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Radar Signal Categorization Using a Neural Network

Abstract

Neural networks were used to analyze a complex simulated radar
environment which contains noisy radar pulses generated by many
different emitters. The neural network used is an energy

minimizing network (the BSB model) which forms energy minima --
attractors in the network dynamical system -- based on learned
input data. The system first determines how many emitters are

present (the delnterleaving problem). Pulses from individual
simulated emitters give rise to separate stable attractors in the

network. Once individual emitters are characterized, it is

possible to make tentative identifications of them based on their

observed parameters. As a test of this idea, a neural network
was used to form a small data base that potentially could make
emitter identifications.

We have used neural networks to cluster, characterize and identify radar signals

from different emitters. The approach assumes the ability to monitor a region of the

microwave spectrum and to detect and measure properties of received radar pulses.
The microwave environment is assumed to be complex, so there are pulses from a number
of different emitters present, and pulses from the same emitter are noisy or their

properties are not measured with great accuracy.

For several practical appllcatlons, it is important to be able to tell quickly,

first, how many emitters are present and, second, what their properties are. In
other words time average prototypes must be derived from time dependent data without

a tutor. Finally the system must tentatively identify the prototypes as members of
previously seen classes of emitter.

Stages of Processing. We accomplish this task in several stages. Figure I
shows a _lo-_k diagram of the resulting system, which contains several neural
networks. The system as a whole is referred to as the Adaptive Network Sensor
Processor (ANSP).

Figure I About Here

o

In the block diagram given in Figure i, the first block is a feature extractor.

We start by assuming a microwave radar receiver of some sophistication at the input
to the system. This receiver is capable of processing each pulse into feature
values, i.e. azimuth, elevation, signal to noise ratio (normalized intensity),

frequency, and pulse width. This data is then listed in a _ buffer and tagged
with time of arrival of the pulse. In a complex radar envir_, hundreds or
thousands of pulses can arrive in fractions of seconds, so there is no lack of data.
The problem, as in many data rich environments, is making sense of it.
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The second block in Figure 1 is the deinterleaver which clusters incoming radar

pulses into groups, each group formed by pulses from a single emitter. A number of
pulses are observed, and a neural network computes, off line, how many emitters are

present, based on the sample, and estimates their properties. That is, it solves the
so-called deinterleaving problem by identifying pulses as being produced by a

particular emitter. This block also produces and passes forward measures of the each

cluster's azimuth, elevation, SNR, frequency and pulse width.

The third block, the pulse pattern extractor, uses the deinterleaved information
to compute the pulse repetition pattern of an emitter by using the times of arrival

for the pulses that are contained in a given cluster. This information will be used
for emitter classification.

The fourth block, the tracker, acts as a long term memory for the clusters found
in the second block, storing the average azimuth, elevation, SNR, frequency, and

pulse width. Since the diagram in Figure 1 is organized via initial computational

functionality, the tracking module follows the deinterleaver so as to store its
outputs. In an operationally organized diagram, the tracker is the first block to
receive pulse data from the feature extractor. It must identify most of the pulses
in real time as previously learned by the deinterieaver module and only pass a small
number of unknown pulses back to the deinterleaver module for further learning. The
tracker also updates the cluster averages. Their properties can change with time
because of emitter or receiver motion, for example.

The fourth and fifth blocks, the tracker and the classifier operate as a unit to

classify the observed emitters, based on information stored in a data base of emitter

types. Intrinsic emitter properties stored in these blocks are frequency, pulse
width and pulse repetition pattern.

The most important question for the ANSP to answer is what the emitters might be
and what can they do. That is, "who is looking at me, should I be concerned, and

should I (or can I) do something about it?"

Emitter Clustering. Most of the initial theoretical and simulation effort in
this project has been focused on the deinterleaving problem. This is because the
ANSP is being asked to form a conception of the emitter environment from the data
itself. A teacher does not exist for most interesting situations.

In the simplest case, each emitter emits with constant properties, i.e. no
noise is present. Then, determining how many emitters were present would be trivial:
simply count the number of unique pulses via a look up table. Unfortunately, data is
often moderately noisy because of receiver, environmental and emitter variability,
and, sometimes, because of the frequent change of one or another emitter property at

the emitter. Therefore, simple identity checks will not work. It is these later
cases which this paper will address.

Many neural networks are supervised algorithms, that is, they are trained by
seeing correctly classified examples of training data and, when new data is presented
will identify it according to their past experience. Emitter identification does not
fall into this category because the correct answers are not known ahead of time.

That, after all, is the purpose of this system. The baslc problem of a

self-organizlng clustering system has many historical precedents in cognitive

science. For example, William James, in a quotation well known to developmental

psychologists, wrote around 1890,
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..the numerous inpouring currents of the baby bring to his

consciousness ... one big blooming buzzing Confusion. That
Confusion is the baby's universe; and the universe of all of us
is still to a great extent such a Confusion, potentially
resolvable, and demanding to be resolved, but not yet actually

resolved into parts.

William James (1890, p.29)

We nov know that the new born baby is a very competent organism, and the

outlines of adult perceptual preprocesslng are already in place. The baby is
designed to hear human speech in the appropriate way and to see a world llke ours:
that is, a baby is tuned to the environment in which he will live. The same is true
of the ANSP, which must process pulses which will have feature values that fall
within certain parameter ranges. That is, an effective feature analysis has been
done for us by the receiver designer, and we do not have to organize a system from
zero. This means that we can use a less general approach than we might have to in a

less constrained problem. The result of both evolution and good engineering design
is to build so much structure into the system that a problem, very difficult in its

general form, becomes quite tractable.

