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Abstract: - This paper presents a radar target recognition method using kernel locally linear embedding (KLLE) 

and a kernel-based nonlinear representative and discriminative (KNRD) classifier. Locally linear embedding 

(LLE) is one of the representative manifold learning algorithms for dimensionality reduction. In this paper, 

LLE is extended by using kernel technique, which gives rises to the KLLE algorithm. A KNRD classifier is a 

combined version of a kernel-based nonlinear representor (KNR) and a kernel-based nonlinear discriminaor 

(KND), two classifiers recently proposed for optimal representation and discrimination, respectively. KLLE is 

firstly utilized to reduce data dimension and extract features from a high resolution range profile (HRRP). Then, 

a KNRD classifier is employed for classification. Experimental results on measured profiles from three aircrafts 

indicate the relatively good recognition performance of the presented method. 

 

 

Key-Words: - Radar target recognition, high resolution range profile, kernel locally linear embedding, kernel-
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1 Introduction  
The emergence of high resolution radar with the 

imaging technology enables modern radars to 

acquire rather detailed information about shape and 

structure of a target, thus providing us with a more 

reliable tool for target recognition. In comparison 

with 2-dimensional images, it is technically easy 

and inexpensive to obtain 1-dimensional high 

resolution range profiles (HRRPs) of a target, so 

HRRP-based target recognition has drawn much 

attention and been a mainstream in radar community. 

On the one hand, HRRPs reflect the distribution of 

scattering intensity and relative location of scatterers 

along the line of sight of radar and thus provide a lot 

of useful features for target recognition. On the 

other hand, HRRPs are sensitive to aspect variations 

of a target, which bring great difficulty to 

recognition. Therefore, one of the key problems of 

radar target recognition using HRRP is how to 

extract robust and effective features [1, 2]. 

The objective of feature extraction is to reduce 

data dimension and extract representative or 

discriminative features. Many classical methods 

have been developed and applied to radar target 

recognition successfully. Among the popular 

methods, the principal component analysis (PCA) [3] 

and the linear discriminant analysis (LDA) [4] are 

two powerful tools. But, radar target recognition is a 

complex nonlinear problem; sometime we cannot 

attain satisfactory results due to the linear nature of 

PCA and LDA. To overcome this weakness, 

corresponding nonlinear algorithms, such as kernel 

principal component analysis (KPCA) [5] and 

kernel Fisher discriminant analysis (KFDA) [6], 

were proposed by using kernel technique [7]. It has 

been demonstrated that these kernel methods are 

much superior to their corresponding linear 

counterparts in terms of recognition performance. 

However, they are incapable to discover the inherent 

geometry structure and topology relationship of data. 

In the past few years, a new kind of nonlinear 

dimensionality reduction method, named manifold 

learning, has drawn much attention in the computer 

vision and pattern recognition community, such as 

Isomap [8], locally linear embedding (LLE) [9, 10], 

laplacian Eigenmap [11], local tangent space 
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alignment (LTSA) [12] and etc, which assume that 

data lied in a complex high-dimensional data space 

may reside more specifically on or nearly on a low-

dimensional manifold embedded within the high-

dimensional space. Thereinto, the central idea of 

LLE is to solve globally nonlinear problems using 

locally linear fitting. LLE is computationally very 

simple, involving closed-form linear algebraic 

operations and suffering no local minima problems. 

In this paper, LLE is further extended by using 

kernel technique and thus the kernel locally linear 

embedding (KLLE) algorithm is formulated, which 

is adopted to reduce data dimension and extract 

features from a HRRP. Since the locality 

preservation is done in an implicit high dimensional 

feature space, in which the input data is as linearly 

separable as possible, the KLLE is expected to be 

superior to LLE in terms of recognition ability.   

