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Radar SLAM using visual features
Jonas Callmer1*, David Törnqvist1, Fredrik Gustafsson1, Henrik Svensson2 and Pelle Carlbom3

Abstract

A vessel navigating in a critical environment such as an archipelago requires very accurate movement estimates.

Intentional or unintentional jamming makes GPS unreliable as the only source of information and an additional

independent supporting navigation system should be used. In this paper, we suggest estimating the vessel

movements using a sequence of radar images from the preexisting body-fixed radar. Island landmarks in the radar

scans are tracked between multiple scans using visual features. This provides information not only about the

position of the vessel but also of its course and velocity. We present here a navigation framework that requires no

additional hardware than the already existing naval radar sensor. Experiments show that visual radar features can

be used to accurately estimate the vessel trajectory over an extensive data set.

I. Introduction
In autonomous robotics, there is a need to accurately

estimate the movements of a vehicle. A simple move-

ment sensor like a wheel encoder on a ground robot or

a pit log on a vessel will under ideal circumstances pro-

vide quite accurate movement measurements. Unfortu-

nately, they are sensitive to disturbances. For example,

wheel slip due to a wet surface will be interpreted incor-

rectly by a wheel encoder, and strong currents will not

be correctly registered by the pit log why a position esti-

mate based solely on these sensors will drift off. In

applications like autonomous robotics, the movement

accuracy needs to be high why other redundant move-

ment measurement methods are required.

A common approach is to study the surroundings and

see how they change over time. By relating the measure-

ments of the environment k seconds ago to the present

ones, a measurement of the vehicle translation and rota-

tion during this time interval can be obtained. A system

like this complements the movement sensor and

enhances the positioning accuracy.

Most outdoor navigation systems such as surface ves-

sels use global navigation satellite systems (GNSS) such

as the Global Positioning System (GPS) to measure their

position. These signals are weak making them very vul-

nerable to intentional or unintentional jamming [1-3]. A

supporting positioning system that is redundant of the

satellite signals is therefore necessary. By estimating the

vessel movements using the surroundings, a mean of

measuring the reliability of the GPS system is provided.

The movement estimates can also be used during a GPS

outage providing accurate position and movement esti-

mates over a limited period of time. This support sys-

tem could aid the crew in critical situations during a

GPS outage, avoiding costly PR disasters such as run-

ning aground.

For land-based vehicles or surface vessels, three main

sensor types exist that can measure the environment:

cameras, laser range sensors and radar sensors. Cameras

are very rich in information and have a long reach but

are sensitive to light and weather conditions. Laser

range sensors provide robust and accurate range mea-

surements but also they are very sensitive to weather

conditions. The radar signal is usually the least informa-

tive signal of the three and is also quite sensitive to

what the signals reflect against. On the other hand, the

radar sensor works pretty much equally well in all

weather conditions.

In this paper, radar scan matching to estimate relative

movements is studied. The idea is to use the radar as an

imagery sensor and apply computer vision algorithms to

detect landmarks of opportunity. Landmarks that occur

during consecuting radar scans are then used for visual

odometry, that gives speed, relative position and relative

course. The main motivation for using visual features to

match radar scans instead of trying to align the radar

scans is that visual features are easily matched despite

large translational and rotational differences, which is

more difficult using other scan matching techniques.
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The landmarks can optionally be saved in a map format

that can be used to recognize areas that have been vis-

ited before. That is, a by-product of the robust naviga-

tion solution is a mapping and exploration system.

Our application example is based on a military patrol

boat, Figure 1, that often maneuvers close to the shore

in high speeds, at night, without visual aid in situations

where GPS jamming or spoofing cannot be excluded. As

the results will show, we are able to navigate in a com-

plex archipelago using only the radar and get a map

that is very close to ground truth.

To provide a complete backup system for GPS, global

reference measurements are necessary to eliminate the

longterm drift. The surface navigation system in [4,5],

assumed that an accurate sea chart is available. The idea

was to apply map matching between the radar image

and the sea chart, and the particle filter was used for

this mapping. Unfortunately, commercial sea charts still

contain rather large absolute errors of the shore, see

[1,2], which makes them less useful in blind navigation

with critical maneuvers without visual feedback.

