of the BM

at re-entry (6-10 km/s), even with the current satellite early warning systems, the radar

defense system could be left with only 10-20 seconds from spotting the re-entering objects

to identifying the true targets, tracking these targets, and engaging counter-defense actions.

In such scenarios, the enormous speed of the approaching targets necessitates a high

updating rate of the target tracking information, including the estimation of target position

and velocity, in order to facilitate an effective operation of the anti-missile defense system.

It is then vital to employ efficient operational methods that would minimize the cycle time

required to update the information for all possible targets.

On the other hand, in conventional air defense systems and in air traffic control, the critical

performance measure is the ability of the radar system to track a large number of targets

or aircraft. Once the surveillance tasks have been defined, the objective is to maximize

the number of targets that are tracked during an available time horizon (total time minus

1

the surveillance time). In all these applications, since we have an estimate of the range

(distance) of the targets, we know the dead-time between the transmitted pulse and the

received (reflected) pulse within a specific range of uncertainty. Therefore, we can interleave

other pulses in these intervals in order to enhance the effectiveness and the timeliness of the

tracking operations.

The computational burden of scheduling the transmitting of radar pulses for N targets

increases with the number of targets, being governed by the search among N ! possibilities,

and usually, sub-optimal solutions are employed [3, 5]. These solutions could be obtained by

sorting the targets based on some criterion as in the Farina and Neri algorithm [3], which

orders the targets according to decreasing values of their distances from the radar, and then

allocates each pulse to a time slot in a feasible manner using this ordered scheme. In another

approach [5], the authors propose the use of a Hopfield Neural Network for a scenario that

assumes no uncertainties in the received pulses.

In this paper, we investigate efficient solution methods for the radar pulse interleaving

problem based on Lagrangian relaxation approaches to new 0-1 integer programming mod-

els of the problem that possess tight continuous relaxations [9]. Nemhauser and Wolsey [7]

provide a general discussion on Lagrangian relaxation, and references [11, 6] discuss mod-

els related to similar task scheduling problems. We formulate the radar pulse interleaving

problem using two possible objective functions as follows.

1. Problem 1. Given a fixed time interval T , and given N targets, each with an associ-

ated risk (cost) of remaining unscanned, how can we scan the targets to minimize the

overall risk of the unscanned targets?

2. Problem 2. Given N targets, what is the minimum time required to scan all of them?

In Section 2, we describe these two problems in more detail and discuss their modeling

assumptions. We mathematically formulate these problems in Section 3 and develop several

specialized techniques for their solution in Sections 4 and 5, respectively. In Section 6,

we provide some results and compare the effectiveness of the proposed methods versus the

heuristic described in [3]. Finally, we conclude this paper in Section 7, providing a summary

of our results and possible extensions for future research.

2

2 Problem Description

Let us define the following (see Figure 1).

T : number of time slots, each of duration Ts seconds.

τi: transmit pulse duration (integral number of time slots) for the ith target.

si: the starting time slot of the transmit pulse to track the ith target.

ri: the time slot at the center of the duration over which the radar receiver should be on

to completely receive the echo pulse of the ith target.

∆i: uncertainty measure for the received pulse, whereby 2∆i + 1 represents the duration

(integral number of time slots) over which the radar receiver should be on to completely

receive the echo pulse of the ith target, (i.e., ∆i on either side of slot ri). The received

echo pulse is assumed to be totally contained in this period, 2∆i + 1, as depicted in

Figure 1.

di: the estimated gap (integral number of time slots) between si and ri (governed by the

distance to the target, and the receiving pulse period) as ascertained from the previous

scans. (Note that di ≥ τi + ∆i.)

The receiving pulse uncertainty, ∆i, depends on τi, the target speed, the radar cell size,

the target tracking cycle length, the range of the target, and the number of targets to be

tracked. For example, using simple mathematics, if the target travels at a radial speed of

600 m/s and the tracking cycle is 1.0 second, the target will be displaced by 600 meters

from the previous scan cycle, and the new echo pulse gap could be different from di by 4.0

µ-seconds. Clearly, ∆i depends on the allowable uncertainty in the target position, which is

expected to be small for nearby targets, but much more tolerable for far away targets.

The transmit pulse duration τi is different from the true transmit pulse width, where the

latter can be between 0.1 µ-seconds for high resolution radars to more than 100 µ-seconds

for conventional radars. The choice of this pulse duration depends on the target range, the

required resolution, and the dwell time. Alternatively, τi could represent a duration during

which multiple radar pulses are transmitted. In many cases, it is desirable to illuminate the

target using a series of consequent pulses to mitigate the effect of clutter or slowly mov-

ing objects. Multiple pulses with carrier frequency shifts are also employed for Electronic

3

1 2 3

1 2 3

· · · si · · · ri

τi

∆i
✛ ✲ ∆i

✛ ✲

✛ ✲di

Figure 1: Illustration of the transmitted pulse, the received pulse, and the uncertainty for

the ith target.

Counter-Counter Measures (ECCM). In addition, τi depends also on the transmitter max-

imum duty cycle, which dictates a certain waiting time before the next radar transmitter

pulse is dispatched. In high performance solid state radars, the duty cycle is between 0.02

to 0.1 µ-seconds, while in conventional radars, it varies between 0.2-0.5 µ-seconds.

In this paper, we are concerned with the basic task of scheduling a transmit pulse of

width τi for the ith target, and we assume that τi is a given entity based on the radar duty

cycle and the type of radar pulse that has been designated for this target. It is required to

determine the schedule for all the transmitted and received pulses, ensuring that each time

slot is occupied by at most one task.

Example 1. Suppose that we are given T = 12 and five targets having d1=2, d2=3, d3=4,

d4=5, and d5=6. For simplicity, if we assume ∆i=0 and τi=1 for all i, then one possible

arrangement is shown in Table 1. However, it is not clear if this solution is optimal or

not. Note that there are two unused time slots (slots 7 and 11), yielding a time utilization

efficiency of (10/12), or about 83%.

As a quick estimate, it is readily seen that the minimum number of time slots, M , to

interleave radar pulses for N targets satisfies

N
∑

i=1

τi + N + 2
N

∑

i=1

∆i ≤ M ≤ N +
N

∑

i=1

(di + ∆i). (1)

4

1 2 3 4 5 6 7 8 9 10 11 12

s1 r1

s2 r2

s3 r3

s4 r4

s5 r5

Table 1: Feasible solution for Example 1.

The left-hand side of (1) is based on assuming a 100% utilization of the total number of

time slots, and the right-hand side is based on performing the tasks one after the other in

any order. In this case, the transmitted pulse for each task is sent and the radar waits until

it receives its echo pulse before transmitting the next pulse.

3 Model Formulations

Let us define the set T = {1, ..., T}, and the binary variables xij as

xij = 1 if the transmit pulse of target i begins at slot j ∈ T

xij = 0 otherwise. (2)

Note that if we examine any slot k, then this slot is occupied by the task of either transmitting

or receiving pulses with respect to target i, if either xij = 1 for j ∈ {k − τi + 1,...,k} ∩ T or

if xij = 1 for j ∈ {k − di − ∆i,...,k − di + ∆i} ∩ T . (The intersection with T ensures that

only defined values of j are considered.) Accordingly, let us define

Jk = {(i, j) : if xij = 1, then slot k would be occupied}, for all slots k = 1, ..., T.

