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Radar vision in the mapping of forest biodiversity
from space
Soyeon Bae 1*, Shaun R. Levick 2,3, Lea Heidrich1, Paul Magdon 4, Benjamin F. Leutner 5,

Stephan Wöllauer 6, Alla Serebryanyk7, Thomas Nauss 6, Peter Krzystek7, Martin M. Gossner 8,

Peter Schall9, Christoph Heibl 10, Claus Bässler10,11, Inken Doerfler11,12, Ernst-Detlef Schulze13,

Franz-Sebastian Krah 14,10, Heike Culmsee 15, Kirsten Jung 16, Marco Heurich10,17, Markus Fischer18,19,

Sebastian Seibold 11,1, Simon Thorn 1, Tobias Gerlach20, Torsten Hothorn21, Wolfgang W. Weisser 11 &

Jörg Müller 1,10

Recent progress in remote sensing provides much-needed, large-scale spatio-temporal

information on habitat structures important for biodiversity conservation. Here we examine

the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the bio-

diversity of twelve taxa across five temperate forest regions in central Europe. We show that

the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS),

the current gold standard in the measurement of forest structure. Our models of different

facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by

ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling

axes representing assemblage composition. We further demonstrate the promising predictive

ability of radar-derived data with external validation based on the species composition of

birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote

sensing will require the coupling of radar data to stratified and standardized collected local

species data.
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T
he impact of humans on the planet has progressively
escalated to the extent that the current geological age is
referred to as the Anthropocene, in recognition of the

geological dimensions of the human footprint1. Its characteristics
include declines in non-human populations and the extinction of
species, due most prominently to anthropogenically mediated
habitat degradation2,3. The resulting loss of biodiversity is evident
at local and landscape scales, but attempts to measure habitat loss
for diverse species over large areas have been frustrated by the
high cost and the considerable effort involved. The unsolved
challenge here is to monitor area-wide diversity within and
between habitats (α-diversity and β-diversity, respectively) across
large areas, which impedes estimates of total diversity (γ-diver-
sity) of landscapes. However, over the last decade, advances in
remote sensing have led to an exponential increase in the use of
these technologies, including in ecological investigations4,5, and a
recognition of their potential in obtaining reliable and frequent
updates on the spatial information required to monitor biodi-
versity over larger areas, information that is essential for con-
servationists. Skidmore et al.6 called upon ecologists and space
agencies throughout the world to forge a global-monitoring
strategy that includes a definitive set of biodiversity variables and
a plan for tracking them from space. Despite the theoretical
progress that has been made under the umbrella of Group on
Earth Observation Biodiversity Observation Network (GEO-
BON), quantitative evidence of how well different essential bio-
diversity variables7 can be mapped and monitored from space is
lacking, and the relationship of these variables to different facets
of biodiversity remains poorly understood8.

With its ability to characterise the complex three-dimensional
(3-D) structure of terrain and vegetation, airborne laser scan-
ning (ALS) has been particularly successful in biodiversity
monitoring9. Objective remote measurements can now be con-
ducted with ALS and the acquired data used to model vegetation
metrics (e.g. canopy cover, height, layering, and basal area) that
traditionally were estimated based on laborious fieldwork. The
3-D data acquired with ALS has provided the basis for a number
of advances in animal ecology and biodiversity
conservation10,11. Although large-area mapping by space-borne
laser scanning has thus far been limited in scope, progress
towards this long-term goal is being made by programmes such
as Global Ecosystem Dynamics Investigator (GEDI)12 and
ICESat-2 (Ice, Cloud, and land Elevation Satellite-2)13, in which
spot measurements of canopy height and profile layering are
obtained within the laser beam footprint (~22 and 90 m,
respectively). Both missions are expected to supply critical
information in support of the mapping of structural essential
biodiversity variables. While current and future space-borne
laser-scanning systems provide only patchy information, space-
borne synthetic aperture radar (SAR) systems are also sensitive
to the geometric properties of the Earth’s surface, such as forest
canopy structure, and capable of complete coverage of the entire
globe. Hence, SAR data could be an alternative source for eco-
logically meaningful information on vegetation structure from
regional to global scales. SAR is similar to ALS as both remote
sensing techniques actively emit electromagnetic radiation and
measure the returned signal. A major advantage of SAR is its
ability to penetrate clouds, making it a suitable technique also
for regions with nearly constant cloud coverage, such as the
tropics or mountain areas. Depending on the wavelength used
(e.g. C-band), SAR backscatter signals can be interpreted to
derive ecologically meaningful structural information from ter-
rain and vegetation. SAR has already had a significant impact on
ecological research, and both C-band and L-band sensors have
been used extensively in the mapping of biomass within boreal14