The radar used in these experiments measures the dis-

tances to land areas using 1,024 samples in each direc-

tion, and a full revolution is comprised of roughly 2,000

directions. Each scan has a radius of about 5 km giving

a range resolution of roughly 5 m. These measurements

are used to create a radar image by translating the range

and bearing measurements into Cartesian coordinates.

An example of the resulting image is shown in Figure 2.

The radar image gives a birds eye view of the sur-

rounding islands and by tracking these islands, informa-

tion about how the vessel is moving is obtained. We use

the Scale-Invariant Feature Transform (SIFT) [6] to

extract trackable features from the radar image which

are subsequently matched with features from later

scans. These features are shown to be distinct and stable

enough to be used for island tracking. Other feature

detectors like Speeded Up Robust Features (SURF) [7]

could equally well have been used. When these features

are tracked using a filter, estimates of the vessel move-

ments are obtained that over time give an accurate tra-

jectory estimate.

The outline is as follows; Section II gives a overview of

the related work followed by a theoretical filtering fra-

mework in Section III. In Section IV, the performance

of SIFT is evaluated on radar images, and the trajectory

estimation performance on experimental data is given in

Section V. The paper then ends in Section VI with con-

clusions and suggested future work.

II. Background and relation to slam
The approach in this contribution is known as the

Simultaneous Localization And Mapping (SLAM) pro-

blem. Today, SLAM is a fairly well-studied problem

with solutions that are reaching some level of maturity

[8,9]. SLAM has been performed in a wide variety of

environments such as indoors [10], in urban [11-14] and

rural areas [13,15], underwater [16,17] and in the air

[18] and the platform is usually equipped with a multi-

tude of sensors such as lasers, cameras, inertial measure-

ment units, wheel encoders, etc. In this work, we will

use only the radar sensor of a naval vessel to perform

SLAM in a maritime environment. The data used were

recorded in the Stockholm archipelago by Saab Bofors

Dynamics [19].

Radars have been used for a long time to estimate

movements, for example in the early experiments by

Clark and Durrant-Whyte [20]. Radar reflecting beacons

in known positions were tracked using a millimeter

Figure 1 The high-speed patrol boat type used for the data

acquisition. Note the backwash created by the jet propulsion

system. Courtesy of Dockstavarvet AB.

Figure 2 Typical radar image showing the islands surrounding

the vessel. The radar disturbances close to the vessel are caused

by the vessel and the waves. Behind the vessel (lower part of the

image), the striped-shaped disturbances are the result of

backwashes reflecting the radar pulses.
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radar, and this was shown to improve the movement

estimates. Shortly after, Clark and Dissanayake [21]

extended the work by tracking natural features instead

of beacons.

Thereafter, laser range sensors became more popular

since they are more reliable, giving a range measure-

ment in all directions. The problem of estimating the

vehicle movements became a problem of range scan

alignment. This was studied among others in [22-25].

The advantages of the radar, such as its ability to func-

tion in all weather conditions, have though resulted in it

making a comeback. Lately, microwave radars have been

used in SLAM experiments but now using a landmark free

approach. In [13], SLAM was performed in both urban

and rural areas by aligning the latest radar scan with the

radar map using 3D correlations to estimate the relative

movements of the vehicle. The radar map was constructed

by consecutively adding the latest aligned radar scan to

the previous scans. Checchin et al. [14] performed SLAM

in an urban scenario by estimating the rotation and trans-

lation of the robot over a sequence of scans using the

Fourier-Mellin Transform. It can match images that are

translated, rotated and scaled and can therefore be used to

align radar scans [26]. Chandran and Newman [27] jointly

estimated the radar map and the vehicle trajectory by

maximizing the quality of the map as a function of a

motion parametrization.

Millimeter wave radars have also become more com-

monplace in some segments of the automotive industry,

and the number of applications for them are growing.

For example, the road curvature has been estimated

using the radar reflections that will be used in future sys-

tems in collision warning and collision avoidance [28,29].

The problem of radar alignment is also present in

meteorology where space radar and ground radar obser-

vations are aligned to get a more complete picture of

the weather in [30]. The scans are aligned by dividing

them into smaller volumes that are matched by their

respective precipitation intensities.