From the previous statement, we have that

Jk = {(i, j) : target i ∈ {1, ..., N}, with either j ∈ {k − τi + 1, ..., k} ∩ T or

j ∈ {k − di − ∆i, ..., k − di + ∆i} ∩ T } for k = 1, ..., T, (3)

5

where undefined slots j in (3) are omitted from consideration. Furthermore, let Ci denote

the cost or risk of missing (not pulsing) target i. Hence, our objective is to minimize the

total cost given by (noting that
∑

j xij ≤ 1 ∀ i)

J =
N

∑

i=1

Ci

[

1 −
ti

∑

j=1

xij

]

=
N

∑

i=1

Ci −
N

∑

i=1

ti
∑

j=1

Cixij, (4)

where ti ≡ T − di − ∆i, ∀ i = 1, ..., N are introduced in order to ensure that if the target

i is pulsed by ti (xiti = 1), then in the worst case, the echo pulse will have been received

by the end of slot T . Consequently, based on (4), we can equivalently state the problem of

minimizing the total risk subject to the pulse or task constraints as follows.

P1: Maximize
N

∑

i=1

ti
∑

j=1

Cixij (5a)

subject to

ti
∑

j=1

xij ≤ 1, ∀ i = 1, ..., N (5b)

∑

(i,j)∈Jk

xij ≤ 1, ∀ k = 1, ..., T (5c)

xij ∈ {0, 1} ∀ i = 1, ..., N, j = 1, ..., ti. (5d)

The objective function (5a) is equivalent to minimizing (4), constraints (5b) require each

target to be pulsed at most once, constraints (5c) enforce that no tasks overlap during any

of the time slots, and constraints (5d) are logical restrictions on the defined decision variables.

For modeling Problem 2, we can first apply a simple heuristic such as that described in

[3] to find a feasible solution of total duration T slots, say, and then define the problem

of minimizing the makespan on the time slots spanning this duration. Noting that the

completion time (when the final pulse is received) for target i can be written as

ti
∑

j=1

(j + di + ∆i)xij ∀ i = 1, ..., N, (6)

6

we can formulate P2 as follows, where the objective function variable z represents the

makespan.

P2: Minimize z (7a)

subject to z ≥
ti

∑

j=1

(j + di + ∆i)xij ∀ i = 1, ..., N (7b)

ti
∑

j=1

xij = 1, ∀ i = 1, ..., N (7c)

∑

(i,j)∈Jk

xij ≤ 1, ∀ k = 1, ..., T (7d)

xij ∈ {0, 1} ∀ i = 1, ..., N, j = 1, ..., ti. (7e)

Note that in contrast with (5b), since each target is now designated to be pulsed, constraints

(7c) are written as equality restrictions.

Remark 1. P1 is a set packing problem and is likely to have a tight linear programming

relaxation. This could be further enhanced using the Reformulation-Linearization Technique

(RLT) as in Sherali, Adams and Driscoll [9] based on pairwise constraint products. In

contrast, even though the partitioning-packing structure (7c)-(7e) might have a tight linear

programming relaxation, this is not likely the case in the added dimension of z, along with

the constraints (7b). In other words, the problem of minimizing a piecewise linear convex

function over the region defined by (7c)-(7e) is likely to yield a weak lower bound when

the integrality conditions (7e) are relaxed. Hence, we expect P2 to be a significantly more

difficult problem to solve to (near) optimality. In light of this, as an alternative to using P2,

we reflect the philosophy of completing all the tasks as early as possible by penalizing late

completions at an increasing (squared) rate. For example, we could formulate the following

problem, where T is determined as for P2.

P2′: Minimize
N

∑

i=1

ti
∑

j=1

(j + di + ∆i)
2xij (8a)

subject to (7c) − (7e). (8b)

7

In our computations, we study the effect of solving this problem in lieu of P2 on determining

the minimal makespan.

Another alternative in this same vein is to solve the linear programming relaxation of P2,

and then compose an objective function for use in P2′ by surrogating (7b) using the optimal

dual variable values obtained from this linear programming solution. Let λi ∀ i ∈ N denote

the optimal values of the dual variables associated with (7b), and define

Cij = λi(j + di + ∆i) ∀ i = 1, ..., N, ∀ j = 1, ..., ti. (9)

We may then solve the following problem.

P2′′: Minimize
N

∑

i=1

ti
∑

j=1

[Cij + (j + di + ∆i)
2]xij (10a)

subject to (7c) − (7e). (10b)

We also investigate this variant for designing a heuristic method for Problem P2. A theo-

retical study that explores the connections between P2 and its alternatives P2′ and P2′′ is

an interesting topic of research that we propose for future study.

4 Lagrangian Relaxation Approach for Problem 1

In this section, we develop a Lagrangian dual technique for providing tight upper and lower

bounds within a branch-and-bound framework for solving Problem P1. Let uk, k = 1, ..., T

be Lagrangian multipliers associated with (5c). We can then construct a Lagrangian dual

formulation for Problem P1 as follows.

LDP1: Minimize {v(u) : u ≥ 0} , (11)

8

where v(u) is evaluated via the following Lagrangian subproblem, given multipliers u ≡ (uk,

∀ k ∈ T).

v(u) : Maximize
N

∑

i=1

ti
∑

j=1

Cixij +
T

∑

k=1

uk

1 −
∑

(i,j)∈Jk

xij

 (12a)

subject to

ti
∑

j=1

xij ≤ 1, ∀ i = 1, ..., N (12b)

x ≥ 0. (12c)

Note that (12) is trivially solvable, yielding a binary extreme point optimum. This property

also entails that the optimal value of LDP1 equals that of the linear programming relaxation

to Problem P1. Consider the following heuristic approach for solving this Lagrangian dual

problem, using the primal solution recovery procedure of Sherali and Choi [10].

Heuristic HLDP1 for Solving LDP1

Initialization: Let N1 be a constant representing the maximum number of iterations per-

mitted, let ǫ1 and ǫ2 be suitable termination tolerances, let N2 be the number of iterations

performed before triggering the primal solution recovery scheme, and let N3 be the minimum

number of iterations between successive primal heuristic applications. Initialize the iteration

(or step) counter s = 1. Obtain a lower bound z (> 0) for Problem LDP1 by executing the

bounding heuristic described in Section 4.4.1 below, and let the initial Lagrangian multipliers

be us
k = 0 for k = 1, ..., T . Initialize the incumbent dual upper bound value to ẑ = ∞, and

the aggregate primal recovery solution x̃ ≡ 0.

Step 1: Solve the subproblem (12) to evaluate v(us), and obtain the corresponding solution

xs. Let zs ≡ v(us), and if s > N2, set x̃ ← x̃ + xs. Compute the subgradient gs of v(·) at

u = us having components gs
k =

(

1 −
∑

(i,j)∈Jk
xs

ij

)

, k = 1, ..., T . If zs < ẑ, then set ẑ = zs

and store us as the incumbent dual solution. If s > N2 in addition to the previous condition

zs < ẑ, determine the current primal estimate x̂ = x̃/(s − N2), and compute an updated

lower bound z based on the heuristic described in Section 4.4.4 below, provided at least

N3 iterations have been executed since last invoking this heuristic. (This latter check tends

to ensure that x̂ has changed sufficiently enough to make a difference within the heuristic

scheme.)

9

Step 2: Compute a direction ds and a step size λs for updating the Lagrangian multipliers

u. (Appropriate choices for ds and λs are given in Sections 4.4.2 and 4.4.3, respectively.)

Set us+1 = Pu≥0[u
s + λsds], where Pu≥0[·] projects [·] onto {u: u ≥ 0}. Increment s by 1. If

s > N1, (ẑ − z)/z ≤ ǫ1, or ||gs|| ≤ ǫ2, then terminate. Otherwise, return to Step 1.