At this point, neural networks are familiar to many. Introductions are

available, for example, McClelland and Rumelhart, 1986; Rumelhart and McClelland,
1986; Hinton and Anderson, 1989; Anderson and Rosenfeld, 1988.

The Linear Assoclator. Let us begin our discussion of the network we shall use
for t-__ problem with the 'outer product' associator, also called the 'linear
assoclator,' as a starting point. (Kohonen, 1972, 1977, 1984; Anderson, 1972). We
assume a single computing unit, a simple model neuron, acts as a linear summer of its
inputs. There are many such computing units. The set of activities of a group of
units is the system state vector. Our notation has matrices represented by capital

letters (A), vectors by lower case letters (f,g), and the elements of vectors as f(i)

or g(j). A vector from a set of vectors is subscripted, for example, fl' f2 ....

The ith unit in a set of units will display activity g(i) when a pattern f(J) is

presented t-6 its inputs, according to the rule,

g(1) = E A(i,j) f(j).
J

where A(i,j) are the connections between the ith unit in an output set of units and

the jth unit in an input set. We can then c-'anwrite the output pattern, g, as the

matrix-_ultiplication

g=Af.

During learning, the connection strengths are modified according to a
generalized Hebb rule, that is, the change in an element of A, &_(i,J), is given by
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8A(i,j) m f(j) g(i),
k k

where f and g are vectors associated with the kth learning example.

k k
Then we can write the matrix A as a sum of outer products,

n T

A=nZ gf
k=l k k

where _ is a learning constant.

Prototype Formation The linear model forms prototypes as part of the storage
process, a property we will draw on. Suppose a category contains many similar items
associated with the same response. Consider a set of correlated vectors, {fk}, with

mean p.

f =p+d •
k k

The final connectivity matrix will be

n T

A=r#gf
k=l k

T n T
rg(np + E d )

k=l k

If the sum of the dk is small, the connectivity matrix is approximated by

T

A = _n g p .

The system behaves as if it had repeatedly learned only one pattern, p, and responds
best to it, even though p, in fact, may never have been learned.

Concept forming systems. Knapp and Anderson (1984) applied this model directly
to the formation of simple psychological 'concepts' formed of nine randomly placed
dots. A 'concept' in cognitive science describes the common and important situation
where a number of different objects are classed together by some rule or similarity
relationship. Much of the power of language, for example, arises from the ability to

see that physically different objects are really 'the same' and can be named and

responded to in a similar fashion, for example, tables or lions. A great deal of
experimentation and theory in cognitive science concerns itself with concept

formation and use.

There are two related but distinct ways of explaining simple concepts in neural
network models. First, there are prototype forming systems, which often involve

taking a kind of average during the act of storage, and, second, there are models
which explain concepts as related to attractors in a dynamical system. In the radar
ANSP system to be described we use both ideas: we want to construct a system where
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the average of a category becomes the attractor in a dynamical system, and an

attractor and its surrounding basin represent an individual emitter. (For a further

discussion of concept formation in simple neural networks, see Knapp and Anderson,
1984_ Anderson, 1983, and Anderson and Murphy, 1986).

Error Correction. By using an error correcting technique, the Widrow-Hoff

proce_ we can force the simple associative system to give us more accurate
associations. Let us assume we are working with an autoassociative system. Suppose

information is represented by associated vectors fl * fl, fo * f_ .... A vector,
fk' is selected at random. Then the matrix, A, is incremented a_cording to the rule

T

6A = _ (f - Af) f
k k k

where _A is the change in the matrix A. In the radar application, there is no
'correct answer' in the general sense of a supervised algorithm. However every input
pattern can be its own 'teacher' in the error correction algorithm in that the
network will try to better reconstruct that particular input pattern. The goal of
learning a set of stimuli {f} is to have the system behave as

Af=f

k k

The error correcting learning rule will approximate this result with a least mean
squares approximation, hence the alternative name for the Widrow-Hoff rule: the LMS
(least mean squares) algorithm. The autoassoclative system combined with error

correction, when working perfectly, is forcing the system to develop a particular set
of eigenvectors with eigenvalue 1.

The eigenvectors of the connection matrix are also of

Hebblan learning is used in an autoassoclatlve system.
product assoclator has the form

interest when simple
Then, the simple outer

T

AA=nf f
k k

There is now an obvious connection between the elgenvectors of the resulting
outer product connectivity matrix and the principal components of statistics, because
the form of this matrix is the covarlance matrix. In fact, there is growing evidence

that many neural networks are doing something llke principal component analyis.

(See, for example, Baldi and Hornik, 1989 and Cottrell, Munro and Zipser, 1988).

BSB: A.Dynamical System. We shall use for radar clustering a non-linear model
that t-_es- the basic linear assoclator, uses error correction to construct the

connection matrix, and uses units containing a simple limiting non-linearlty.
Consider an autoassoclative feedback system, where the vector output from the matrix
is fed back into the input. Because feedback systems can become unstable, we
incorporate a simple limiting non-linearity to prevent unit activity from getting too

large or too small. Let f[i] be the current state vector describing the system.
f[0] is the vector at step 0. At the i+Ist step, f[i+l], the next state vector, is
given by the Iteratlve equation,
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f[i+l] = LIMIT [ _A f[i] + y f[i] + 8 f[O] ].

We stabilize the system by bounding the element activities within limits.