Visual features like SIFT or SURF have been used in

camera-based SLAM many times before. Sometimes, the

features were used to estimate relative movements

[16,31,32], and other times, they were used to detect

loop closures [10,17,33,34].

The combination of radar and SIFT has previously

been explored by Li et al. in [35], where Synthetic Aper-

ture Radar measurements were coregistered using

matched SIFT features. Radar scan matching using SIFT

was also suggested in the short papers [36,37]. A system

with parallel stationary ground radars is discussed and

SIFT feature matching is suggested as a way to estimate

the constant overlaps between the scans. No radar scans

ever seem to be matched in those papers though. To

the best of the authors knowledge, this is the first time

visual features have been used to estimate the rotational

and translational differences between radar images.

III. Theoretical framework
All vessel movements are estimated relative a global

position. The positions of the tracked landmarks are not

measured globally but relative to the vessel. Therefore,

two coordinate systems are used, one global for posi-

tioning the vessel and all the landmarks and one local

relating the measured feature positions to the vessel.

Figure 3 shows the local and global coordinate systems,

the vessel and a landmark m.

The variables needed for visual odometry are summar-

ized in Table 1.

A. Detection model

Each radar scan has a radius of about 5 km with a range

resolution of 5 meters, and the antenna revolution takes

about 1.5 s.

If a landmark is detected at time t, the radar provides

a range, rt, and bearing, θt, measurement to the island

landmark i as

yi
t =

(

ri
t

θ i
t

)

+ ei
t (1)

where ei
t is independent Gaussian noise. These echos

are transformed into a radar image using polar to rec-

tangular coordinates conversion, and the result is shown

in Figure 2. Figures 1 and 2 also show that the forward

and sideways facing parts of the scans are the most use-

ful ones for feature tracking. This is due to the

X

Y

y m

a

b

x

Figure 3 The global (X, Y ) and the local boat fixed (x, y)

coordinate systems, the course ψ and the crab angle j giving

difference between the course and velocity vector. The vessel

and an island landmark m are also depicted as is the measured

bearing θ and range r of the landmark relative to the vessel.
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significant backwash created by the jet propulsion sys-

tem of the vessel, which is observed along the vessel tra-

jectory in Figure 1. This backwash disturbs the radar

measurements by reflecting the radar pulse, resulting in

the stripe-shaped disturbances behind the vessel in Fig-

ure 2.

SIFT is today a well-established standard method to

extract and match features from one image to features

extracted from a different image covering the same

scene. It is a rotation and affine invariant Harris point

extractor that uses a difference-of-Gaussian function to

determine scale. Harris points are in turn regions in the

image where the gradients of the image are large, mak-

ing them prone to stand out also in other images of the

same area. For region description, SIFT uses gradient

histograms in 16 subspaces around the point of interest.

In this work, SIFT is used to extract and match fea-

tures from radar images. By tracking the SIFT features

over a sequence of radar images, information about how

the vessel is moving is obtained.

B. Measurement model

Once a feature has been matched between two scans,

the position of the feature is used as a measurement to

update the filter.

Since the features are matched in Cartesian image

coordinates, the straightforward way would be to use

the pixel coordinates themselves as a measurement.

After having first converted the pixel coordinates of the

landmark to coordinates in the local coordinate system,

the Cartesian feature coordinates are now related to the

vessel states as

ȳi
t =

(

yi
x,t

yi
y,t

)

+ ēi
t = R(ψt)

(

mi
X,t − Xt

mi
Y ,t − Yt

)

+

(

ēi
X,t

ēi
Y ,t

)

(2)

where yi
x,t is the measured x-coordinate of feature i in

the local coordinate frame at time t and R(ψt) is the

rotation matrix between the ship orientation and the

global coordinate system. (X, Y ) and (mi
X, mi

Y) are glo-

bal vessel position and global position of landmark i,

respectively.

The problem with this approach is that ēX,t and ēY ,t in

(2) are dependent since they are both mixtures of the

range and bearing uncertainties of the radar sensor.

These dependencies are also time dependent since the

mixtures depend on the bearing of the radar sensor.

Simply assuming them to be independent will introduce

estimation errors.