4.4.1 Initial Lower Bounding Heuristic

To obtain a lower bound z for LDP1 via an initial feasible solution for P1, we use the

following greedy algorithm, which attempts to schedule pulsing for the most critical (highest

Ci valued) jobs first before proceeding to less critical jobs. We denote this heuristic HP1.

Initialization: Assume that all jobs i = 1, ..., N have been sorted in nonincreasing order

of their Ci-values. Let F = 1 denote the first available slot in the horizon. Initialize the

iteration counter i = 1.

Step 1: If any slot F, ..., F +τi−1 or F +di−∆i, ..., F +di +∆i is unavailable, then proceed

to Step 2. Otherwise, begin the pulsing of target i at F . Update F ← F + τi and increment

i by one. If i > N , stop. Otherwise, repeat Step 1.

Step 2: Find the smallest r ≥ 1, if it exists, such that F + r, ..., F + r + τi − 1 and

F + r + di − ∆i, ..., F + r + di + ∆i are unoccupied, where F + r + di + ∆i ≤ T . If r exists,

schedule the pulsing of target i at F + r. In any case, increment i by one. If i > N , stop.

Otherwise, return to Step 1. (Note that F is not updated at this step, thereby permitting

other subsequent targets to be possibly pulsed prior to the target(s) considered thus far.)

4.4.2 Method for Selecting the Direction ds

We employ Sherali and Ulular’s [12] average direction strategy (ADS), in which the new

direction for each iteration bisects the angle between the previous direction and the subgra-

dient direction. At s = 1, ds = −gs. For s ≥ 2, we take

ds = −gs +
||gs||

||ds−1||
ds−1. (13)

4.4.3 Method for Selecting the Step Size λs

10

In selecting our step size λs for each iteration, we combine ideas from Held et al. [4] and

Sherali and Ulular [12]. Held et al. [4] prescribe a step length given by

λs = βs (zs − z)

||ds||2
, (14)

where βs is a suitable parameter, and z, zs, and ds are defined above. To accelerate the

procedure, we used the block-halving scheme of Sherali and Ulular [12]. In this strategy,

we divide the N1 maximum allowable iterations into several blocks of N1b iterations each.

Within each of these blocks, we initialize the step length using (14), with βs ≡ β/⌈s/N1b⌉ for

some specified β, and then we retain this initial step length throughout the corresponding

block.

4.4.4 Lower Bounding Heuristic at Step 1 of HLDP1

From the Lagrangian procedure, we have a current primal solution estimate x̂. For i =

1, ..., N , let yi ∈ arg maxj=1,...,ti{x̂ij}. Consider the solution given by pulsing each target i at

time slot yi, whenever x̂iyi
> 0. This solution is likely to be infeasible. Define fk, k = 1, ..., T ,

to be the degree of infeasibility for each time slot k, that is, the number of targets occupying

slot k during their pulsing or receiving phases in excess of one. Let F =
∑T

k=1 fk be the

total amount of infeasibility in the current solution. If no infeasibilities occur, we proceed

directly to Step 8.

Step 1: For each target i = 1, ..., N that is being pulsed in the current solution, examine

the possible beginning pulsing times for i (from 1 to ti excluding yi) that would yield a

decrease in F . Let M be the set of all such possible moves (i, yi, y
l
i), where yl

i would be the

new value of yi under move l. If M = ∅, go to Step 2. Otherwise, go to Step 3.

Step 2: Identify the scheduled pulse which is currently being pulsed or received during the

most number of infeasible time slots (time slots occupied by two or more targets). Cancel

the pulsing of this target, and go to Step 4.

Step 3: Find the move l∗ in M which maximizes the decrease in F . Set yi = yl∗

i , and go

to Step 4.

11

Step 4: Revise f and F based on the modified current solution. If F = 0, proceed to Step

5. Otherwise, return to Step 1.

Step 5: For each unscheduled target, check (in nonincreasing order of their C values) to

see if the target can be feasibly interleaved among the currently scheduled pulses. Perform

any such possible insertions and terminate.

Remark 2. We may also approach the solution of Problem 1 by equivalently reformulating

P1 in the following manner in order to reveal a particular network substructure. Define

variables

yij =

{

1 if the receiving pulse blocked-off duration begins at slot j

0 otherwise

for i = 1, ..., N, j = 1 + di − ∆i, ..., T − 2∆i, (15)

where undefined y-variables are assumed to be zero below. Furthermore, in lieu of Jk, define

Jx
k = {(i, j) : i ∈ {1, ..., N}, j ∈ {k − τi + 1, ..., k} ∩ T } (16a)

and

Jy
k = {(i, j) : i ∈ {1, ..., N}, j ∈ {k − 2∆i, ..., k} ∩ T } . (16b)

Then we may transform (5) equivalently to the following problem.

P1′: Maximize
N

∑

i=1

ti
∑

j=1

Cixij (17a)

subject to

ti
∑

j=1

xij ≤ 1, ∀ i = 1, ..., N (17b)

∑

(i,j)∈Jx
k

xij +
∑

(i,j)∈J
y

k

yij ≤ 1, ∀ k = 1, ..., T (17c)

xij = yi,j+di−∆i
∀ i = 1, ..., N, j = 1, ..., ti (17d)

xij ∈ {0, 1} ∀ i = 1, ..., N, j = 1, ..., ti, and

yij ≥ 0 ∀ i = 1, ..., N, j = 1 + di − ∆i, ..., T − 2∆i. (17e)

12

Note that constraints (17c) have the interval matrix property, in which the coefficients are all

0’s and 1’s, and in each column, the 1’s appear consecutively [7]. Such structures are reducible

to a network structure by subtracting the first row from the second row, the second row from

the third row, and so on. We attempted to exploit this feature within a Lagrangian opti-

mization algorithm by dualizing constraints (17b) and (17d), and constructing a Lagrangian

dual subproblem consisting of the network constraints derived from (17c). However, our

computational experience demonstrated that solving the Lagrangian dual problem based on

P1 yields significantly tighter bounds at termination of the proposed (heuristic) scheme than

those achieved by similarly solving the Lagrangian dual based on P1′. We also found that

directly solving P1′ by integer programming is inefficient as compared with optimally solving

P1. ✷

5 Minimizing the Total Completion Time: Problem 2

Recall that Problem 2 described in Section 1 is concerned with minimizing the makespan,

i.e., minimizing the latest completion time of all the tasks. We now develop a Lagrangian

dual heuristic for solving Problem 2 similar to the one developed for Problem 1.

Let γi, i = 1, ..., N be Lagrangian multipliers associated with (7b), and let uk, k =

1, ..., T be Lagrangian multipliers associated with (7d). We construct the Lagrangian dual

formulation for Problem P2 as follows.

LDP2: Maximize {v(γ, u) : γ ≥ 0, eγ = 1, u ≥ 0} , (18)

where e is a vector of N ones, and v(γ, u) is evaluated via the following Lagrangian subprob-

lem, given multipliers γ and u.

v(γ, u) : Minimize
N

∑

i=1

γi

(

ti
∑

j=1

(j + di + ∆i)xij

)

+
T

∑

k=1

uk

∑

(i,j)∈Jk

xij − 1

 (19a)

subject to

ti
∑

j=1

xij = 1, ∀ i = 1, ..., N (19b)

0 ≤ xij ≤ 1 ∀ i = 1, ..., N, j = 1, ..., ti. (19c)

13

The problem (19) is trivially solvable, and because of its integrality property, the optimal

value of LDP2 is equal to that of the linear programming relaxation to P2.