Classifiers also play a paramount role in radar 

target recognition. Generally, range profiles of 

different targets are overlapped in the measured 

space or feature space, so they are not linearly 

separable, and thus it is necessary to design a 

suitable nonlinear classifier to obtain satisfactory 

recognition results. Among the popular methods are 

the radial basis function (RBF) neural network [13] 

and the nonlinear support vector machine (SVM) 

[14]. In order to train the corresponding parameters, 

repeated iterative learning is needed for RBF, in 

which the local convergence problem is sometimes 

unavoidable. While SVM is based on structural risk 

criteria with the optimal generalization ability, in 

which the solution is represented as a nonlinear 

function in the form
1

( ) ( , )
M

j jj
f a k b

=
= +∑x x x , 

where k is the associated kernel function, 

( 1,2, )j j M=x  a set of training feature vectors, 

and b a constant being set to zero in some 

applications. The set of coefficients 

( 1,2, )ja j M=  is decided by the nature of the 

related problem. For example, when the error cost 

function for approximation is quadratic, it can be 

obtained by solving a linear system. When Vapnik’s 

ε -insensitive cost function is adopted, it is obtained 

by the SVM approximation scheme, wherein a 

quadratic programming problem needs to be solved, 

so it limits the training speed [15]. In addition, the 

conventional SVM is formulated for two-class 

problems, it is extended to multiple-class problems 

usually by adopting one-against-one or one-against 

all scheme. In the former scheme, ( 1) / 2C C −  SVM 

classifiers are designed for a C-class problem, and 

classification is done by voting. 

Recently, two novel nonlinear classifiers named 

kernel-based nonlinear representor (KNR) [16] and 

kernel-based nonlinear discriminaor (KND) [17] 

were proposed for optimal representation and 

discrimination, respectively. Their solutions have 

the same form as that of SVM, wherein the constant 

b is set to zero for simplicity and the set of 

coefficients is determined by the desired outputs of 

the classifiers in a closed form. It is demonstrated 

that KNR and KND can achieve good classification 

ability comparative to that of SVM. Moreover, they 

are much less time-consuming for training than 

SVM since any iterative or quadratic programming 

procedure is avoided [18]. 

In this paper, a KNR and a KND are combined 

into a new version called a kernel-based nonlinear 

representative and discriminative (KNRD) classifier, 

which is applied to classification for radar target 

recognition using range profiles.  

The remainder of this paper is organized as 

follows: in section 2, the KLLE algorithm is 

concretely described at first, and then the procedure 

of data dimension reduction and feature extraction 

based on the KLLE is stated. Section 3 reviews the 

KNR and KND at first, and then presents the 

criterion along with the associated derivation of a 

KNRD classifier. In section 4, experiments are 

performed on radar target recognition using HRRPs 

to verify the effectiveness of the presented method. 

Finally, conclusions are drawn in section 5.  

 

 

2 KLLE 
 

2.1 Review of LLE 

LLE maps a data set 1 2[ , , , ]N=X x x x  in D-

dimensional space D
R  globally to a data set 

1 2[ , , , ]N=Y y y y  in d-dimensional space 

( )d
d DR . Basically, the LLE algorithm consists 

of three steps:  

1) Find K nearest neighbors of each data point 

( 1,2, , )i i N=x  in D
R  by using the Euclidean 

distance to measure similarity.  

2) Compute the weights ijw  that best linearly 

reconstruct each data ix  from its K nearest 

neighbors ( 1,2, , )j j K=x  by minimizing the 

following cost function: 

2

( ) i ij jj
i

wε = −∑ ∑W x x                  (1) 
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subject to constraints 1ijj
w =∑  and 0ijw = , if 

jx does not belong to the set of K nearest neighbors 

of ix . Then the optimal weights ijw  with the two 

constraints are found by solving least-squares 

problems.  

3) Construct the low-dimensional embedding Y 

in
d

R , in which the local linear geometry of the 

high-dimensional data is preserved, via a 

neighborhood-preserving mapping. In particular, the 

same weights ijw  that reconstruct the data point ix  

in D
R  should also reconstruct its embedded 

coordinate iy  in d
R . This is done by minimizing the 

following embedding cost function for the fixed 

weights ijw : 

2

( ) i ij jj
i

wφ = −∑ ∑Y y y                 (2) 

under the constraints T1
i iN i

=∑ y y I and 0ii
=∑ y , 

where T  denotes the complex transpose of a matrix,. 