and tropical forest regions15,16.

The launch of the Sentinel-1 mission, a constellation of two C-
band SAR satellites, by the European Space Agency in 2014 and
2016 revolutionised SAR remote sensing, due to Sentinel 1’s
unprecedented combination of high spatial resolution (5–20 m),
high revisit frequencies (5–10 days), complete geographic cover-
age and the ESA’s open-access policy regarding the availability of
the collected data. C-band SAR has a wavelength of 5.6 cm, which
means it is sensitive to vegetation structures and is likely to be
scattered from elements within the tree canopy. However, the
formation of SAR backscatter signals is complex, as factors other
than canopy structure, such as scan angle, direction, soil moisture
and plant water content, also exert considerable influence on
backscatter properties. Some of these confounding influences can
be mediated by making use of multi-date acquisitions, as was the
case in this study.

Using the open-access, dense time-series data obtained by the
Sentinel-1 mission, we conduct the first evaluation of Sentinel-1’s
potential in biodiversity mapping. Our study begins with a
comparison of the ecological application of radar (henceforth,
“Sentinel-1” is referred to as “radar”) metrics vs. the well-
established ALS metrics in providing a better understanding of
habitat structure in forest ecosystems. A suite of ground-truth
taxonomic and phylogenetic biodiversity measures covering
within forest stand (α-) and among forest stand (β-) diversity
from a broad range of trophic levels and taxa (henceforth
“functional groups”) is then modelled using either ALS data or
time-series radar data to explore the extent to which rich time-
series radar data can be used to represent ecologically meaningful
gradients of habitat conditions in temperate forests. Thus, we
quantify the predictive power of radar in modelling different
aspects of biodiversity, including species composition and rich-
ness and phylogenetic diversity, and compare the results to those
obtained using very high density (8–40 pulses/m² in this study)
ALS data. For this purpose, we make use of a distributed ground-
based network of 463 biodiversity monitoring plots spanning five
Central European temperate forest regions and capturing biodi-
versity data for 12 functional groups. Finally, to test their suit-
ability for biodiversity mapping and monitoring, the radar models
for two taxa are validated using independent external data col-
lected from areas outside the five training areas.

Our analysis shows the close association of the structural
attributes of forests as described by radar and ALS data, which
also similarly reflect gradients of forest maturity and structural
heterogeneity. As predictors of biodiversity, the two remote-
sensing techniques are similar in their power, albeit with radar
data being superior for species composition and ALS for species
richness. Global biodiversity monitoring requires both a con-
sistent method of satellite image acquisition and open access to
those images. Our study demonstrates the potential of such data
for monitoring biodiversity of forests and thus of other large-scale
habitats as well.