Heuristic HLDP2 for Solving LDP2

Initialization: Let N1, N2, N3, ǫ1, and ǫ2, be algorithmic parameters as defined in HLDP1.

Initialize the iteration counter s = 1. Obtain an upper bound z for Problem LDP2 by ex-

ecuting the heuristic of Farina and Neri [3] described in Section 5.5.1, and let the initial

Lagrangian multipliers γs
i = 1/N for i = 1, ..., N , and us

k = 0 for k = 1, ..., T . Initialize the

incumbent dual lower bound value to ẑ = −∞, and the aggregate primal recovery solution

to x̃ ≡ 0.

Step 1: Solve the subproblem (19) to evaluate v(γs, us), and obtain the corresponding solu-

tion xs. Let zs ≡ v(γs, us), and if s > N2, set x̃ ← x̃+xs. Compute the subgradient gs of v(·)

at γ = γs and u = us having components (g1s
i , g2s

k), where g1s
i =

(

∑ti
j=1(j + di + ∆i)x

s
ij

)

,

i = 1, ..., N , and g2s
k =

(

∑

(i,j)∈Jk
xs

ij − 1
)

, k = 1, ..., T . If zs > ẑ, then set ẑ = zs and

store (γs, us) as the incumbent dual solution. If s > N2 in addition to the previous condition

zs > ẑ, determine the current primal estimate x̂ = x̃/(s − N2), and compute an updated

upper bound z based on the heuristic described in Section 5.5.4 below, provided that N3

iterations have been executed since last invoking this heuristic.

Step 2: Compute a direction ds having components d1s
i for i = 1, ..., N corresponding to the

γ variables and d2s
k for k = 1, ..., T corresponding to the u variables, and a step size λs for

updating the Lagrangian multipliers γ and u. Appropriate choices for ds and λs are given

in Sections 5.5.2 and 5.5.3, respectively. Set us+1 = Pu≥0[u
s + λsd1s], where Pu≥0[·] projects

[·] onto {u: u ≥ 0}, and γs+1 = Pγ≥0,eγ=1[γ
s + λsd2s], where Pγ≥0,eγ=1[·] projects [·] onto

{γ: γ ≥ 0, eγ = 1}. Note that the latter projection operation may be done via a variable

dimension projection method, as detailed in [1]. Increment s by 1. If s > N1, (z− ẑ)/z ≤ ǫ1,

or ||gs|| ≤ ǫ2, then terminate. Otherwise, return to Step 1.

5.5.1 Initial Upper Bounding Heuristic

To provide a quick upper bound to the problem, we execute an adaptation of the heuristic of

Farina and Neri [3] (we will later compare our final upper bound to this initial value). The

original version of this heuristic, summarized below, assumes that τi = 1 and ∆i = 0 for all

14

i = 1, ..., N . A modification of this algorithm to accommodate more general values of τ and

∆ is straightforward.

Farina and Neri Heuristic (FNH) for Problem P2

Initialization. Sort all the targets in nonincreasing order of di, and assume that these

are re-indexed as i = 1, ..., N . Let j = 2, cntR = cntL = 1, T =
∑N

i=1 di + N , T0 = 0, and

N = N . Schedule the transmission of target 1 in slot 1, and its reception in slot d1 + 1.

Step 1: Schedule reception of targets after previous target receptions. If

dj ≤ cntR, proceed to Step 2. Otherwise, schedule the transmission of target j in slot

d1 + j − dj + T0, and its reception in slot d1 + j + T0. If j = N , terminate; else, increment j

and cntR by one, and repeat Step 1.

Step 2: Schedule reception of targets before previous target receptions. Let

J = j, and let d̂ = dJ−1 − cntR, i.e., d̂ is the number of slots between the last transmitted

pulse and the first received pulse. Consider each target j = J, ...,N in turn. If dj < d̂, then

schedule the transmission of target j in slot d1 − cntL − dj + 1 + T0, and its reception in slot

d1 − cntL + 1 + T0, increment cntL by one, and set d̂ = dj − 1. Repeat for the next j, until

j = N .

Step 3: Interleave targets in any available slots. For each unscheduled target

j ∈ {J, ...N} in turn, find the first unoccupied slot k ∈ {T0 + 2, ..., T0 + d1} such that slots

k and k + dj are unoccupied. If such a slot exists, schedule the transmission of target j in

slot k, and its reception in slot k + dj.

Step 4: Check for termination. Terminate if all targets have been scheduled. Other-

wise, let T0 ← T0 + d1 + cntR. Let N be the number of unscheduled targets, and re-index

these targets as i = 1, ...,N as before. Schedule the transmission of target 1 in slot T0+1, and

its reception in slot T0 +d1 +1. If N ≥ 2, return to Step 1, with j = 2 and cntR = cntL = 1;

otherwise, terminate.

5.5.2 Method for Selecting the Direction ds

15

We again utilize the ADS scheme for updating the direction, setting ds = gs at s = 1, and

for s ≥ 2, setting

ds = gs +
||gs||

||ds−1||
ds−1. (20)

5.5.3 Method for Selecting the Step Size λs

Similar to HLDP1, we set the initial step size for this procedure according to

λ1 = β
(z − z1)

||d1||2
, (21)

and we again retain this initial step length until we reach some reset criterion. In lieu of

resetting the dual to its incumbent value and recomputing the step length after some N1b

iterations as in HLDP1, we instead track the number of consecutive iterations that fail to

improve the lower bound. When this number of iterations reaches some parameter N4, we

reset the incumbent dual value and set the length of the new step size to half the length of

the previous step size.

5.5.4 Upper Bounding Heuristic at Step 1 of HLDP2

Given the current primal solution estimate x̂, let yi ∈ arg maxj=1,...,ti{x̂ij}, i = 1, ..., N and

consider the solution given by pulsing each target i at time slot yi. Similar to the heuristic

of Section 4.4.4, define fk, k = 1, ..., T , to be the number of targets occupying slot k in

excess of one, and let F =
∑T

k=1 fk. If no infeasibility exists (i.e., F = 0), then terminate

the heuristic. Otherwise, define ∆ to be some positive integer, and set αi = 1 for i = 1, ..., N

and proceed to Step 1.

Step 1: For each target i = 1, ..., N , examine the possible beginning pulsing times for i

from αi to ti, excluding yi, that would yield a decrease in F . Let M be the set of all such

possible moves (i, yi, y
l
i), where yl

i would be the new value of yi under move l. If M = ∅, go

to Step 2. Otherwise, go to Step 3.

Step 2: Let T ← T + ∆, and let αi = ti + 1 and ti ← ti + ∆ for i = 1, ..., N . Return to

Step 1.

16

Step 3: Find the move l∗ in M that maximizes the decrease in F . Set yi = yl∗

i and go to

Step 4.

Step 4: Revise f and F based on the modified current solution. If F = 0, terminate;

otherwise, return to Step 1.

6 Computational Results: Applications to Some Attack Scenarios

In this section, we investigate three experiments (denoted A, B, and C below) pertaining to

the following two particular attack scenarios. The test cases generated by these experiments

represent realistic data sets that typically arise in practice, and help provide insights into

the relative performance of the various methodologies based on certain characteristics of the

scenarios, as identified in the sequel.