The constrained minimization problem is then 

converted to solving the eigen-decomposition of the 

matrix T( )( )= − −M I W I W , whose eigenvectors 

associated with the bottom d nonzero eigenvalues 

form the final embedding Y. 

 

 

2.2 KLLE 
In this section, we show how to formulate a kernel 

extension of LLE. To begin with, the data set 

1 2[ , , , ]N=X x x x  in D
R  is mapped into an 

implicit feature space F using a nonlinear function: 

: ( )DΦ Φ∈ → ∈x R x F                  (3) 

The objective of the KLLE is mapping the data set 

1 2( ) [ ( ), ( ), , ( )]NΦ Φ Φ Φ=X x x x   in the feature 

space F to a new data set 1 2[ , , , ]N=Z z z z  

in ( )d
d DR , while the intrinsic geometry 

structure of the data set is preserved.  

Then, in the feature space F, we would like to 

minimize: 

     
2

( ) ( ) ( )i ij jj
i

wε Φ Φ= −∑ ∑W x x           (4) 

This is the same cost function as in Eq.(1), 

evaluated on the data set ( )Φ X . For each data point 

( )( 1,2, , )i i NΦ =x  in F, its K nearest neighbors 

can be found according to the following distance 

measurement: 

( ) ( )

( , ) ( , ) 2 ( , )

i j

i i j j i j

d

k k k

Φ Φ= −

= + −

F x x

x x x x x x
       (5) 

where ( , )k ⋅ ⋅  is a reproducing kernel function in the 

Hilbert space, which satisfies: 

  T( , ) ( ), ( ) ( ) ( )i j i j i jk Φ Φ Φ Φ=< >=x x x x x x      (6) 

where ,< ⋅ ⋅ >  denotes the inner product. 

With the constraints mentioned in the steps of 

LLE, the weight matrix W can be computed in 

closed form. As for a particular data point 

( )Φ x with its K nearest neighbor points )jΦ (η  and 

the corresponding weights jw  that sum to one, the 

reconstruction error can be written as: 

 

2

2

( ) ( )

( ( ) ( ))

j jj

j jj

j jk kjk

w

w

w C w

ξ Φ Φ

Φ Φ

= −

= −

=

∑

∑
∑

x

x

η

η                  (7) 

where  

    
T( ( ) ( )) ( ( ) ( ))jk j kC Φ Φ Φ Φ= − −x xη η       (8) 

By introducing a reproducing kernel function ( , )k ⋅ ⋅ , 

Eq.(8) can be rewritten as: 

( , ) ( , ) ( , ) ( , )jk j k j kC k k k k= − − +x x x xη η η η    (9) 

Afterward, by solving the constrained least-squares 

problem, the optimal weights are given by: 

 

1

1

jkk

j

lmlm

C
w

C

−

−= ∑
∑

                             (10) 

In practice, a more efficient and numerically 

stable way to minimize the error is simply to solve 

the linear equations 1jk kk
C w =∑ , and then to 

rescale the weights by:  

k k kk
w w w← ∑                         (11) 

so that they sum to one.  It should be noted that 

sometimes the matrix C may be or near to singular, 

when some regularized technique is needed [10].  

Now, we turn to the problem of computing a 

low-dimensional embedding Z which is optimally 

reconstructed by the weight matrix W in d
R . In 

order to do this, we need to minimize the following 

cost function: 

2

( ) i ij jj
i

wφ = −∑ ∑Z z z               (12) 
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with  

T1
i i

iN
=∑ z z I                            (13) 

The cost function in Eq.(12) can be simplified as: 

( )
( )

2

2

T T

T

( )

( )

( )( )

i ij jj
i

w

trace

trace

φ = −

= −

= − −

=

∑ ∑Z z z

Z I W

Z I W I W Z

ZMZ

         (14) 

where T( )( )= − −M I W I W .  

Finally, similar to LLE, the constrained 

minimization problem above is converted to the 

eigenvalue problem of the matrix M. That is, the 

embedding Z is composed of the eigenvctors 

corresponding to the bottom d nonzero eigenvalues 

of the matrix M. 

