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Although traditionally associated to defence and security domain, radar sensing has attracted significant 

interest in recent years in healthcare applications. These include monitoring of vital signs such as respiration, 

heartbeat, and blood pressure, analysis of gait and mobility levels, classification of human activities to 

promptly detect critical events such as falls, as well as evaluate fitness and reactivity levels. The attractiveness 

of radar against alternative technologies such as wearable sensors or cameras lies in its contactless 

capabilities, whereby people do not need to wear, carry, or interact with any additional device, and plain 

images of people and private environments are not recorded. In this letter, we discuss some of the most recent 

achievements and outstanding research challenges related to radar applications in healthcare, and present 

some results from our work at the University of Glasgow, including a dataset of radar signatures of human 

activities that are openly shared with the wider community. 

 

Introduction 

To support a rapidly aging population, future healthcare provision will extensively use technology to provide 

care in private home environments, avoiding hospitalization, and preserving as much as possible the 

independence of people in their own living environments (“assisted living for healthy ageing”). Furthermore, 

continuous monitoring with new technologies will enable the timely identification of incoming health 

problems, allowing to have a “proactive and pre-emptive” approach rather than only reacting after serious 
symptoms have emerged. 

Radar technologies have been proposed in recent years for healthcare applications [1-3], thanks to their 

capabilities to identify and track the presence of people and their movements, from bulk movements of the 

whole body to micro-scale movements of individual body parts. Compared with alternative technologies 

(wearable, video, or ambient sensors [4]) radar does not record plain images of the subjects or environments 

(helping with potential privacy concerns) and does not require the users to wear, carry, or interact with 

additional devices (helping with potential issues of acceptance and compliance). 

Despite the recent interest and progresses, outstanding research challenges remain, which can be broadly 

summarised into two main directions and themes: 

 Finding and extracting the relevant information from the radar data. This is typically associated to the 

three dimensions of range/distance, time, Doppler/velocity, and more recently angle/direction thanks to 

the emerging availability of multi-channel/MIMO (Multiple Input Multiple Output) compact radar 

systems, especially at mm-wave frequencies. Depending on the specific application, the challenge in this 

case is develop and apply signal processing techniques that can retrieve such relevant information, be 

for instance the respiration or heart rate, or more complex information such as the pattern of 

movements over time associated to specific human activities, or the quantitative parameters associated 

to human gait, such as stride length and symmetry. 

 Validating the proposed techniques in realistic environments and scenarios, involving representative 

users. The majority of research works in this domain is often validated with a small group of subjects 

(tens or less than ten at times), typically relatively young students in controlled laboratory environments, 

hence not very representative of actual home environments and potentially older subjects. Any 

identification/classification algorithm based on machine learning for this context needs to be validated 

with relevant data, and most likely be able to adapt and be fine-tuned as additional data become 

available thanks to long-term monitoring, and as the specific signatures of individuals change over time 

(for example a specific subject may become slower in certain movements, but that is not necessarily 

associated to critical health conditions). Also related to this validation challenge is the current lack of a 

large shared dataset of relevant radar signatures, equivalent to what for example the “ImageNet” dataset 

could be for the image processing research community. This means that single research groups often 
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work on proprietary, relatively small datasets, with the risk of generating overfitted solutions that cannot 

be easily scaled or ported to more generic and realistic conditions. 

In the rest of this letter, we provide an overview of common signal processing approaches applied to radar 

data for healthcare, and present some results from our own work at the University of Glasgow with reference 

to a set of data we aim to share with the wider research community. 

 

Typical radar signal processing 

All typical radar signal processing approaches in the context of healthcare aim to characterise the signatures 

of interest in three domains: range (the physical distance to the radar), time (the evolution of the subject’s 
location and position over time), and velocity (of the bulk body motion, and of the finer, smaller movements 

of individual body parts, all measured through the Doppler effect and the induced frequency shift); these 

three dimensional characteristic for the radar data is sometimes referred to as the “radar cube” [2-3]. Very 

recently, with the widespread development of compact radar systems with multiple receiver channels also 

driven by the automotive sector [5], a 4th relevant dimension is also added, the angular direction or angle of 

arrival, which can be inferred comparing signals received by the different receiving channels. 

Both measurements of velocity and of angle of arrival are typically performed using Fast Fourier Transform 

(FFT) and its Short Time variant (STFT). Figure 1 presents an example of the typical signal processing chain for 

the case of a person walking back and forth in front of the radar.  

The starting point is the temporal series of received raw data, often I and Q components. These can be 

organised into a matrix containing radar pulses repeated according to the Pulse Repetition Frequency (PRF) 

over the measurement time, where each pulse contains range bins associated to the physical distance of 

possible targets. This Range-Time image can be used for analysis and classification of human activities. For 

example, the diagonal zig-zag pattern shown in Figure 1, is associated to the back and forth walking in front 

of the radar, with the intensity colour peak located at higher range bins as the person moves away, and back 

to lower range bins as the person comes back towards the radar.  