The first term, _Af[i], passes the current system state through the matrix and

adds information reconstructed from the autoassoclatlve cross connections. The

second term, vf[i], causes the current state to decay slightly. This term has the
qualitative effect of causing errors to eventually decay to zero as long as y is
less than 1. The third term, 6f[O], can keep the initial information constantly

present and has the effect of limiting the flexibility of the possible states of the
dynamical system since some vector elements are strongly biased by the initial input.

Once the element values for f[i+l] are calculated, the element values are

'limited', that is, not allowed to be greater than a positive limit or less than a

negative limit. This is a particularly simple form of the sigmoidal nonlinearity
assumed by most neural network model. The limiting process contains the state vector
within a set of limits, and we have previously called this model the 'brain state in
a box' or BSB model. (Anderson, Silverstein, Ritz, and Jones, 1977; Anderson and

Hozer, 1981) The system is in a positive feedback loop but is amplitude limited.
After many iterations, the system state becomes stable and will not change: these
points are attractors in the dynamical system described by the BSB equation. This
final state will be the output of the system. In the fully connected case with a

symmetric connection matrix the dynamics of the BSB system can be shown to be
minimizing an energy function. The location of the attractors is controlled by the
learning algorithm. (Hopfield, 1982_ Golden, 1986). Aspects of the dynamics of this
system are related to the 'power' method of elgenvector extraction, since repeated
iteration will leada to activity dominated by the eigenvectors with the largest
postive elgenvalues. The signal processing abilities of such a network occur because
elgenvectors arising from learning uncorrelated noise will tend to have small
eigenvalues, while signal related eigenvectors will be large, will be enhanced by
feedback, and will dominate the system state after a number of iterations.

We might conjecture that a category or a concept derived from many noisy
examples would become identified with an attractor associated with a region in state
space and that all examples of the concept would map into the point attractor. This
is the behavior we want for radar pulse clustering.

Neural Network Clustering Al_orithms. We know there will be many radar pulses,
but we _ not know the detailed descriptions of each emitter invoved. We want to
develop the structure of the microwave environment, based on input information. A
number of models have been proposed for this type of task, including various
competitive learning algorithms (Rumelhart and Zipser, 1986; Carpenter and Grossberg,
1987).

Each pulse is different because of noise, but there are only a small number of
emitters present relative to the number of pulses. We take the input data
representing each pulse and form a state vector with it. A sample of several hundred
pulses are stored in a 'pulse buffer.' We take a pulse at random and learn it, using
the Widrow-Roff error correcting algorithm with a small learning constant. Since
there is no teacher, the desired output is assumed to be the input pulse data.

Learning rules for this class of dynamical system, Rebbian learning in general,
(Hopfield, 1982) and the Widrow-Hoff rule in particular, are effective @t 'digging
holes in the energy landscape' so they fall where the vectors that are learned are.

That is, the final low energy attractor states of the dynamical system when BSB
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dynamics are applied will tend to lie near or on stored information. Suppose we

learn each pulse as it comes in, using Widrow Hoff error correction, but with a small

learning constant. Metaphorically, we 'dig a little hole' at the location of the

pulse. But each pulse is different. So, after a while, we have dug a hole for each

pulse, and if the state vectors _ the _ulses from a si__le emitter are not too
far apart-Tn--_tate space, we have for-_da-na'ttr-'_o_ that contains aI_-'the--puls-_
t_-om a singl_'-emi-_, as well as new pulses from the same emitter. Figure 2

presents a (somewhat fanciful) picture of the behavior that we hope to obtain, where
many nearby data points combine to give a single broad network energy minimum that
contains them all.

Figure 2 about here

We can see why this behavior will occur from an informal argument. Call the
average emitter state vector of a particular emitter p. Then, every observed pulse,

fk' will be

f=p+d ,
k k

where dk is a distortion, which will be assumed to be different for every individual
pulse, that Is, different d_ are uncorrelated, and are relatively small compared to
p. With a small learning constant, and with the connection matrix A starting from
zero, the magnitude of the output vector, Af, will also be small after only a few

pulses are learned. This means that the error vector will point outward, toward fk'
that is, toward P+dk, as shown in Figure 3.

Figure 3 about here

Early in the learning process with a small learning constant for a particular

cluster, the error vectors (input minus output) all will point toward the cluster of
input pulses. Widrow Hoff learning can be described as using a simple assoclator to

learn the error vector. Since every dk is different and uncorrelated, the error
vectors from different pulses will have the average direction of p. The matrix will
act as if it is repeatedly learning p, the average of the vectors. It is easy to
show that if the centers of different emitter clusters are spaced far apart, in
particular, if the cluster centers are orthogonal, then p will be close to an
eigenvector of A. In more interesting and difficult cases, where clusters are close

together or the data is very noisy, it is necessary to resort to numerical simulation
to see how well the network works in practice. As we hope to show, this technique
does work quite well.

After the matrix has learned so many pulses that the input and output vectors

are of comparable magnitude, the output of the matrix when p + dk is presented will
be near p. (See Figure 4) Then,
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p =Ap.

Over a number of learned examples,

total error = Z (P+dl - A(p+d )
k k

= _(d - Ad)
k k

The maximum values of the eigenvalues of A are 1 or below, the d's are uncorrelated,
and this error term will average to zero.