 

 

2.3 Feature extraction based on the KLLE 
KLLE as well as LLE provides an embedding for 

the fixed set of training data, while there not 

existing an explicit mapping between the high-

dimensional original (or feature) space and low-

dimensional embedded space, thus the issue how to 

generalize the results of KLLE to the test data set in 

the input space remains difficult. For example, 

suppose computing the low dimensional embedding 

z for a new test vector x.  

For the purpose of generalization, there are two 

possible solutions: non-parametric model and 

parametric model [10].  In particular, the non-

parametric method is very simple to realize, 

involving little computation and introducing no 

additional parameters. For target recognition, the 

low dimensional embedding of test data can be well 

constructed with the training data and their low 

dimensional embedding by using the non-parametric 

model, and thus the process of feature extraction of  

test data is completed.  

Given a new test vector x, we can compute its 

low dimensional embedding z by KLLE (with non-

parametric model) according to the following steps: 

1) Identify the K nearest neighbors of ( )Φ x  

among the training data set ( )Φ X  in the feature 

space F by using the distance measurement defined 

in Eq.(5). 

2) Compute the linear weights jw  that best 

reconstruct ( )Φ x from its K nearest neighbors, 

subject to the sum-to-one constraint 1jj
w =∑ , 

according to the method described in section 2.2. 

3) Construct the low dimensional embedding z 

as follows:  

j jj
w∑z = z                            (15) 

where ( 1,2, , )j j K=z  are the low dimensional 

embeddings corresponding to the K nearest 

neighbors of ( )Φ x .  

 

 

3 A KNRD Classifier  
We restrict our discussion to designing an 

appropriate nonlinear classification function, so that 

it has a certain desirable capability. Assume that a 

desirable function 0 ( )f x  is defined on a complex N-

dimensional vector space N
C , and that it is an 

element of a reproducing kernel Hilbert space 

(RKHS) H. The reproducing kernel ( , )k ′x x  of H is 

a bivariate function defined on N N×C C  which 

satisfies two conditions: for any fix ′x  in N
C , 

( , )k ′x x  is a function in H; for any function 

0 ( )f x in H and any ′x  in N
C , it holds that  

0 0( ), ( , ) ( )f k f′ ′< >=x x x x            (16) 

where ,< ⋅ ⋅ >  denotes the inner product on H. That 

is, if a function ( )jψ x  is defined as: 

( ) ( , )j jkψ =x x x                        (17) 

then 

0 0( ) ( ), ( )j jf f ψ=< >x x x               (18) 

Generally, the desirable function 0f  is unknown, 

but its M sample values
1{ }M

j jy =  are known 

beforehand and they constitute the following 

training vector: 

T

1 2

T

0 1 0 2 0

[ , ]

[ ( ), ( ) ( )]

M

M

= y y , , y

f f , , f=

y

x x x
            (19) 

The vector y is called the teacher signal and we 

assume that y is a point of an M-dimensional vector 

space M
C . Let 

1{ }M

j j=e  denotes the standard basis of 

M
C  and define a sampling operator as: 

1

M

j j

j

ψ
=

= ⊗∑A e                             (20) 
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where ψ is the complex conjugate of ψ and ( )⋅ ⊗ ⋅  

is the Neuman-Schatten production defined by: 

0 0( ) ,j j j jf fψ ψ⊗ =< >e e               (21) 

Since the set of sampled values as well as the 

teacher signal y is uniquely determined by 0f  once 

the set of inputs is fixed, the following relation can 

be established:  

0f=y A                                 (22) 

Our objective is to find an approximation to the 

desirable function 0f  from the teacher signal y.  

In the viewpoint of inverse problem, the 

approximating can be realized by supervised 

learning, where a kind of inverse operator X  of A  

is to be found under a certain criterion, so that  

f = Xy                                  (23) 

becomes the optimal approximation to 0f  [19-21]. 

Hereinto, X is called a learning operator, and the 

process of obtaining f by X from y is called 

supervised learning.  