A better approach is to convert the Cartesian land-

mark coordinates back to polar coordinates and use

these as a measurement

yi
t =

(

ri
t

θ i
t

)

=

⎛

⎜
⎜
⎝

√

(mi
X,t − Xt)

2
+ (mi

Y ,t − Yt)
2

arctan

(

mi
Y ,t − Yt

mi
X,t − Xt

)

− ψt

⎞

⎟
⎟
⎠

+

(

ei
r,t

ei
θ ,t

)

. (3)

This approach results in independent noise parameters

er ∼ N(0, σ 2
r ) and eθ ∼ N(0, σ 2

θ ), which better reflect the

true range and bearing uncertainties of the range sensor.

C. Motion model

The system states describing the vessel movements at

time instant t are

zt = (Xt Yt vt ψt ωt φt)
T (4)

where v is the velocity, ψ is the course, ω is the angu-

lar velocity and jt is the crab angle, i.e. the wind and

stream induced difference between course and velocity

vector (normally small). Due to the size and the speed

of the vessel, Figure 1, the crab angle is assumed to be

very small throughout the experiments. The system

states are more extensively described in Table 1 and are

also shown in Figure 3. We will be using a coordinated

turn model, though there are many possible motion

models available.

When landmarks at unknown positions are tracked to

estimate the movements of the vessel, these should be

kept in the state vector. If the same landmarks are

tracked over a sequence of radar scans, a better estimate

of the vessel movement is acquired than if they are

tracked between just two.

The system states are therefore expanded to also

include all landmarks within the field of view to create a

visual odometry framework. The new state vector

becomes

zt = (Xt Yt vt ψt ωt φt mk
X,t mk

Y ,t ... ml
Y ,t)

T . (5)

Only the l - k + 1 latest landmarks are within the field

of view why only these are kept in the state vector. As

the vessel travels on, the landmarks will one by one

Table 1 Summary of notation

Parameter Description

(X, Y) Global position

(x, y) Local coordinate system with x aligned with the stem

v Velocity

ψ Course, defined as the angle between the global X axis
and the local x axis, as would be shown by a compass

ω Turn rate, defined as ψ

j Difference between course and velocity vector ("crab”
angle), which is mainly due to streams and wind

(mi
X, mi

Y) Global position of landmark i

ri Range from the strap-down body-fixed radar to landmark
i

θi Bearing from the radar to landmark i
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leave the field of view why they will be removed from

the state vector and subsequently replaced by new ones.

When all old landmarks are kept in the state vector

even after they have left the field of view, it is a SLAM

framework. If an old landmark that left the field of view

long ago was rediscovered, this would allow for the

whole vessel trajectory to be updated. This is called a

loop closure and is one of the key features in SLAM.

The SLAM state vector is therefore

zt = (Xt Yt vt ψt ωt φt m1
X,t m1

Y ,t . . .)
T . (6)

A discretized linearization of the coordinated turn

model using the SLAM landmark augmentation gives

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Xt+�t

Yt+�t

vt+�t

ψt+�t

ωt+�t

φt+�t

m1
X,t+�t

m1
Y ,t+�t

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Xt + 2vt

ωt
sin

(
ωt�t

2

)

cos
(

ψt + φt + ωt�t
2

)

Yt + 2vt

ωt
sin

(
ωt�t

2

)

sin
(

ψt + φt + ωt�t
2

)

vt + νv,t

ψt + ωt�t

ωt + νω,t

φt + νφ,t

m1
X,t

m1
Y ,t
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

where ∆t is the difference in acquisition time between

the two latest matched features. νv, νω and νj are inde-

pendent Gaussian process noises reflecting the move-

ment uncertainties of the vessel.

D. Multi-rate issues

Having defined a motion model and a measurement

model, state estimation is usually straightforwardly

implemented using standard algorithms such as the

extended Kalman filter (EKF), the unscented Kalman fil-

ter (UKF) or the particle filter (PF), see [38]. These fil-

ters iterate between a prediction step based on the

motion model and a correction step based on the mea-

surement model and the current measurement. The

most natural approach is to stack all landmarks from

one radar revolution into a large measurement vector

and then run the filter with ∆t = T = 1.5, where T is

the radar revolution time (1.5 in our application). There

are, however, two nonstandard problems here.