Figure 4 about here

However, as the system learns more and more random noise, the average magnitude
of the error vector will tend to get longer and longer, as the elgenvalues of A
related to the noise become larger. Note that system learning never stops because
there is always an error vector to be learned, which is a function of the intrinsic
noise in the system. Therefore, there is a 'senility' mechanism found in this class

of neural networks. For example, the covarlance matrix of independent, identically
distributed Gausslan noise added to each element is proportional to the identity
matrix, then every vector becomes anelgenvector wlth the same elgenvalue, and this
matrix is the matrix toward which A will evolve, if it continues to learn random

noise indefinitely. When the BSB dynamics are applied to matrices resulting from
learning very large numbers of noisy pulses, the attractor basins become fragmented,
so that the clusters break up. However, the period of stable cluster formation is

very long and it is easy to avoid cluster breakup in practice. (Anderson, 1987)

In BSB clustering the desired output is a particular stable state. Ideally, all

pulses from one emitter will be attracted to that final state. Therefore a simple
identity check is now sufficient to check for clusters. This check is performed by
resubmitting the original noisy pulses to the network that has learned them and

forming a list of the stable states that result. The llst is then compared with
itself to find which pulses came from the same emitter. For example, a symbol could

be associated with the pulses from the same final state, i.e. the pulses have been
delnterleaved or identified.

Once the emitters have been identified, the average characteristics of the
features describing the pulse (frequency, pulse width and pulse repetition pattern)
can be computed. These features are used to classify the emitters with respect to
known emitter types in order to 'understand' the microwave environment. A two stage
system, which first clusters and then counts clusters is easy to implement, and,

practically, allows convenient _hooks' tO use traditional digital techniques in
conjunction with the neural networks.

Stimulus Coding and Representation. The fundamental represention assumption of
almost all neural n--6tworksis that information is carried by the pattern or set of
activities of many neurons in a group of neurons. This set of activities carries the
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meaning of whatever the nervous system is doing and these sets of activities are

represented as state vectors. The conversion of input data into a state vector, that
is, the representation of the data in the network, is the single most important
engineering problem faced in network deslgn. In our opinlon[ _hoice of-_o0d input
and output representat--fo_ is usually more important for the ultimate success of the
system than the choice of a particular network algorithm or learning rule.

We now suggest an explicit representation of the radar data. From the radar
receiver, we have a number of continuous valued features to represent: frequency,
elevation, azimuth, pulse width, and signal strength. Our approach is to code

continuous information as locations on a topographic map, i.e. a bar graph or a

moving meter pointer. We represent each continuous parameter value by location of
block of activation on a linear set of elements. Increase in a parameter value moves
the block of activity to the right, say, and a decrease, moves the activity to the
left. We have used a more complex topographic representation in several other

contexts, with success. (Sereno, 1989; Rossen, 1989; Viscuso, Anderson, and Spoehr,
1989).

We represent the block/bar of activity value with a block (three or four) "=",
equal, symbols placed in a region of ".," perlod, symbols. Single characters are

coded by eight bit ASCII bytes. The ASCII l's and O's are further transformed to
+l's and -l's_ so that the magnitude of any feature vector is the same regardless of
the feature value. Input vectors are therefore purely binary. On recall, if the

vector elements coding a character do not rise above a threshold size, the system is
not 'sure' of the output. Then that character is represented as the underline, " "
character. Being 'not sure' can be valuable information relative to the confidence

of a particular output state relative to an input. Related work has developed a more
numeric, topographic representation for this task, called a 'closeness code' (Penz,
1987) which has also been successfully used for clustering of simulated radar data.

Neural networks can incorporate new information about the signal and make good
use of it. This is one version of what is called the data fusion or sensor fusion

problem. To code the various radar features, We simply concatenate the topogra_
vectors of individual feature into a single long state vector. Bars in different
fields code the different quantities. Figure 5 shows these fields.

Figure 5 about here

Below we will gradually add information to the same network to show the utility
of this fusion methodology. The conjecture is is that adding more information about

the pulse will produce more accurate clustering. Note that we can insert 'symbolic'

information (say word identifications or other appropriate information) in the state
vector as character strings, forming a hybrid code. For instance the state vector
can contain almost unprocessed spectral data together with the symbolic bar graph
data combined with character strings representing symbols at the same time.

A Demonstration. For the simulations of the radar problem that we describe

next, we used a BSB system with the following properties. The system used 480 units,
representing 60 characters. Connectivity was 25Z, that is, each element was
connected at random to 120 others. There were a total of I0 simulated emitters with
considerable added intrinislc noise. A pulse buffer of 510 different pulses was used
for learning and, after learning, 100 new pulses, 10 from each emitter were used to
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test the system. There were about 2000 total learning trials, about that is, about

four presentations per example. Parameter values were _ = 0.5, 7 = 0.9 and 6 = O.
The limits for thresholding were +2 and -2. None of these parameters were critical,
in that moderate variations _of the parameters had little effect on the resulting

classifications of the network.

Suppose we simply learn frequent 7 iinformation. Figure 6 shows the total number

of attractors formed when ten new_ examples of each of ten emitters were passed

through the BSB dynamics, using the matrix formed from learning the pulses in the

pulse buffer. In a system that clustered perfectly, exactly 10 final states would
exist, one different final state for each of the ten emitters. However, with only
frequency information learned, all the 100 different inputs mapped into only two
attractors.

Figure 6 about here

Figure 6 and others like it below are graphical indications of the similarity
between recalled clusters or states vlth computational energy minima. The states

shown in the figures are ordered via a priori knowledge of the emitters, although

this information was obviously not given to the network. One can visually interpret
the outputs for equality of two emitters (lumping of different emitters) or
separation of outputs for a single emitter (_ of the same emitter) in the

outputs. This display method is for the reader's benefit. _he ANSP system
determines the number and state vector of separate minima by a dot product search of

the entire output list, as discussed above. Position of the bar of 'ffi'scodes the
frequency in the frequency field which is the only field learned in this example.