 

 

3.1 Review of KNR and KND 

 
3.1.1 Optimal representation and KNR 

As for the optimal approximation problem discussed 

above, a natural criterion is to minimize the distance 

between f and 0f  in the metric of the space H. But it 

is impossible to solve the problem because both 0f  

in Eq.(22) and X in Eq.(23) are unknown. Ideally, 

for any unknown function 0f , if the estimated 

function f by Eq.(23) equals exactly to the original 

one 0f  , then there is no estimation error. In this 

special case, Eqs.(22) and (23) yield: 

=XA I                              (24) 

where I is the identity operator of the Hilbert space 

H. This result equals to:  

2
0− =I XA                    (25) 

where ⋅  denotes the norm associating with the 

Hilbert space H.  

It should be pointed out that the condition led to 

Eq.(25) is too severe to be practically satisfied. That 

is, we should allow a certain deviation of XA from I. 

In particular, as for the problem of pattern 

recognition, we require that for a given 

class ( 1, 2, , )c c C= , the learning operator shall 

satisfy: 

  { }( )

2
( ) ( ) ( )

R arg min
c

c c c= −
X

X I X A            (26) 

so that the distance between f and 0f  is minimized, 

where
( )c

A  is the sampling operator corresponding 

to the target class c. In fact, Eq.(26) is equivalent to: 

( )( ){ }( )

*
( ) ( ) ( ) ( ) ( )

R argmin
c

c c c c c
tr ⎡ ⎤= − −⎢ ⎥⎣ ⎦X

X I X A I X A (27) 

where *( )⋅ and ( )tr ⋅  denote the adjoint operator and 

the trace of an operator, respectively. 

     It may be easily shown that a general solution to 

Eq.(24) is represented by: 

+ + += + −X A Y A AYAA                (28) 

where +
A  is the Moore-Penrose pseudoinverse of A, 

and Y is any operator from M
C  to H which satisfies: 

( )+ +− −I A A YA = I A A                (29) 

According to the projection theorem in functional 

analysis, if certain error is allowed to the estimated 

result and let: 

+=X A                                (30) 

then the distance between f  and 0f  is minimized. 

That is, the optimal solution of Eq.(27) is given by 

Eq.(30). Accordingly, Eqs.(22), (23) and (30) yield: 

0 0( )
f f P f∗

+
ℜ

= =
A

A A                     (31) 

where ( )ℜ ⋅ denotes the range of an operator, and 

*( )
P

ℜ A
 is the orthogonal projection operator onto the 

range of *
A . It has been proved that *( )ℜ A  is the 

largest subspace of H, within which the best 

approximation to any desired function can be 

obtained [22].  

Furthermore, Eqs.(17), (20), (21), (31) and 

Theorem (3.8) of Ref.[23] lead us to the following 

proposition [16]. 

Proposition 1 The kernel-based nonlinear 

representor (KNR) of class ( 1,2 , )c c C=  is 

represented by: 

( ) ( ) ( )

,

1

( ) ( , )
M

c c c

R R j j

j

f a k
=

= ∑x x x                (32) 

with the coefficients constitute the following vector: 

( ) ( ) ( ) ( ) T ( )

,1 ,2 ,[ ]c c c c c

R R R R Ma a a
+= =a K y       (33) 

where K is the kernel matrix determined by the 

reproducing kernel function k of the Hilbert space H 

and the M training samples of class c, with 
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( ) ( )( ) ( , ) , 1,2, ,c c

ij j ik i j M= =K x x           (34) 

 
 
3.1.2 Optimal discrimination and KND 

In the newly proposed optimal discrimination 

measure, the learning operator corresponding to the 

target pattern class is obtained by minimize the 

mean energy of the general outputs of all other 

classes. That is, for the target class ( 1, 2 , )c c C=  of 

a C-class problem, the optimal learning operator 

should satisfy: 

{ }( )

2
( ) ( ) ( )

D
,

arg min mean
c

c c i

i i c≠
=

X
X X y            (35) 

where ( )i
y  is the teacher of class ( , 1,2, , )i i c i C≠ = . 