The first problem is that all matched features should

not be used to update the filter at the same time. Since

the vessel is moving while the radar is revolving, a shift

in the radar image is introduced. A vessel speed of 10

m/s will result in a difference in landmark position of

about 15 m from the beginning to the end of the scan.

If the vessel is traveling with a constant velocity and

course, then all relative changes in feature positions

between two scans would be equal, but if the vessel is

turning or accelerating, a shift in the relative position

change is introduced. This results in different features

having different relative movements that will introduce

estimation errors if all measurements are used at the

same time. We have found the error caused by this

batch approach to be quite large. Therefore, the filter

should be updated by each matched feature

independently.

If independent course and velocity measurements

were available, they could be used to correct the skew-

ness in the radar image. The filter estimates of velocity

and course should though not be used for scan correc-

tion, since this would create a feedback loop from the

estimates to the measurements that can cause filter

instability.

Second, if there was one landmark detected in each

scan direction, the filter could be updated with the rate

�t = T /N = 1.5
2000

where N is the number of measure-

ments per rotation (2,000 in our application). This is

not the case though and we are facing a multi-rate pro-

blem with irregularly sampled measurements. The mea-

surement model can now conveniently be written as

yt =

{

yi
t if landmark i is detected at time t

NaN otherwise.
(8)

Now, any of the filters (EKF, UKF, PF) can be applied

at rate ∆t = T/N using (8), with the understanding that

a measurement being NaN simply means that the mea-

surement update is skipped.

E. Alternative landmark free odometric framework

The landmark-based framework derived above suffers

from one apparent shortcoming: the number of features

will grow very fast. After only a short time period, thou-

sands of potential landmarks will have been found, caus-

ing large overhead computations in the implementation.

Either a lot of restrictions must be made on which of

the new landmarks to track, or a different approach is

needed.

If the map is not central, an approach based on differ-

ential landmark processing could be taken. Instead of

tracking the same feature over a sequence of scans, fea-

tures are only matched between two scans to compute

the relative movement between the sweeps.

1) Relative movement estimation: As described in Sec-

tion III-D, all features from the entire scan should not

be used to estimate the relative movement at the same

time. If the vessel is accelerating or turning, the scan

will be scewed causing estimation errors. The idea is

therefore to use subsets of features, measured over a

short time interval, to compute the relative changes in

course ∆ψt and position ∆Xt and ∆Yt between two

scans. The scans are simply divided into multiple slices

where each segment covers a time interval τt. The
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relative movement and course estimates are therefore

calculated multiple times per scan pair.

The relative change in position and course can be

described as a relationship between the landmark posi-

tions measured in the local coordinate frame at time t

and t - T. These landmark positions are related as

(

yi
x,t−T

yi
y,t−T

)

=

(

cos (�ψt) −sin (�ψt)

sin (�ψt) cos (�ψt)

)
(

yi
x,t

yi
y,t

)

+

(

�Xt

�Yt

)

(9)

where yi
x,t is the measured x - coordinate of landmark

i at time instant t in the local coordinate system. yi
x,t−T

is the measured x - coordinate in the previous scan.

If (9) was used to estimate the changes in course and

position between two scans using each segment indepen-

dently, quite large course changes could be experienced.

Since each scan pair is used multiple times because it

divided into segments, practically the same course and

position change would be calculated over and over again.

For example, the change in course registered between the

scans will be similar for two adjacent segments. The only

truly new information in the next segment are the

changes experienced over that specific segment, not the

changes experienced over the rest of the full scan because

that has already been studied. To avoid calculating the

same course change multiple times, the changes in

course and position can be calculated recursively as

�ψt = �ψt−τ + δψt (10a)

�Xt = �Xt−τ + δXt (10b)

�Yt = �Yt−τ + δYt . (10c)

The change in course is subsequently divided into two

parts: the estimated change in course ∆ψt-τ using the

previous segment, which is known, and a small change

in course δψt experienced during the segment, which is

unknown. Even though the vessel used for data acquisi-

tion is very maneuverable, δψt can be assumed small.