Let us now give the system additional information about pulse azimuth and

elevation. Clustering performance improves markedly, as shown in Figure 7. Ne get
nine different attractors. There is _till uncertainty in the system, however, since
few corners are fully saturated, as indicated by the underline symbols on the corners

of some bar's. States 1 and 3 are in the same attractor, an example of incorrect

_lumplng' as a result of insufficient information. Two other final states (8 and 9)

are very close to each other in Hamming distance.

Figure 7 about here

Let us assume that future advances in receivers will allow a quick estimation of
the mlcrostructure of each radar pulse. We have used, as shown in Figure 8, a coding

which is a crude graphical version of a Fourier anlysis of an individual pulse, with

the center frequency located at the middle of the field. Emitter pulse spectra were

assigned arbitrarily.
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Figure 8 about here

Note that the spectral information can be included in the state vector in only

slightly processed form: we have included almost a caricature of the actual

spectrum.

Addition of spectral information improved performance somewhat. There were nine
distinct attractors, though still many unsaturated states. Two emitters were still

'lumped', 8 and 9. Figure 9 shows the results.

Figure 9 about here

Suppose we add information about pulse width to azimuth, elevation, and

frequency. The simulated pulse width informatlon_ery poor. It actually degrades

performance, though it does allow separation of a couple of nearby emitters. The

results are given in Figure 10.

Figure 10 about here

The reason pulse width data is of poor quality and hurts discrimination is

because of a common artifact due to the way that pulse width is measured. When two

pulses occur close together in time a very long pulse width is measured by the

receiver circuitry. This can give rise in unfavorable cases to a spurious bimodal

distribution of pulsewidths for a single emitter. Therefore, a single emitter seems

to have some short pulse widths and some very long pulse widths and this can split

the category. Bimodal distributions of an emitter parameter, when the peaks are

widely separated, is a hard problem for any clustering algorithm. A couple of
difficult discriminations in this simulation, however, are aided by the additional

data.

We nov combine all this information about pulse properties together. None of
the subsets of inir6-_mation could perfectly cluster the emitters. Pulse width, in

particular, actually hurt performance. Figure 11 shows that, after learning, using

all the information, we nov get ten well separated attractors, i.e. the correct

number of emitters relative to the data set. The conclusion is that the additional

information, even if it was noisy, could be used effectively. Poor information could

be combined with other poor information to give good results.
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Figure ii about here

Processing After Delnterleaving. Having used the ANSP system to delnterleave
and cluster da_-a[ we also have a way of producing an accurate picture of each

emitter. We now have an estimate of the frequency and pulse width and can derive
other emitter properties (Penz et._ al., 1989), for example, the emitter pulse
repetition pattern. One method to learn this pattern is to learn pulse repetition
interval (PRI) pairs autoassociatively. Another is to autocorrelate the PRI's of a

string. This technique probably provides more information than any other for
characterizing emitters, because the resulting correlation functions are very useful
for characterizing a particular emitter type.

Classification Problem and Neural Network Data Bases. The next task is to
classify the observed emitters ba-sed on our p-_evouT'6"d"s_xperiencewith emitters of
various types. We continue with the neural network approach because of the ability

of networks to incorporate a great deal of information from different sensors, their
ability to generalize (i.e. _guess') based on noisy or incomplete information, and

their ability to handle ambiguity. Known disadvantages of neural networks used as

data bases are their slow computation using traditional computer architectures,

erroneous generalizations (i.e. _bad guesses'), their unpredictability, and the
difficulty of adding new information to them, which may require time consuming

relearning.

Information, in traditional expert systems, is often represented as collections

of atomic facts, relating pairs or small sets of items together. Expert systems
often assume 'IF (x) THEN (y)' kinds of information representation. For example,

such a rule in radar might look like:

IF (Frequency is 10 gHz)
AND (Pulse Width is 1 microsecond)
AND (PRI is constant at 1 kHz)

THEN (Emitter is a Klingon air traffic control radar).

Problems with this approach are that rules usually have many exceptions, data
may be erroneous or noisy, and emitter parameters may be changed because of local
conditions. Expert systems may be exceptionally prone to confusion when emitter

properties change because of the rigidity of their data representation. Neural
networks allow a different strategy: Always try to use as much information as you
have, because, in most cases, the more information you have, the better performance
will be.

As William James commented in the nineteenth century,

... the more other facts a fact is associated with in the mind,
the 5"6_te_poses----_io--n---6f-1"_-'-ou'-'r_r-6taln---6. -Ea--_ olr-i'_
a--_oc_becomes a hoo_--to"whic-_--it_, a m_ to fish it
up by when sunk beneath the surface. Together, they form a

network of attachments by which it is woven into the entire
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tissue of our thought.

William James (1890). p. 301

Perhaps, as William James suggests, information is best represented as large
sets of correlated information. We could represent this in a neural network by a

large, multimodal state vector. Each state vector contains a large number of _atomlc

facts' together with their cross correlations. Our clustering demonstration showed
that more information could be added and used efficiently and that identification

depends on a cluster of information co-occurlng. (See Anderson, 1986 for further

discussion of neural network data bases of this type.)