Eq.(35) establishes a discriminant criterion that for 

the target class c, its learning operator has the 

potentiality of suppressing the effects of all other 

classes by minimizing the mean energy of their 

outputs.  

Defines an mean energy operator Q as: 

( )

1,

1

1

C
i

i i cC = ≠

=
− ∑Q Q                         (36) 

with  

( ) ( ) ( )i i i= ⊗Q y y                            (37) 

an energy operator for the teacher signal of class 

( , 1,2, , )i i c i C≠ = , then Eq. (35) is equivalent to 

( )( ){ }( )

*
( ) ( ) ( )

D argmin
c

c c c
tr=

X
X X Q X          (38) 

According to Theorem 2.3.1 of Ref.[24], the 

optimal solution to Eq. (38) is given by: 

( )

D ( )c

M

+= −X Y I QQ                       (39) 

where MI  is the identity operator of space M
C , Y is 

an arbitrary operator from M
C  to H, and +

Q  is the 

Moore-Penrose pseudoinverse of Q. In our study, 

the arbitrary operator Y in Eq.(39) is chosen as 

( )*
( )c

A . In this case, the learning operator of class c 

is given by: 

( )*
( ) ( )

D ( )c c

M

+= −X A I QQ                 (40) 

Furthermore, Eqs.(17), (20), (21), (23) and (40) 

result in the following proposition [17]. 

Proposition 2 The kernel-based nonlinear 

discriminator (KND) of class ( 1,2 , )c c C=  is 

represented by: 

( ) ( ) ( )

,

1

( ) ( , )
M

c c c

D D j j

j

f a k
=

= ∑x x x               (41) 

with the coefficient vector 

( ) ( ) ( ) ( ) T ( )

,1 ,2 ,[ ] ( )c c c c c

D D D D M Ma a a
+= = −a I QQ y   (42) 

Propositions 1 and 2 show that both KNR and 

KND have closed form solutions, and their 

coefficients are precisely determined by the desired 

outputs of the classifiers and the related operators, 

thus any repeated iterative learning in traditional 

neural networks such as RBF or quadratic 

programming procedure necessary for a nonlinear 

SVM to obtain a solution, is avoided.  

 

 

3.2 Derivation of KNRD 
In the discussion of section 3.1, on the one hand, a 

KNR is designed for optimal representation, and the 

criterion in Eq.(27) focuses on the outputs of the 

target class but ignores the effects of other classes, 

thus optimal representation is ensured only for the 

target class. On the other hand, a KND is designed 

for optimal discrimination, and the criterion in 

Eq.(38) ensures that for the target class, the effects 

of all other classes is optimally suppressed in the 

meaning of mean output energy, but no constraints 

is made on the outputs of the target class. Therefore, 

it is a natural issue to combine the above two criteria 

and it lead to a new criterion for both representation 

and discrimination of pattern features. In this section, 

we focus on the new criterion and the associated 

derivation.  

Using a parameter (0 1)ρ ρ< <  to control the 

balance between representation and discrimination, 

we can combine the above two criteria and obtain a 

new criterion, namely R&D criterion, as follows: 

( )( ){
( ) }

( )

*
( ) ( ) ( ) ( ) ( )

R&D

*
( ) ( )

argmin (1 )
c

c c c c c

c c

tr

tr

ρ

ρ

⎡ ⎤= − ⋅ − −⎢ ⎥⎣ ⎦

⎡ ⎤+ ⋅ ⎢ ⎥⎣ ⎦

X
X I X A I X A

X Q X

 

(43) 

For a given ρ , Eq.(43) equals to: 

( )( ){
( ) }

( )

*
( ) ( ) ( ) ( ) ( )

R&D

*
( ) ( )

argmin
c

c c c c c

c c

tr

λ

⎡= − −⎢⎣

⎤+ ⎥⎦

X
X I X A I X A

X Q X

 (44) 

where /(1 )λ ρ ρ= − is an equivalent control parameter. 