The sine and cosines of (9) can now be rewritten

using (10a) and simplified using the small angle approxi-

mation cos (δψt) ≈ 1 and sin (δψt) ≈ δψt

cos (�ψ) = cos (�ψt−τ + δψt)o

= cos (�ψt−τ )
︸ ︷︷ ︸

c�

cos (δψt)
︸ ︷︷ ︸

≈1

− sin (�ψt−τ )
︸ ︷︷ ︸

s�

sin (δψt)
︸ ︷︷ ︸

≈δψt

≈ c� − s�δψt

(11)

sin (�ψ) = sin (�ψt−τ + δψt)

= sin (�ψt−τ )
︸ ︷︷ ︸

s�

cos (δψt)
︸ ︷︷ ︸

≈1

+ cos (�ψt−τ )
︸ ︷︷ ︸

c�

sin (δψt)
︸ ︷︷ ︸

≈δψt

≈ s� + c�δψt

(12)

where c∆ and s∆ are known.

Dividing the change in position into two parts as in

(10b) and (10c) does not change the equation system (9)

in practice, why ∆Xt and ∆Yt are left as before.

The equation system becomes

(

yi
x,t−T

yi
y,t−T

)

=

(

c� − s�ψ
t
δψt −s� − c� δψt

s� + c�δψt c� − s� δψt

) (

yi
x,t

yi
y,t

)

+

(

�Xt

�Yt

)

⇔
(

yi
x,t−T

yi
y,t−T

)

=

((

c� −s�
s� c�

)

+ δψt

(

−s� −c�

c� −s�

)) (

yi
x,t

yi
y,t

)

+

(

�Xt

�Yt

)

(13)

which can be rewritten as

(

yi
x,t−T − c�yi

x,t + s�yi
y,t

yi
y,t−T − s�yi

x,t − c�yi
y,t

)

=

(
−s�yi

x,t − c�yi
y,t 1 0

c�yi
x,t − s�yi

y,t 0 1

)

⎛

⎜
⎝

δψt

�Xt

�Yt

⎞

⎟
⎠ (14)

The equation system is now approximately linear and

by stacking multiple landmarks in one equation system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

yi
x,t−T − c�yi

x,t + s�yi
y,t

yi
y,t−T − s�yi

x,t − c�yi
y,t

y
j
x,t−T − c�y

j
x,t + s�y

j
y,t

y
j
y,t−T − s�y

j
x,t − c�y

j
y,t

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−s�yi
x,t − c�yi

y,t 1 0

c�yi
x,t − s�yi

y,t 0 1

−s�y
j
x,t − c�y

j
y,t 1 0

c�y
j
x,t − s�y

j
y,t 0 1

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝

δψt

�Xt

�Yt

⎞

⎠ (15)

an overdetermined system is acquired and δψt, ∆Xt

and ∆Yt can be determined using a least squares solver.

This estimated change in position and course can in

turn be used to calculate a velocity and an angular velo-

city measurement as

ȳt =

(

v̄t

ω̄t

)

=

( √
(�Xt)

2+(�Yt)
2

T
δψt

τt

)

+

(

ēv,t

ēω,t

)

. (16)

The measurement noises ēv and ēω are assumed to be

independent Gaussian noises. This transformation that

provides direct measurements of speed and course

change gives what is usually referred to as odometry.

Although this approach simplifies the implementation

a lot, it comes with certain drawbacks. First, the land-

marks correctly associated between two images are used

only pairwise, and this is sub-optimal since one loses

both the averaging effects that occur when the same

landmark is detected many times and also the correla-

tion structure between landmarks. Second, assuming no

cross-correlation between ēv and ēω is a simplification

since v̄t and ω̄t are based on ∆Xt, ∆Yt and δψt which are

not calculated independently. Therefore, the measure-

ments v̄t and ω̄t are actually dependent making the noise

independence assumption incorrect. And third, in order

to estimate the relative movements, the time interval
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used to detect the landmarks must be informative

enough to calculate δψt, ∆Xt and ∆Yt, but not long

enough to allow a significant scan skewedness to appear.

This trade-off is vessel specific and must be balanced.

By ensuring that the vessel cannot be expected to turn

more than for example 10 degrees during each time

interval, the small angle approximation holds.