Ultimately, we would llke a system that would tentatively

based on measured properties and previously known information.

operation, that parameters can and often do change, we can never

answers.

identify emitters

Since we know, in

be sure of the

As a specific important example, radar systems can shift parameters in ways

consistent with their physical design, that is, wavegulde sizes, power supply size,

and so on, for a number of reasons, for example, weather conditions. If an emitter

is characterized by only one parameter, and that parameter is changed, then

identification becomes very unlikely. Therefore, accuracy of measurement of a

partlcular parameter may not be as useful for classification as one might expect.

However, using a whole set of co-occurlng properties, each at low precision, may

prove a much more efficient strategy for identification. For further discussion of

how humans often seem to use such a strategy in perception, consult George Miller's

classic 1956 paper, "The magic number seven, plus or minus two."

Classification Problem for Shifted Emitters. Our first neural net

ciasslflcation simulation is s'_clflcally designed to study sensitivity to shifts in

parameters. Two data sets were generated. One set has _normal' emitter properties

and the other set had all the emitter properties changed about I0 percent. The two

sets each contained about 500 data points. The names used are totally arbitrary.

The state vector was constructed of a name string (the first I0 characters) and bar

codes for frequency, pulse width, and pulse repetition interval. For the

classification function, the position of "+" symbols indicates the feature magnitude

while the blank symbol fills the rest of the feature field. Again the "_" symbol

indicates an undecided node.

Figures 12 and 13 show the resulting attractor interpretations. Figure 12 shows

the vectors to be learned autoassociatively by the BSB model. The first field is the

emitter name. The last three fields represent the numerical information produced by

the deinterleaver and pulse repetition interval modules. An input consists of

leaving the identification blank and filling in the analog information for the

emitter which one wafits an identification. The autoassocative connections fill in

the missing identification information.

Figure 12 shows the identifications produced when the normal set is provided to

the matrix: all the names are produced correctly and in a small number of iterations

through the BSB algorithm. Figure 13 uses the same matrix, but the input data is now

derived from sources whose mean values are shifted about 10 percent, to emulate this

parameter shift.
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Figure 12 about here

Figure 13 about here

There were three errors of classification. Emitter 3 was classified as 'Airborn In'
instead of 'AA FC'. Emittter 4 was classified as 'SAM target' instead of _Airborn

In'. Emitter 7 was classified as 'Airborn In' rather than the correct 'SAM Target'
name. Note that the recalled analog information is also not exactly the correct

analog information even for the correctly identified emitters. At a finer scale, the

number of iterations required to reach an attractor state was very long. This is a

direct measure of the uncertainty of the neural network about the shifted data. Some

of the final states were not fully limited, another indication of uncertainty.

Large Classification Data Bases. it would be of interest to see how the system
worked with a larger data b---_. Some information about radar systems is published in

Jane's Weapon Systems !Blake, 1988). We can use this data as a starting point to see
a neur--u-{a_networkmlght scale to larger systems. Figure 14 shows the kind of data

available from Jane's. Some radars have constant pulse repetition frequency (PRF)
and others have highly variable PRF's. (Jane's lists Pulse Repetition Frequency
(PRF) in its tables instead of Pulse Repetition interval (PRI). We have used their
term for their data in this simulation.) We represented PRF variability in the state
vector coding by increasing the last bar width (Field 7, Figure 15) for highly
variable PRF's (see the Swedish radar, for an example.) Also, when a parameter is out
of range (the average PRF of the Swedish radar) it is not represented.

Figure 14 about here

Figure 15 about here

We perform the usual partitioning of the state vector into fields, as shown in
Figure 15. For this simulation, the frequency scale is so coarse that even enormous

changes in frequency would not change the bar coding significantly. We are more
interested here in whether the system can handle large amounts of Jane's data. We
taught the network 47 different kinds of radar transmitters. Some transmitter names
were represented by more than one state vector because they can have several, quite
different modes of operation, that is, the parameter part of the code can differ
significantly from mode to mode. (The clustering algorithms would almost surely pick
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up different modes as different clusters.) After learning, we provided the measured

properties to the the transmitter to see if it could regenerate the name of the
country that the radar belonged to. There were only three errors of retrieval from
47 sets of input data, corresponding to 94 percent accurate country identification.
This experiment was basically coding a lookup table, using low precision

representations of the parameters. Figure 16 shows a sample of the output, with
reconstructions of the country, designations, and functions.

Figure 16 about here

Conclusions. We have presented a system using neural networks which is capable

of clustering and identifying radar emitters, given as input data large numbers of
received radar pulses and with some knowledge of previously characterized emitter

types.

Good features of this system are its robustness, its ability to integrate
information from co-occurance of many features, and its ability to integrate
information from individual data samples.

We might point out that the radar problem is similar to data analysis problems

in other areas. For example, it is very similar to a problem in experimental

neurophyslology, where action potentials from multiple neurons are recorded with a

single electrode. Applications of the neural network techniques described here may
not be limited to radar signal processing.
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Figures, Anderson, Gately, Penz and Collins

Caption, Figure 1

Block diagram of the radar clustering and categorizing system.

Caption, Figure 2

Landscape surface of system energy. Several learned examples may
contribute to the formation of a single energy minimum which will

correspond to a single emitter. This drawing is only for illustrative
purposes and is not meant to represent the very high dimensional
simulations actually used.

!

Caption, Figure 3

The Widrow-Hoff procedure learns the error vector. The error

vectors early in learning with a small learning constant point toward

examples, and the average of the error vectors will point toward the

category mean, i.e. all the examples of a single emitter.