According to Ref.[25], an operator ( )

R&D

c
X  is the 

optimal solution to Eq.(44) if and only if 
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( ) ( )* *
( ) ( ) ( ) ( )

R&D

c c c cλ⎡ ⎤+ =⎢ ⎥⎣ ⎦
X A A Q A            (45) 

By applying the related theorems and lemmas in 

Ref.[21] to this necessary and sufficient condition in 

Eq.(45), a general expression of the solution to the 

R&D criterion in Eq.(44) is given by: 

( ) ( ) ( )*
( ) ( ) ( ) ( ) ( )

R&D

c c c c c

MW
+ +⎡ ⎤= + −⎢ ⎥⎣ ⎦

X A U I U U   (46) 

where W  is any operator from M
C  to H, and  

( )c λ= +U K Q                               (47) 

Therefore, similar to the derivation of a KND, a 

kernel-based nonlinear representative and 

discriminative (KNRD) classifier may be derived 

from Eqs.(17), (20), (21), (23) and (46), and it is 

presented in the following theorem. 

Theorem 1 The kernel-based nonlinear 

representative and discriminative (KNRD) classifier 

of class ( 1,2 , )c c C=  is represented by: 

( ) ( ) ( )

& & ,

1

( ) ( , )
M

c c c

R D R D j j

j

f a k
=

= ∑x x x               (48) 

with the coefficient vector 

( )

( ) ( ) ( ) ( ) T

& & ,1 & ,2 & ,

( ) ( )

[ ]c c c c

R D R D R D R D M

c c

a a a

+

=

=

a

U y
         (49) 

The architecture of a KNRD classifier, as well 

as those of a KNR and a KND, can be depicted in 

Fig.1 as below. Similar to KNR and KND, any 

repeated iterative learning or quadratic 

programming procedure is avoided in a KNRD 

classifier since the solution is in closed form.  

1ζ

2ζ

Nζ

… … …

( )( )
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k x x

∑ ( )( )c
f x
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& ,

c

R D Ma
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Fig.1 Architecture of a KNRD classifier of class c 

 

4 Application to Radar Target 

Recognition using HRRPs 

 
4.1 Data description 
In this section, experiments are performed on radar 

target recognition with measured HRRPs from three 

flying airplanes, including An-26, Yark-42, and 

Cessna Citation S/II. Each profile has 256 range 

bins. For each target, 260 range profiles over a wide 

range of aspects are adopted for experiment and are 

shown in Fig.2. For each target, one third of all 

profiles are used for training and the remained ones 

for test.  

 

(a) An-26 

 

 

(b) Yark-42 
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(c) Cessna Citation S/II 

 

Fig.2 Range profiles of three airplanes 

4.2 A radar target recognition scheme 
Based on the KLLE algorithm and KNRD classifiers, 

a radar target recognition scheme is presented and 

depicted in Fig.3. It includes three key modules: 

preprocessing, feature extraction based on the KLLE, 

and classification based on KNRD classifiers. In 

preprocessing, a HRRP is energy-normalized to 

reduce magnitude sensitivity and range-aligned to 

remove shift sensitivity. In the process of feature 

extraction, the KLLE is conducted on the training set 

to obtain the low-dimensional features of these range 

profiles. For a test range profile, its low-dimensional 

embedded feature is computed by the KLLE (with 

the non-parametric model) according to the steps 

detailed in section 2.3. In the process of classification, 

for each class, the training profile features are used to 

train a KNRD classifier, and an unknown test profile 

is recognized by the trained KNRD classifiers using 

its embedded feature.  

 

 
 

Fig.3 A radar target recognition scheme based on the KLLE and KNRD classifiers 

 

 

4.3 Experimental results 
Two sets of experiments are conducted. In the first 

one, six algorithms including PCA, KPCA, LDA, 

KFDA, LLE and KLLE are utilized to extract the 

low-dimensional feature from a HRRP for 

performance comparison and then KNRD classifiers 

are employed for classification with the control 

parameter λ  fixed as 1. For both LLE and KLLE, 

the number of nearest neighbors is set as K=8. For 

the four kernel-based methods including KPCA, 

KFDA, KLLE and KNRD, the Gaussian kernel 
2

1 2 1 2( , ) exp( / )k σ= − −x x x x is adopted, and the 

parameter σ  is empirically set as 1. 