2) ESDF: The simplified odometric model above can

still be used for mapping if a trajectory-based filtering

algorithm is used. One such framework is known in the

SLAM literature as the Exactly Sparse Delayed-state Fil-

ter (ESDF) [39]. It has a state vector that consists of

augmented vehicle states as

z1:t =

(

z1:t−1

zt

)

, (17)

where the state zt is given in (4) and z1:t-1 are all pre-

vious poses. If no loop closures are detected, then the

ESDF is simply stacking all pose estimates, but once a

loop closure is detected and the relative pose between

the two time instances is calculated, the ESDF allows for

the whole trajectory to be updated using this new

information.

Once the trajectory has been estimated, all radar scans

can be mapped to world coordinates. By overlaying the

scans on the estimated trajectory, a radar map is

obtained. Each pixel now describes how many radar

detections that have occurred in that coordinate.

IV. SIFT performance on radar images
SIFT is used to extract visual island features from the radar

images. Figure 4 shows the features that are extracted from

the upper right quadrant of a radar scan example. Two

types of features are detected; island features and vessel-

related features. The latter originate from radar distur-

bances caused by the vessel and the waves and are visible

in the bottom left corner of Figure 4. Unfortunately, this

section of the image cannot just be removed since the ves-

sel commonly travels very close to land making island fea-

tures in the area sometimes crucial for navigation.

The total number of features detected is of course

depending on the number of islands in the area, but

also on where these islands are situated. A large island

close to the vessel will block a large section of the radar

scan, resulting in few features. In these experiments, an

average of 650 features was extracted per full radar scan.

A. Matching for movement estimation

The SIFT features are matched to estimate the relative

movement of the vessel between multiple consecutive

scans. Figure 5a,b shows examples of how well these

features actually match. In Figure 5a, a dense island dis-

tribution results in a lot of matches that provide a good

movement estimation. In Figure 5b, there are very few

islands making it difficult to estimate the movements

accurately.

There are two situations that can cause few matches.

One is when there are few islands, and the other is

Figure 4 Radar image with extracted features marked with

arrows. This is a typical example of how a radar image from which

SIFT extracts a large number of features may look.

Figure 5 Two pairs of consecutive radar images with detected

matches marked with lines. a Plenty of islands makes it easy to

find good matching features. b Few islands result in few features to

match
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when a large island is very close to the vessel, blocking

the view of all the other islands. When the vessel passes

close to an island at high speed, the radar scans can dif-

fer quite significantly between two revolutions. This

results not only in few features to match but also in fea-

tures that can be significantly more difficult to match

causing the relative movement estimates to degrade. On

average though, about 100 features are matched in each

full scan.

B. Loop closure matching

Radar features can also be used to detect loop closures

that would enable the filter to update the entire vessel

trajectory. The rotation invariance of the SIFT features

makes radar scans acquired from different headings

straightforward to match. Quite a large difference in

position is also manageable due to the range of the

radar sensor. This requires of course that no island is

blocking or disturbing the view. Figure 6a shows exam-

ple locations a, b and c that were used to investigate the

matching performance of the visual features.

In area a, Figure 6b, and 6b, Figure 6c, the features

are easy to match despite the rather long translational

difference over open water in b. In both cases, a 180°

difference in course is easily overcome by the visual fea-

tures. This shows the strength of both the radar sensor

and of the visual features. The long range of the sensor

makes loop closures over a wide passage of open water

possible. These scans would be used in a full-scale

SLAM experiment to update the trajectory.

In area c, Figure 6d, only two features are matched

correctly, and there are also two false positives. If the

scans are compared ocularly, it is quite challenging to

find islands that are clearly matching, mostly due to

blurring and to blocking islands. It is also noticeable

that the radar reflections from the islands differ due to

differences in radar positions which of course alters the

SIFT features. The poor matching result is therefore

natural in this case.

C. Feature preprocessing

Two problems remain that have not been addressed.

First is the problem of false feature matches. In Figure

6b, a false feature match is clearly visible, and it would

introduce estimation errors if not handled properly. An

initial approach would be to use an algorithm like RAN-

SAC[40] to remove matches that are inconsistent with

all other matches. One could also use the filtering fra-

mework to produce an estimate of the probable feature

position and perform a significance test on the features

based on for example Mahalanobis distance. Only the

features that pass this test would be allowed to update

the filter estimates.