1. Conventional massive air attack scenario, with distances ranging from 150-550 km, N =

10-40 targets, pulses 2-10 µ-seconds, and target speeds of 180-1200 m/sec. Uncertainty

in tracking distance may vary between a few hundred meters for nearby targets to 5000

meters for recently detected distant targets. (Experiments A and B pertain to this

scenario.)

2. Ballistic attack scenario with 2-3 missiles, each dispatching 5-10 heads, decoys, and

chaffs (N = 10-30), with distances ranging from 50-150 km, speeds in the range of

3000-9000 m/s, and transmit pulse periods between 0.2 µ-seconds and 2.0 µ-seconds.

Uncertainty is of the order of one or two basic pulse durations corresponding to a target

position uncertainty between a few hundred meters at early detection to a few meters

before target engagement. (Experiment C corresponds to this scenario.)

In the experiments described below, we define a performance measure for each of the two

problems. For Problem 1, we simply report the weighted number of targets pulsed within

the designated time limit. For Problem 2, in addition to the makespan required to pulse all

the targets, we define another standard performance measure known as the pulse packing

17

efficiency that is given by

η =
Total time to track all targets sequentially

Minimum time to interleave all targets
=

∑N

i=1(1 + di + ∆i)

Tmin

, (22)

where Tmin is defined as the optimal value for Problem P2. The following three experiments

are performed using data derived from the foregoing two scenarios. All computations were

conducted on a SUN Ultra-10 Workstation running Solaris 8, having 256 MB RAM. Also,

for runs requiring the solution of linear/integer programs, we have utilized CPLEX 6.0.

6.1 Experiment A
We consider here the tracking process of a multifunction phased-array radar in the context

of Problem P1. The planar phased array antenna rotates mechanically at a scanning rate of

5 rpm. Consequently, it scans the azimuthal angles every 12 seconds. The vertical sectors

are scanned by steering the beam electronically. During tracking, the beam can further be

steered in the azimuthal direction with respect to the mechanical axis in order to track all

targets in a solid sector centered around the mechanical axis of the antenna. In a massive

air attack scenario, we assume that we have N = 10-40 targets located in the sector to be

scanned for tracking purposes. The targets are uniformly distributed over a radial distance

of between 150 and 450 km. The radar pulse duration can be 10, 20, 30, 40 or 50 µ-seconds.

The uncertainty ∆i equals 10, 20, 30, or 40 µ-seconds. The time allocated for tracking is

assumed to be 30 milliseconds. The objective here is to maximize the benefit function (5a)

by appropriately selecting the targets that are to be tracked during the available period.

The risk associated with each target depends on the type of the target, its speed, and its

location. For generating the test cases, the cost factors are assumed to be given by

Ci =

(

450

Di

)2

+ vi, (23)

where Di is distance of the target in kilometers, and vi accounts for the target type and

velocity, and is taken to be randomly distributed between 0.0 and 10.0.

For Experiment A, we generated test instances by varying both the number of targets N

(using values of 10, 20, 30, and 40), and the duration of the scenario T (using values of 160,

18

200, and 240 µ-seconds). For each of the 12 combinations of N and T , we generated three

test problems. Table 2 displays the results of our computational tests, where each entry is

an average over the three test problems for the particular combination of N and T . If any

of the three problems for a test set for a given N and T are not solvable within a 30-minute

time limit (particularly for the CPLEX runs made to benchmark the heuristics), then the

table provides the number of problems solved. (In this case, the average solution quality

and computational results would be misleading, and are omitted.) For these problems, we

solved P1 and P1′ (see Remark 2) to optimality, 5 percent of optimality, and 10 percent of

optimality. We also display in Table 2 the lower bounding (feasible) solution value obtained

via the heuristic developed in Section 4.4.1. These results demonstrate that P1 is an easier

model to solve directly by a branch-and-bound solver than is P1′. We note that the heuristic

solution provides a strong lower bound to the problem, but one that can be robustly improved

upon by solving the problem to within 10 percent of optimality (although yet at up to two-

orders of magnitude increase in computational effort).

The best option for solving this class of problems appears to be the use of HLDP1 of

Section 4. (Parameter values used are N1 = 300, N1b = 100, N2 = 20, N3 = 15, β = 0.05,

and ǫ1 = ǫ2 = 1 x 10−3.) Table 3 illustrates the computational results from testing this

algorithm on the Experiment A test suite. The Lagrangian method identified very tight

approximations to the linear programming solution in terms of the dual upper bounding

objective function reported, in a considerably shorter time than that required by CPLEX.

As for the lower bounds (feasible solution values) obtained from the algorithm, they are

noticeably tighter than those generated by the initial heuristic. Overall, HLDP1 provided

solutions within about 7% of optimality in less than approximately 4 cpu seconds, making

it viable for practical scenarios.

6.2 Experiment B
In this experiment, we compare the effectiveness of our procedures versus the heuristic of

Farina and Neri [3] (which is popularly used in practice) in the context of Problem P2. To

mirror the analysis in [3], we designed Experiment B as follows. Each target was taken to

have an equal pulse duration of τ = ⌈λ
δ
⌉ slots, where λ is the actual pulse duration, and δ is

19

the transmitter duty cycle. We took λ to be in the range of 1 to 10 µ-seconds and δ to be

0.2 or 0.3 µ-seconds. The targets were randomly positioned in a range of 2-50 km from the

radar. Since the values of τ are small compared to the d-values, we normalized the resolution

of the time slots such that τi = 1 for all i. The received echo pulse durations were also taken

to be equal to 1. Furthermore, since the uncertainty measure is not considered in [3], we let

∆i = 0 for all targets i. The packing ratio for this experiment is thus given by

η =

∑N

i=1(1 + di)

Tmin

, (24)

where we have taken the unit time slot duration Ts to be equal to τ .

For Experiment B, we generated 5 sets of test problems containing five problems each,

where set t contains 5(t + 1) targets for t = 1, ..., 5. Table 4 demonstrates the solutions

obtained by executing FNH, and by solving models P2 and P2′ to optimality, within 5

percent of optimality, and within 10 percent of optimality. We also record the amount

of computational time required to solve models P2 and P2′. (Algorithm FNH executes

very quickly for all problem instances.) We observe that although FNH is fast, it does

not provide good quality solutions to these problems. Model P2′ is solvable to within 10

percent of optimality in less than about 5 cpu seconds for all problem instances, and requires

substantially lesser computational effort than P2 (for the same optimality tolerance) on

almost every problem instance. Furthermore, the solution yielded by P2′ matches the optimal

solution provided by P2 on 17 out of the 19 cases on which both methods were able to solve

problems to optimality. Table 5 demonstrates the increase in algorithmic efficiency that

might be garnered by including the dual-based term in Problem P2′′. Observe that by using

a 5% optimality tolerance (which is achievable within about 1.4 cpu seconds for all problem

instances), this problem solves exactly 19 of the 23 cases in which the optimal solution is

known. In fact, P2′′ consistently converges to a near optimal (within 0.3% of optimality)

solution for every test problem, producing excellent results. The results of this experiment

also suggest an efficient strategy that could be applied to other more general scheduling

problems that involve the minimization of makespan (i.e., solve a problem of type P2′′ in

lieu of P2). In contrast with these results, the Farina-Neri Heuristic performs poorly with

respect to solution quality as the value of N grows. For N = 10, the gap between the

20

Farina-Neri heuristic solution and the optimal solution is on average 18.7%. But as N grows

to 15, 20, and 25, the average gap increases to 20.7%, 22.6%, and 26.7%, respectively. By

examining the best known solutions for N = 30, we determine that the average gap between

the Farina-Neri Heuristic and the optimal solution is at least 29.3%.