The recognition results obtained by each method 

at different reduced dimensionality are shown in 

Fig.4. Note that, the upper bound of dimensionality 

of LDA and KFDA is 2 for this 3-class problem.  

 

Fig.4 Recognition results of six feature extraction 

methods with KNRD classifiers 
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As can be seen from Fig.4, the recognition rates 

obtained by PCA and KPCA vary greatly as the 

increasing of reduced dimensionality. In comparison, 

LLE and KLLE achieve higher recognition rate with 

the increasing of reduced dimensionality, and get 

satisfactory recognition results when the 

dimensionality is greater than 15.  

The top recognition rates achieved by each 

method along with the reduced dimensionality are 

listed in Table 1. It shows the proposed recognition 

scheme (that is, “KLLE+KNRD”) achieves the 

highest recognition rate of 97.31% at the 

dimensionality of 18.  

 

Table 1 Top recognition results of six methods 

 

Method 
Recognition rate 

(%) 

Reduced 

dimensionality 

PCA 94.63 11 

LDA 93.86 2 

LLE 96.93 23 

KPCA 94.06 15 

KFDA 96.55 2 

KLLE 97.31 18 

 

In the second experiment, only the KLLE is 

adopted for feature extraction with K set as 5, 8, 12 

and 20, respectively, and the KNRD classifier as 

well as the one-against-one SVM is employed for 

classification. For the SVM, the Gaussian kernel is 

adopted and the parameter σ  is also set as 1. Table 

2 lists the top recognition rate achieved by the two 

classifiers along with the reduced dimensionality for 

each value of K. It can be seen that both the KNRD 

and SVM achieve the top recognition rate for K=8, 

and that the former performs better than the latter on 

the whole.  

 

Table 2 Top recognition results of two classifiers 

 

K 5 8 12 20 

KNRD 
95.21 

(16) 

97.31 

(18) 

96.36 

(22) 

95.78 

(19) 

SVM 
95.21 

(14) 

95.59 

(17) 

95.40 

(9) 

93.67 

(6) 

Moreover, for K=8, the training time and test 

time (per test profile on average) taken by the SVM 

and the KNRD classifier to achieve the highest 

recognition rate, are listed in Table 3. It shows that 

the KNRD classifier is much less time-consuming 

than SVM for training. As for test, the KNRD 

classifier also takes less time in our experiment. 

Note that, the time listed in Table 3 is measured on 

same platforms.  

 

Table 3 Training and test time of two classifiers 

 

Classifier Training time (ms) Test time (ms)

KNRD 78 0.028 

SVM 4860 0.059 

 

Fig.5 shows the plot of recognition rates of the 

proposed scheme “KLLE+KNRD” versus the 

parameter λ , with the dimensionality fixed as 18 

and the value of K fixed as 8. As can be seen, the 

proposed scheme performs well and stably within a 

wide range of λ , that is, it rather insensitive to the 

value of λ , which is highly desirable in practical 

applications since it is usually not easy to determine 

a very suitable parameter. 

 

 

Fig.5 Recognition rates of “KLLE+KNRD” versus 

the parameter λ  

 

5 Conclusions 

In this paper, based on the kernel locally linear 

embedding (KLLE) and the kernel-based nonlinear 

representative and discriminative (KNRD) classifier, 

a radar target recognition scheme is presented. 

Firstly, the KLLE is utilized to extract low-
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dimensional features from range profiles, which is 

derived by generalizing LLE into a reproducing 

kernel Hilbert space (RKHS) using kernel technique. 

Then, the KNRD classifier is employed for 

classification, which is obtained by combining a 

KNR and a KND. The closed-form solution of a 

KNRD classifier avoids any quadratic programming 

procedure and thus ensures faster training speed 

than SVM. The effectiveness of the presented 

method is demonstrated by experimental results on 

measured profiles from three aircrafts. In addition, 

our further experiments indicate that the proposed 

method also performs excellently in some other 

applications such as face recognition and 

handwritten number recognition. 
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