The other problem is accidental vessel matching. In

heavily trafficked areas like ports, other vessels will be

detected on the radar scans. If a moving vessel is

Figure 6 Examples of loop closure experiments using visual SIFT features. a Example locations used to examine the loop closure detection

performance. b Multiple matched features from a loop closure in area a in (a). A 180° difference in course is easily handled by the SIFT features.

c Location b has both a 180° course difference and a translative change but a couple of features are still matched. d 2 correct and 2 false

matches in area c makes it unsuitable for loop closure updates.
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deemed stationary and is used to update the filter, errors

will be introduced. Two approaches could be taken to

handle this problem. Again, a significance test could be

used to rule out features from fast moving vessels.

Alternatively, a target tracking approach could be used.

By tracking the features over multiple scans, the vessels

can be detected and ruled out based on their position

inconsistency compared to the stationary features.

Describing such a system is though beyond the scope of

this paper. The joint SLAM and target tracking problem

has previously been studied in [41].

V. Experimental results
The experimental results in this section come from the

master thesis by Henrik Svensson [42]. The implemen-

ted framework is the one described in Sections III-E1

and III-E2.

A. Results

The trajectory used in the SLAM experiment is shown

in bold in Figure 7. The track is about 3,000 s long (50

min) and covers roughly 32 km. The entire round trip

was unfortunately never used in one single experiment

since it was constituted of multiple data sets.

The estimated trajectory with covariance is compared

to the GPS data in Figure 8. The first two quarters of

the trajectory consist of an island rich environment, see

Figure 6a, resulting in a very good estimate. The third

quarter covers an area with fewer islands causing the

performance to degrade. This results in an initial misa-

lignment of the final quarter that makes the estimated

trajectory of this segment seem worse than it actually is.

Both velocity and course estimates, Figures 9 and 10,

are quite good when compared to GPS data. There is

though a positive bias on the velocity estimate, probably

due to the simplifications mentioned in Section III-E.

The course error grows in time since the estimate is the

Figure 7 The whole trajectory where the studied interval is

marked by bold line.

Figure 8 ESDF trajectory estimate with covariance ellipses

compared to GPS measurements.

Figure 9 Velocity estimate compared to GPS measurements. A

slight positive bias is present, probably due to the simplifications

mentioned in Section III-E.

Figure 10 Course estimate compared to GPS measurements.

The course estimate is the sum of all estimated changes in course,

causing the error to grow in time.
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sum of a long sequence of estimated changes in course,

see (16), and there are no course measurements avail-

able. The final course error is about 30 degrees.

B. Map estimate

A radar map of the area was generated by overlaying the

radar scans on the estimated trajectory. Figure 11a

shows the estimated radar map that should be compared

to the map created using the GPS trajectory, Figure 11b.

They are very similar although small errors in the esti-

mated trajectory are visible in Figure 11a as blurriness.

Some islands appear a bit larger in the estimated map

because of this. Overall, the map estimate is good.

The estimated map should also be compared to the

satellite photo of the area with the true trajectory

marked in white as shown in Figure 11c. When com-

pared, many islands in the estimated map are easily

identified. This shows that the rather simple approach

of using visual features on radar images can provide

good mapping results.

VI. Conclusions
We have presented a new approach to robust navigation

for surface vessels based on radar measurements only.

No infrastructure or maps are needed. The basic idea is

to treat the radar scans as images and apply the SIFT

algorithm for tracking landmarks of opportunity. We

presented two related frameworks, one based on the

SLAM idea where the trajectory is estimated jointly with

a map, and the other one based on odometry. We have

evaluated the SIFT performance and the odometric fra-

mework on data from a high-speed patrol boat and

obtained a very accurate trajectory and map.

An interesting application of this work would be to

apply this method to underwater vessels equipped with

synthetic aperture sonar as the imagery sensor, since

there are very few low-cost solutions for underwater

navigation.
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Figure 11 From top to bottom: the estimated radar map of the

area, the true radar map generated using GPS and a satellite

photo of the archipelago. a The estimated map created by

overlaying the radar scans on the estimated trajectory. The

estimated trajectory is marked with a black line. b A radar map

created using the GPS measurements of the trajectory. The true

trajectory is marked with a black line. c A satellite photo of the area.

The true trajectory is marked with a white line. Many islands in (a)

are easily identified in this photo.
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