The results from using the Lagrangian dual approach are illustrated in Table 6. (Parameter

values used are N1 = 200, N2 = 1, N3 = 15, N4 = 15, β = 0.05, and ǫ1 = ǫ2 = 1 x 10−3.) We

were again able to very quickly find tight lower bounds to the linear relaxation of the problem

within about 0.9 seconds of computational time, often affording a significant advantage over

the CPLEX linear programming solver (this advantage will be more dramatically underscored

in the next experiment). Observe that since all di and ∆i for i = 1, ..., N are integer-valued,

we round up the lower bounds in our optimality gap calculations. However, the upper

bounds provided by the algorithm do not compare well with those given by P2′′, although

still substantially better than the Farina-Neri heuristic. Overall, we therefore recommend

the use of P2′′ when solving problems of these dimensions. A comparison of the pulse

packing efficiency measure η, as given by (22), for the Farina-Neri Heuristic versus the P2′′

formulation is shown in Table 7, and further underscores the substantial improvements that

our methodology provides.

6.3 Experiment C
In this experiment, we study the performance of the proposed technique under Scenario 2

in the context of Problem P2, because under such an attack, it is important to minimize

the time required to track all the targets. The proposed solution is evaluated in terms of its

packing efficiency. The target distances are assumed to follow a uniform distribution between

50 to 150 km. For a unit time slot of 0.1 µ-seconds, di is taken to vary from 3333 to 10000

time slots (333 to 1000 µ-seconds). The transmit pulse duration is uniformly distributed

between 2-10 time slots (0.2 to 1.0 µ-seconds). Furthermore, the uncertainty is assumed

to be ∆i = 3τi, with a minimum receiver on-period duration of 2 µ-seconds. Similar to

Experiment B, we generated 5 sets of test problems containing five problems each, where set

t contains 5(t + 1) targets for t = 1, ..., 5.

21

For problems having such a large number of time slots as in this experiment, standard

linear-programming based algorithms require prohibitive computational effort. Using the

CPLEX 6.0 simplex solver, the average amount of computational time required to solve the

linear relaxation of problems having 10 targets is about 1:15 minutes, while the average time

required to solve the linear relaxation of problems having 30 targets is about 7:40 hours.

These difficulties persist in models P2′ and P2′′ as well. However, Table 8 demonstrates the

ability of HLDP2 to both efficiently and accurately estimate the linear relaxation solution,

and to obtain near-optimal solutions within 1-5 minutes of computational effort. For this

set of problems, some parameters of the Lagrangian dual optimization scheme were altered

to allow the algorithm to produce good answers in a short amount of time. We set the

total number of iterations N1 = 50, the reset counter N4 = 10, and the initial step length

parameter β = 0.005. Also, we only ran the upper bounding heuristic given in Section 5.5.4

once, at the end of the overall procedure. Yet, within this limited framework, we are still

able to obtain good quality results for this class of problems. A comparison of the pulse

packing efficiency afforded by HLDP2 and the Farina-Neri heuristic is given in Table 9.

While HLDP2 produces improved solutions (relative increases in η of about 4% for problems

with N = 10, and up to about 13% for problems with N = 30) as compared with the Farina-

Neri heuristic as before, the solution effort required by the latter is considerably less (under

1 cpu second). Hence, for this class of problem instances where T is relatively large (due to

large di/Ti ratios), we recommend investigating for future research a direct refinement of the

Farina-Neri heuristic, rather than adopting any mathematical programming based approach.

7 Conclusions

Solution techniques for radar pulse interleaving problems have heretofore been confined

to greedy heuristics that run quickly, but provide solutions that are often significantly worse

than optimal. This paper presents insights into using new models and approaches for solving

these problems based on contemporary mathematical programming techniques that provide

tight approximations to the optimal solution, while not exceeding resource limitations (es-

pecially time) imposed by practical considerations. The potential of the proposed methods

is demonstrated via three experiments pertaining to certain real scenarios. For Experiment

22

A, the proposed Lagrangian relaxation approach typically produced solutions within 7% of

optimality in less than about 4 cpu seconds. Although the Lagrangian methodology also per-

formed well on the test problems for Experiment B, we found that we may solve an altered

integer programming formulation to within a very small (0.3%) optimality gap to quickly

obtain solutions to the problem (within 0.9 cpu seconds). This methodology also suggests

an efficient strategy that could be used in more general scheduling contexts involving the

minimization of makespan. Furthermore, it might be of interest to explore theoretical prop-

erties of such approximation schemes for future research, in lieu of the empirical validation

provided in the present study. For the test cases of Experiment C involving a more peculiar

class of problems having relatively large pulse-return gaps and pulsing horizons, our results

reveal that the proposed Lagrangian relaxation heuristic provides near optimal solutions

considerably faster than exact methods, but yet, not as competitively as the Farina-Neri

greedy heuristic. Hence for such problem scenarios, our results suggest that it might be

more beneficial to refine the latter heuristic rather than to adopt more formal mathematical

programming approaches. We also recommend this investigation for future research.

References
[1] M. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and

Applications, 2nd edn, John Wiley & Sons, New York, NY, 1993.

[2] D. R. Carey, and W. Evans, The PATRIOT Radar in Tactical Air Defense, Microwave

Journal 31 (1988), 325-332.

[3] A. Farina, and P. Neri, Multitarget Interleaved Tracking for Phased-array Radar, IEE

Proceedings, Part F: Communications, Radar & Signal Processing 127 (1980), 312-318.

[4] M. Held, P. Wolfe, and H.P. Crowder, Validation of Subgradient Optimization, Math-

ematical Programming 6 (1974), 62-88.

[5] A. Izquierdo-Fuente, and J.R., Casar-Corredera, Optimal Radar Pulse Scheduling

Using Neural Networks, 1994 IEEE International Conference on Neural Networks 7

(1994), 4588-4591.

23

[6] Y. Lee, and H.D. Sherali, Unrelated Machine Scheduling with Time-Window and Ma-

chine Downtime Constraints: An Application to a Naval Battle Group Problem, Annals

of Operations Research, special issue on Applications to Combinatorial Optimization

50 (1994), 339-365.

[7] G.L. Nemhauser, and L. Wolsey, Integer and Combinatorial Optimization, John Wiley

& Sons, Inc, New York, NY, 1988.

[8] M. Riezenman, Revising The Script After Patriot, Proceedings of the IEEE Spectrum

28 (1991), 49-52.

[9] H.D. Sherali, W.P. Adams, and P.J. Driscoll, Exploiting Special Structures in Con-

structing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems, Operations Re-

search 46 (1998), 396-405.

[10] H.D. Sherali, and G. Choi, Recovery of Primal Solutions When Using Subgradient

Optimization Methods to Solve Lagrangian Duals of Linear Programs, Operations

Research Letters 19 (1996), 105-113.

[11] H.D. Sherali, Y. Lee, and D. Boyer, Scheduling Target Illuminators in Naval Battle-

Group Anti-Air Warfare, Naval Research Logistics 42 (1995), 737-755.

[12] H.D. Sherali, and O. Ulular, A Primal-Dual Conjugate Subgradient Algorithm for

Specially Structured Linear and Convex Programming Problems, Applied Mathematics

and Optimization 20 (1989), 193-224.

[13] M.I. Skolnik (ed), Radar Handbook, 2nd edn, McGraw Hill, New York, NY, 1990.