Caption, Figure 4

Assume an eigenvector is close to a category mean, as will be the
result after extensive error correcting, autoassociative learning.
The error terms from many learned examples, with a small learning
constant, will average to zero and the system attractor structure will
not change markedly. (There are very long term 'senility' mechanisms
with continued learning, but they are not of practical importance for

this application.)
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Figures, Anderson, Gately, Penz and Collins

Figure 5

Radar Pulse Fields: Coding of Input Information

Position of the bar of '-' codes an analog quanitity

Azimuth Elevation Frequency Pulse Width Pseudo-spectra

I< ....... >I< ....... >I< ........... >I< .......... >I< ......... >I

..oNJ|noopoo|mnnooeoooooo_s|i|oeeeoooeooeoo|||oJ|Ono|.|.|-oo

In any field: A move to the left decreases the quantity

A move to the right increases the quantity

Caption, Figure 5

Input representation of analog input data uses bar codes. The

state vector is partitioned into fields, corresponding to azimuth,

elevation, frequency, pulse width, and a field corresponding to
additional information that might become available with advances in

receiver technology.
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Figures, Anderson, Gately, Penz and Collins

Figure 6

Emitter
Number

1
2
3

4
5
6
7
8

9
i0,

Clustering by Frequency Information Only

Final Output State

Azimuth Elevation Frequency Pulse Width Pseudo-spectra

i< ....... >I< ........ >I< ............... >I< ...... >I<--- ...... >I

Caption, Figure 6

Final attractor states when only frequency information is

learned. Ten different emitter are present, but only two different
output states are found.
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Figures, Anderson, Gately, Penz and Collins

Figure 7

Clustering Using Azimuth, Elevation and Frequency Information

Emitter
Number

Final Output State

Azimuth Elevation Frequency Pulse Width Pseudo-spectra
I< ....... >I< ....... >I< ............... >I<- >I< --->I

6
7
8
9

i0

Caption, Figure 7

When azimuth, elevation and frequency are provided for each data

point, performance is better• However, two emitters are lumped
together, and three others have very close final states•
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Figures, Anderson, Gately, Penz and Collins

Figure 8

a)

b)

c)

Q.oeeom.oeeBO

e.memt_om.moe

Monochromatic pulse.

Subpulses with distinct frequencies.
(Or some kinds of FM or phase modulation)

Continuous frequency sweep during the puls
i.e. pulse compression)

Caption, Figure 8

Suppose we can assume that advances in receiver technology will
allow us to incorporate a crude 'cartoon' of the spectrum of an
individual pulse into the coding of the state vector representing an
example. The spectral information can be included in the state vector
in only slightly processed form.
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Figures, Anderson, Gately, Penz and Collins

Figure 9

Spectrum, Azimuth, Elevation, Frequency

Emitter Final Output State

Number

Azimuth Elevation Frequency Pulse Width Pseudo-spectra

I< ....... >I< ....... >I< .......... >I<- >I< ......... >I

1
2
3
4
5
6
7
8
9

i0

Caption, Figure 9

Including pseudo-spectral
considerably• Only two emitters
well separated•

information helped
are lumped and the other

performance
emitters are
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Figures, Anderson, Gately, Penz and Collins

Figure i0

Pulse Width, Azimuth, Elevation and Frequency

Emitter Final Output State
Number

Azimuth Elevation Frequency

I< ....... >I< ....... >I< ........
Pulse Width Pseudo-spectra

>I< ...... >I< ......... >I

1
2
3

4
5
6
7

Emitter
8

8

9
i0

Caption, Figure 10

Suppose we add pulse width information to our other information.

Pulse width data is of poor quality because when two pulses occur
close together, a very long pulse width is measured by the receiver
circuitry. This gives rise to a bimodal distribution of pulsewidths,
and the system splits one category.
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Figures, Anderson, Gately, Penz and Collins

Figure ii

Clustering With All Information

Emitter Final Output State
Number

Azimuth Elevation Frequency Pulse Width Pseudo-spectra

I< ....... >I< >I< ...... >I< >I< >I

6
7
8
9

i0

I|B||•o•••I•BBBBI•II• B •••lllllllllllli|i•lllllBBBBJJU(lll

•.e•Bmim•o•••oolUmB•ooo_•••O,•l.emnJowwoomBmooe_menoloBomo••

•I_BB••O••••BBNNww•.•ooNBBBg•OBOU.IWWW.wBNB•_e_O•OBOU_OQOO

lmBmo_••••BBn_,ooili•••••••igggoimmmeeunBmi0_0o0mIllIiUo_•_

W n
._ Big •••I, _lmm....•• SIS oww.ll..leolnmBo•••• • • •m o ••_

.oQoeBBBBmIOlUOBBB|.OIOoBB|NoooewvvIoooooBBBooulooooNoooolOO

..wi. .. ...oo • BBu BBee. o• o! o.e

,•.BBB_,..,,B ,,.,. .S KS .. .. B B• So.

o. BnBB ,,, gum , ,,,, Bnu o,,,,,,oooo, Is ,,,,eeooUoo.,o,o

Bm BO•OBIIgeee,BBB .,.•.!BOMB laoooee0o.BmB••••eoNBB_lJmoo,e

Caption, Figure 11

When all available information is used, ten stable, well

separated attractors are formed. This shows that such a network
computation can make good use of additional information•
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Figures, Anderson, Gately, Penz and Collins