A single FFT can then be applied across the time dimension of the Range-Time image to obtain a Range-

Doppler image, to characterise the macro-movement of the target. For example, in Figure 1 we can see both 

positive (person walking towards the radar) and negative (person walking away) Doppler. To characterise the 

velocity and movements of individual body parts over time (“micro-Doppler” signatures), STFT is used to 

generate “spectrograms”, Time-Doppler plots. The example in Figure 1 shows less intense (light blue) streaks 

around more intense (red and yellow) contributions, for both positive and negative Doppler. The former are 

related to the oscillations of limbs while walking, whereas the latter to the bulk movement and slight 

oscillation of the human torso while walking. Although STFT is the most used time-frequency distribution to 

characterise micro-Doppler signatures, several alternatives have been proposed based on Wavelets, 

Empirical Mode Decomposition, and other distributions [2-3]. 

Finally, data from previous steps and machine learning are used to enable algorithms to automatically 

identify patterns specific of activities of interest, or extract the desired healthcare related parameters. 
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Figure 1 Example of typical data formats for radar sensing for human activities identification  

Example of results 

Some examples of representative results obtained by our group are reported in this section, with additional 

results in the review papers [1-3] and references within.  

Figure 2 shows the spectrogram (time-velocity pattern) for a sequence of 6 actions performed one after 

other, namely walking back and forth, sitting on a chair, standing back up, bending down to pick up an object, 

coming back up, and drinking water in a few sips while standing. Two research challenges arise, namely the 

automatic identification of the different activities or their combinations (how can an automatic system 

discriminate between them?), and their separation through processing the continuous stream of data, where 

detecting the transitions between activities can be rather challenging (where does one or more activities 

start and end?).  

Figure 3 shows the same sequence of six activities performed by 6 different subjects with gender, age, and 

physical conditions diversity (4 male and 2 female subjects, age span from 33 to 82 years). Although all the 

people were asked to perform exactly the same activities, the radar spectrogram can appear very different 

in terms of its spread across the velocity axis (linked to how fast the subjects move) and shape of the signature 

(linked to the different ways different people move about when performing even nominally identical 

activities). Here the significant research challenge is the capability to learn and adapt to the diversity of the 

signatures for different subjects and environments, as well as managing changes that may happen in 

individuals’ signatures as their health conditions evolve.  

The radar used for both these experiments was a Frequency Modulated Continuous Wave (FMCW) radar 

operating at 5.8 GHz with 400 MHz bandwidth and 1ms chirp duration. 
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Figure 2 Radar spectrogram (in normalised log scale) of a sequence of six activities performed one after the other by a 33-year-old 

male subject. 

 
Figure 3 Radar spectrograms (in normalised log scale) for the same sequence of 6 activities performed by 6 different subjects with 

gender and age diversity. 
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Figure 4 shows results for breathing detection. These compare three cases: empty room (the “control” case), 
a person sitting on a mat in the room and breathing normally (the “breathing” case), and a person holding 

their breath to simulate its loss due to some medical reason. Two features related to the strength and 

regularity of the recorded radar signals were extracted from 20s data segments and plotted. These are 

sufficient to separate well the three cases, which is promising for future validation of the approach to not 

only identify presence/absence of respiration, but also quality and possible anomalies. 

 

Figure 4 Radar-based detection of presence/absence of respiration with two features extracted from segments of data of 20s 

duration each 

Conclusions 

Radar sensing has been attracting interest for healthcare applications, but outstanding challenges in this 

research domain remain [1-3], such as:  

 Translating classification techniques from the analysis of individual, separated activities (images) into the 

analysis of a more realistic, continuous, and uninterrupted sequence of actions (temporal series) to be 

processed in real-time leveraging on “sparse” or “on-edge” computation.  

 Incorporating the additional information from recent mm-wave compact radar systems, providing very 

fine spatial resolution and beamforming and direction of arrival information. This can enable to resolve 

echoes from different body parts directly in the range domain, and the multi-occupancy problem of 

simultaneous multiple subjects with overlapping signatures. 

 Validating any proposed technique by including realistic environments and procedures beyond controlled 

laboratory spaces, involving representative end-users ensuring diversity of age, gender, and physical 

conditions. This is to develop algorithms and systems capable of dealing with such diversity, and enact 

effective “transfer learning” and usage of data collected in heterogeneous conditions. 

Related to this latter point is the lack of a comprehensive shared radar dataset that different researchers and 

groups can use for common benchmarking, something comparable to what the ImageNet database is for the 

image processing community. Collecting and labelling good quality radar data is in general onerous and 

requires time/resources investment that may discourage free data sharing, although the need for this is 

increasingly seen positively within the community.  

As a contribution, we want to share a relatively large dataset collected at the University of Glasgow with the 

support of the UK EPSRC, which we believe is one of the first in the radar community in this domain [6]. The 

dataset includes human activities such as those mentioned in figure 2 and 3, collected by the same FMCW C-

band radar and performed by over 50 subjects in 9 different locations. An interesting feature is the inclusion 

of radar signatures collected in environments outside controlled university spaces, as common rooms of 

residential establishments provided by external collaborators. Far from being perfect or universally 

comprehensive, we hope that this can provide a common set of data to try novel signal processing algorithms 
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and classification techniques applied to radar data in this domain. The dataset is accessible at the reference 

provided in [6], and will be updated with additional data as the project develops until its end in October 2020. 
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