24

Model P1

Problem Heuristic Exact Optimality 5% of Optimality 10% of Optimality

N T Ans CPU Ans CPU Ans CPU Ans CPU

10 160 84.82 0.14 84.82 0.75 84.82 0.59 84.82 0.59

10 200 72.76 0.12 72.76 0.28 72.76 0.26 72.76 0.26

10 240 84.28 0.14 84.28 0.92 84.28 0.89 84.28 0.89

20 160 141.76 0.48 153.16 228.13 153.16 30.07 149.63 12.47

20 200 166.82 0.34 166.82 1.87 166.82 1.80 166.82 1.82

20 240 169.95 0.40 169.95 1.95 169.95 1.94 169.95 1.99

30 160 181.72 0.88 200.42 29.92 200.42 29.98 200.42 30.77

30 200 225.03 1.16 233.14 216.69 233.14 212.06 228.54 138.12

30 240 233.54 1.50 234.61 224.06 234.61 235.19 234.61 242.54

40 160 222.60 0.99 244.64 73.80 244.64 75.15 239.86 37.52

40 200 270.26 2.10 2 PS 2 PS 2 PS 2 PS 278.62 180.75

40 240 276.39 4.99 1 PS 1 PS 1 PS 1 PS 288.08 468.17

Model P1
′

Problem Exact Optimality 5% of Optimality 10% of Optimality

N T Ans CPU Ans CPU Ans CPU

10 160 84.82 1.50 84.82 1.38 84.82 1.23

10 200 72.76 0.66 72.76 0.58 72.76 0.53

10 240 84.28 2.27 84.28 2.15 84.28 1.91

20 160 0 PS 0 PS 2 PS 2 PS 146.98 46.50

20 200 166.82 79.42 164.36 16.44 164.36 14.83

20 240 169.95 12.91 169.95 14.38 169.95 12.84

30 160 0 PS 0 PS 199.82 547.74 197.15 89.00

30 200 0 PS 0 PS 2 PS 2 PS 227.81 757.90

30 240 1 PS 1 PS 2 PS 2 PS 2 PS 2 PS

40 160 0 PS 0 PS 2 PS 2 PS 237.17 183.78

40 200 0 PS 0 PS 2 PS 2 PS 284.32 704.96

40 240 0 PS 0 PS 0 PS 0 PS 0 PS 0 PS

Heuristic: Lower bounding heuristic described in Section 4.4.1

Ans: Best objective value yielded by the algorithm

CPU: Computational time, in seconds

PS: Number of problems solved within 30-minute time limit (if less than 3)

Table 2: Comparison of P1 and P1′ with the Initial Heuristic of Section 4.4.1.

25

Problem

N T LB UB % Opt Gap True % Opt Gap % LP Gap CPU

10 160 84.82 84.82 0 0 0 0.66

10 200 72.76 72.76 0 0 0 0.84

10 240 84.28 84.28 0 0 0 1.09

20 160 146.44 157.91 7.38 4.31 0.74 1.06

20 200 166.82 166.82 0 0 0 1.54

20 240 169.95 169.95 0 0 0 2.09

30 160 186.50 211.39 11.75 6.91 0.86 1.85

30 200 225.03 236.45 4.90 3.57 0 2.09

30 240 233.54 239.15 2.39 1.76 0 3.11

40 160 228.01 258.14 11.67 6.80 1.28 2.77

40 200 270.26 300.89 10.29 N/A 1.47 4.14

40 240 276.39 308.59 10.46 N/A 0.67 4.04

LB: Lower bound yielded by the algorithm

UB: Upper bound yielded by the algorithm

% Opt Gap: Gap between the upper and lower bound as a percentage of the upper bound

True % Opt Gap: Gap between the optimal solution (if known) and the lower bound as

a percentage of the optimal solution.

% LP Gap: Lower bound gap as a percentage of the true LP solution

CPU: Computational time, in seconds

Table 3: Analysis of Lagrangian Relaxation Method on Experiment A Test Problems.

26

Exact Optimality 5% of Optimality 10% of Optimality

FNH P2 P2′ P2 P2′ P2 P2′

Prob N Ans Ans CPU Ans CPU Ans CPU Ans CPU Ans CPU Ans CPU

1 10 76 66 0.59 66 0.59 66 0.89 66 0.55 66 0.7 66 0.67

2 10 63 54 2.06 54 0.52 56 1.96 54 0.48 58 1.32 54 0.55

3 10 61 51 0.6 51 0.54 51 0.61 51 0.51 51 0.7 51 0.56

4 10 68 58 0.93 58 0.49 59 0.61 58 0.47 59 0.62 58 0.47

5 10 50 40 16.69 41 0.8 42 2.78 41 0.55 44 1.62 41 0.58

6 15 77 64 5.33 64 0.75 66 3.47 64 0.75 66 3.88 64 0.7

7 15 79 66 5.51 66 1.2 68 4.2 67 0.7 71 0.96 67 0.86

8 15 78 65 4.06 65 0.67 66 2.72 65 0.65 66 2.69 65 0.64

9 15 78 66 5.67 66 0.75 66 5.5 66 0.72 66 5.61 66 0.76

10 15 69 55 4.12 55 0.91 55 4.19 55 0.81 58 4.05 55 0.81

11 20 81 67 12.5 67 1.57 68 6.38 67 1.1 72 5.77 67 1.03

12 20 82 66 34.83 66 1.22 69 21.26 67 1.01 69 21.54 67 1

13 20 79 65 49.07 65 1.42 67 44.56 65 1.05 67 44.21 65 1.05

14 20 67 55 1510.9 56 34.37 55 172.9 56 1.03 55 180 56 1.04

15 20 81 65 32.13 65 1.98 66 26.92 65 1.18 66 27.07 65 1

16 25 83 66 136.6 66 2.63 68 69.6 66 1.63 68 69.1 66 1.67

17 25 76 58 96.9 – – 58 96.6 59 2.7 63 59.66 59 2.91

18 25 81 65 91.6 65 18.99 67 73.6 65 1.63 67 74.6 65 1.71

19 25 83 65 162.4 65 8.85 66 135.3 65 1.48 66 138.2 65 1.54

20 25 86 69 282.8 69 1.99 71 64.2 71 1.28 71 65.1 71 1.34

21 30 82 64 917.4 – – 67 200.3 71 3.72 67 199.4 71 3.61

22 30 87 65 360.6 – – 67 251.2 65 4.26 70 202.9 65 4.37

23 30 89 – – – – – – 70 5.18 69 186.86 70 5.3

24 30 84 65 145.1 – – 68 45.57 65 7.99 68 46.18 67 5.22

25 30 87 – – 69 1799.2 – – 69 2.04 – – 69 2.03

FNH: Farina and Neri Heuristic

Ans: Best objective value yielded by the algorithm

CPU: Computational time, in seconds

–: Problem not solvable within a 30-minute time limit

Table 4: Comparison of P2 and P2′ with the Farina-Neri Heuristic.