Figure 12

Learn normal set, Test normal set

Name Frequency P W PRI

I ........ >I ......... >I ...... >I ........ >

1 SAM Target+++ ++
2 Airborn In +++

3 AA FC +++ ++

4 Airborn In +++ ++

5 Airborn In +++ ++

6 Airborn In +++

7 SAM Target +++

8 SAM Target +++

9 SAM Target +++

10 SAM Target +++ ++

++

++ ++

++

++

++

++ ++

++ ++

++ ++

++

++

++

Caption, Figure 12

We can attach identification labels

representations of their analog parameters.

here are random and were chosen arbitrarily.

to emitters along with

The names and values used
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Figures, Anderson, Gately, Penz and Collins

Figure 13

Learn Normal Set, Test Set with Shifted Parameters

Name Frequency P W PRI

I........ >I >I ...... >I- >

1 SAM Target+++ _+_ ++_
2 Airborn In +++ ++
3 Airborn In +++ + + x error

4 SAM Target +++ + ++ x error
5 Airborn In +++ ++
6 Airborn In +++ + ++
7 Airborn In +++ ++ x error

8 SAM Target +++ +++
9 SAM Target ++ ++

i0 SAM Target _++--++

Caption, Figure 13

Even if the emitter parameters shift slightly, it is still
possible to make some tentative emitter identifications. Three errors
of identification were made. Neural networks are able to generalize
to some degree, if the representations are chosen properly. The names
and values used here are random and were chosen arbitrarily.
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Figures, Anderson, Gately, Penz and Collins

Figure 14

Sample Data Obtained from Jane's Weapon Systems

Three Radars from Jane's:

China, JY-9, Search

Frequency : 2.0 - 3.0 gHz
Pulse Width : 20 microseconds

PRF : 0.850 kHz

PRF Variance: Constant frequency

Sweden, UARI021, Surveillance

Frequency : 8.6 - 9.5 gHz
Pulse Width : 1.5 microseconds

PRF : 4.8 - 8.1 kHz

PRF Variance: 3 frequency staggered

USA, APQII3, FireControl

Frequency : 16 - 16.4 gHz
Pulse Width : I.i microseconds

PRF : 0.674 kHz

PRF Variance: None (Constant frequency)

Caption, Figure 14

Sample data on radar

Systems. (Blake, 1988).

transmitters taken from Jane's Weapon



Figures, Anderson, Gately, Penz and Collins

Figure 15

Coding into Partitioned State Vector:

Symbolic Fields:
Continuous Fields:

Field 4 Frequency

Field 5 Pulse Width

Field 6 PRF

Field 7 PRF Variation

Field 1

Field 2

Field 3

Country

Designation

Purpose

1 2 3 4

I---> I---> I---> I--

5 6 7

.... >I ........ >I ...... >I--->

ChinaRY-9 Searc...--. ........................ "-" ....... ",...

SwedeUARl0Surve ......... -- ........... " ...... " .......... "''''

USA..APQIIFireC ................ - ..... " ....... -." ....... " ....

Analog Bar Code Ranges:

Frequency: 0 -

Pulse Width: 0 -

PRF: 0 -

PRF Variance: 0 -

14 gHz
i0 microseconds

4 kHz

200% of average PRF

Caption, Figure 15

Bar code representation

both symbolic information

designation, and analog, bar

pulse width, etc.

of Jane's data. Note the presence of

such as country name and transmitter

coded information such as frequency,
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Figures, Anderson, Gately, Penz and Collins

Figure 16

X

X

X

Data Retrieval: Data from Jane's Weapons Systems

only part of the data

Final output states: 3 errors in reconstructed country

1 2 3 4 5 6 7

I---> I---> I---> I--" ................. >I ........ >I ...... >I--->

ChinaRY-9 Searc.. -- ......................... -.- ....... - ....

USA..FPS24Searc-. ............................ - ......... - ....

China571..Surve.-- ..................... - ....... - ....... - ....

China581..Warni.- ...................... - ..... - ......... - ....

China311-AFireC ......... --- ........ - .................. --....

FrancTRS20Surve ...... - ................ - ...... - ......... - ....

IndiaPSM-3Searc...--- .................... - .... - ........ - ....

EnglaAS3- FireC..- ........................... - ......... - ....

EnglaMARECMarin ......... - ............. - ...... - ......... - ....

USA..FPS24Searc- ............................. - ......... - ....

USA..PAR 0Appro ......... - .......... - ................... --...
IsraeELM_2Marin...- ................. - ........... - ...... - ....

USA.. PR20Appro ......... - ........... - .................. --...

ggQ

USA..TPS43FireC...- ....................... - ............ - ....

USA..APQIIFireC ................ -...- ................ -..- ....
USA..APSI2Surve ......... t ........... . ............. ---..--...

IsraeELM22Marin...- ................ - ............. ---...--...

IsraeELM20FireC.- ........................... -- ......... - ....

SwedeGirafSearc ..... ---. .............. - ......... -----..---..

SwedeUARl0Surve ......... -- .......... - ....... - .......... --...

USSR.BarloSearc .... -- ................ -- ....... - ........ - ....

IsraeELM20FireC- ............................ -- ......... - ....

USSR.FireCFireC...- ................. -- ............. -...- ....

USSR.HenSeWarni..- ........................... ------- .... ....

USSR.KnifeWarni-. .......................... ---------...--...

USSR.JayBiAirbo ............. - ....... -- ............... -----..

Caption, Figure 16

When only analog data is provided at the input, the network will

fill in the most appropriate country name. In this trial simulation,

a network learned 47 different transmitters and was able to correctly

retrieve the associated country in 43 of them.
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