27

Exact Optimality 0.3% of Optimality 5% of Optimality

FNH P2′′ P2′′ P2′′

Prob N Ans Ans CPU Ans CPU Ans CPU

1 10 76 66 0.27 66 0.27 66 0.14

2 10 63 54 0.15 54 0.16 54 0.15

3 10 61 51 0.16 51 0.16 51 0.15

4 10 68 58 0.16 58 0.17 58 0.15

5 10 50 40 0.2 40 0.18 40 0.18

6 15 77 64 0.19 64 0.19 64 0.19

7 15 79 66 0.23 66 0.19 66 0.2

8 15 78 65 0.19 65 0.18 65 0.19

9 15 78 66 0.2 66 0.2 66 0.21

10 15 69 55 0.22 55 0.21 55 0.2

11 20 81 67 0.26 67 0.26 68 0.26

12 20 82 66 0.29 66 0.25 66 0.26

13 20 79 65 0.29 65 0.25 65 0.25

14 20 67 55 0.42 55 0.3 55 0.3

15 20 81 65 0.56 65 0.27 65 0.27

16 25 83 66 0.7 66 0.35 66 0.36

17 25 76 – – 58 1.03 58 0.6

18 25 81 65 2.68 66 0.37 66 0.39

19 25 83 65 1.28 65 0.36 65 0.78

20 25 86 69 0.37 69 0.41 69 0.34

21 30 82 – – 66 1.84 66 0.59

22 30 87 – – 66 1.4 66 1.01

23 30 89 – – 69 10.9 73 1.42

24 30 84 – – 65 7.58 65 1.34

25 30 87 69 26.14 69 0.57 69 0.58

FNH: Farina and Neri Heuristic

Ans: Best objective value yielded by the algorithm

CPU: Computational time, in seconds

–: Problem not solvable within a 30-minute time limit

Table 5: Comparison of P2′′ with the Farina-Neri Heuristic.

28

Problem

Prob N LB UB % Opt Gap True % Opt Gap % LP Gap CPU

1 10 65.97 66 0 0 0.05 0.27

2 10 53.98 54 0 0 0.04 0.27

3 10 50.97 51 0 0 0.06 0.29

4 10 57.96 59 1.72 1.72 0.07 0.28

5 10 39.96 41 2.50 2.50 0.10 0.31

6 15 63.47 64 0 0 0.05 0.39

7 15 65.34 66 0 0 1.00 0.40

8 15 64.93 66 1.54 1.54 0.11 0.38

9 15 65.94 66 0 0 0.09 0.41

10 15 54.92 56 1.82 1.82 0.15 0.42

11 20 65.9 81 22.72 20.90 0.52 0.51

12 20 64.67 66 1.54 0 0.89 0.52

13 20 64.13 70 7.69 7.69 1.34 0.53

14 20 51.64 56 7.69 1.82 0.31 0.57

15 20 64.46 66 1.54 1.54 0.83 0.54

16 25 64.11 71 9.23 7.58 0.60 0.66

17 25 57.42 59 1.72 1.72 1.00 0.76

18 25 63.97 69 7.81 6.15 0.44 0.67

19 25 63.86 66 3.13 1.54 1.75 0.68

20 25 66.91 74 10.45 7.25 0.51 0.64

21 30 62.85 70 11.11 9.38 0.24 0.89

22 30 64.31 69 6.15 6.15 1.06 0.87

23 30 63.5 73 14.06 N/A 0.47 0.75

24 30 63.39 69 7.81 6.15 1.34 0.86

25 30 64.37 75 15.38 N/A 0.97 0.80

LB: Lower bound yielded by the algorithm

UB: Upper bound yielded by the algorithm

% Opt Gap: Gap between the upper and (rounded up) lower bound as a percentage

of the lower bound

True % Opt Gap: Gap between the upper bound and the optimal solution (if known) as

a percentage of the optimal solution.

% LP Gap: Upper bound gap as a percentage of the true LP solution

CPU: Computational time, in seconds

Table 6: Analysis of the Lagrangian Relaxation Method on Experiment B Test Problems.

29

Problem Packing Efficiency η True % Opt Gap

Prob N FNH P2′′ (0.3%) FNH P2′′ (0.3%)

1 10 4.36 5.02 15.15 0

2 10 5.92 6.91 16.67 0

3 10 5.52 6.61 19.61 0

4 10 5.18 6.07 17.24 0

5 10 6.24 7.80 25.00 0

6 15 7.21 8.67 20.31 0

7 15 6.95 8.32 19.70 0

8 15 7.76 9.31 20.00 0

9 15 6.53 7.71 18.18 0

10 15 7.41 9.29 25.45 0

11 20 8.16 9.87 20.90 0

12 20 9.07 11.27 24.24 0

13 20 7.95 9.66 21.54 0

14 20 9.63 11.73 21.82 0

15 20 8.95 11.15 24.62 0

16 25 10.95 13.77 25.76 0

17 25 9.72 12.74 31.03 0

18 25 10.30 12.64 24.62 1.54

19 25 10.31 13.17 27.69 0

20 25 11.48 14.30 24.64 0

21 30 12.32 15.30 28.13 3.13

22 30 11.95 15.76 33.85 1.54

23 30 13.65 17.61 N/A N/A

24 30 10.93 14.12 29.23 0

25 30 13.05 16.45 N/A N/A

Table 7: Comparison of Pulse Packing Efficiencies and Optimality Gaps for Experiment B

Test Problems.

30

Problem

Prob N LB UB % Opt Gap % LP Gap CPU

1 10 9097.96 9119 0.23 0.0055 50.87

2 10 8944.98 8945 0 0.0002 47.11

3 10 9949.99 9950 0 0.0001 80.22

4 10 8652.88 8692 0.45 0.0014 59.46

5 10 9752.85 9753 0 0.0015 62.37

6 15 9900.88 9901 0 0.0012 105.08

7 15 9484.86 9485 0 0.0015 89.97

8 15 9800.87 9801 0 0.0013 92.61

9 15 9974.89 9975 0 0.0011 142.36

10 15 8142.91 8143 0 0.0011 86.21

11 20 9754.12 9806 0.52 0.0090 155.86

12 20 9725.59 9726 0 0.0042 178.12

13 20 9649.88 9650 0 0.0012 192.11

14 20 9874.01 9875 0 0.0100 160.26

15 20 9670.49 9728 0.59 0.0053 171.71

16 25 9921.66 9922 0 0.0034 255.58

17 25 9636.7 9637 0 0.0031 218.96

18 25 9863.52 9864 0 0.0049 246.72

19 25 9963.1 9964 0 0.0090 320.65

20 25 9544.75 9545 0 0.0026 247.7

21 30 9705.7 9859 1.58 0.1226 323.3

22 30 9711.05 9775 0.65 0.0098 395.14

23 30 9863.19 9927 0.64 0.0082 303.99

24 30 9862.68 9964 1.02 0.0479 121.64

25 30 9617.56 9618 0 0.0046 175.04

LB: Lower bound yielded by the algorithm

UB: Upper bound yielded by the algorithm

% Opt Gap: Optimality gap as a percentage of the (rounded up) lower bound

% LP Gap: Upper bound gap as a percentage of the true LP solution

CPU: Computational time, in seconds

Table 8: Analysis of the Lagrangian Relaxation Method on Experiment C Test Problems.

31

Problem Packing Efficiency η

Prob N FNH HLDP2

1 10 7.24 7.52

2 10 7.71 8.09

3 10 5.79 6.06

4 10 7.08 7.38

5 10 6.98 7.31

6 15 10.53 11.25

7 15 10.45 11.18

8 15 9.80 10.38

9 15 8.94 9.51

10 15 10.16 10.84

11 20 13.17 14.34

12 20 13.17 14.29

13 20 11.90 12.94

14 20 13.32 14.54

15 20 11.40 12.37

16 25 15.32 17.12

17 25 14.88 16.48

18 25 14.07 15.57

19 25 15.42 17.23

20 25 15.32 17.05

21 30 18.50 20.80

22 30 16.96 19.16

23 30 17.96 20.53

24 30 19.17 21.40

25 30 18.34 20.88

Table 9: Comparison of Pulse Packing Efficiencies for Experiment C Test Problems.

32