Results
The ecological relevance of radar-derived variables. Canonical
correlation analysis (CCoA) showed a strong correlation between
the habitat metrics derived from the ALS and radar sensors. The
ecological relevance of the latter with respect to 3-D forest
structure and resident animal diversity was established in prior
studies10. Among the 13 canonical axes from the two remote-
sensing data sets, nine statistically significant pairs (p < 0.05 with
Pearson’s correlation test), explaining 96.30% of the variance of
the datasets (Supplementary Table 4), were identified. The first
and second axes showed the highest canonical correlation coef-
ficients (for the pairs of canonical axes from the two datasets):
0.92 and 0.75, respectively (Fig. 1).
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The first canonical axes represented a gradient of decreasing
forest maturity, as the first ALS axis correlated negatively with
both the penetration ratio of the canopy layer and the vegetation
height and positively with the gap area described by the ALS
metrics (Fig. 2 and Supplementary Table 5). The correlation of
the first radar axis with yearly and winter radar backscatter was
highly negative (Fig. 2 and Supplementary Table 6). The second
canonical axes represented the variability in height, as the second
ALS axis had a strong correlation with the standard deviations of
vegetation height and canopy surface height. Similarly, the second
radar axis correlated with the standard deviation of the yearly and
summer backscatter, which we calculated to represent structural
heterogeneity indices. The third and fourth canonical axes
represented gradients of structural heterogeneity, as the third
ALS axis strongly correlated with the penetration of the
regeneration layer and the edge length of forest gaps and the
fourth ALS axis with foliage height diversity. The third radar axis
showed strong correlations with texture measures (contrast and
orderliness, quantifying spatial heterogeneity) and the fourth
radar axis with the ratio between the two descriptors of
polarisation, VV (vertically transmitted, vertically received radar
pulses) and VH (vertically transmitted, horizontally received
radar pulses).

The drivers of different components of diversity. Boosted
generalised additive models (GAMs), i.e. fixed effects models,
were employed with five-fold cross-validation for the internal
validation of all response variables: the main axes of species
assemblage composition based on non-metric multidimensional
scaling (NMDS) ordination scores, log-transformed species
richness and phylogenetic diversity, with the latter calculated as
the standardised effect size to ensure independence from species
richness. Overall, the performances of the radar and ALS metrics
were similar. In addition, for both sensors, with the use of metrics
related to forest maturity the assemblage composition was better
predicted than were diversity indices. This was indicated by the
cross-validated R² (coefficient of determination) and root mean
square error (RMSE) values for the first NMDS axes representing
assemblage composition (median R² values over 12 functional
groups by ALS and radar: 0.51 and 0.57, respectively) and the
second NMDS axes representing assemblage composition (0.30

and 0.27), species richness (0.21 and 0.11) and phylogenetic
diversity (0.19 and 0.16) (Fig. 3 and Supplementary Table 7;
additional RMSE results are shown in Supplementary Table 8).
The first axes of assemblage composition (NMDS1) were dis-
tinctively better predicted by radar than by ALS, with the
exception of the assemblage composition of bats, but the second
axes of assemblage composition (NMDS2) were better predicted
by ALS, with the exceptions of the assemblage composition of
lichens and phytophagous beetles. However, for species richness
and phylogenetic diversity, the predictive performances of the two
sensors were comparable. To check the robustness of our results
of arthropods for sample size we reanalysed the data on a subset
of plots with sufficient sample completeness. These findings
corroborated the findings of the total data set (Supplementary
Fig. 22).

To take into account repeated measures within the five forest
regions, we additionally fitted mixed effects models in which
region was a random factor (see the “Methods” section for
details). Overall, this reduced the explained variance in the ALS
and radar models, but the results between taxa were highly
variable. The decrease in the explained variance was strongest in
ground-living spiders and carabids, although a decrease in that of
bats was obtained as well. The loss of explained variance by a
region effect in the mixed effects models was stronger in the ALS
models (0.14, a median of 48 response variables) than in the radar
models (0.10) (Supplementary Tables 9 and 10). This tendency of
the superiority of one sensor over the other in the mixed effects
models was mostly consistent with the tendency in the fixed
effects models, except in the cases of 4 of 48 response variables.

The most important variables in the predictions of the NMDS
axes representing assemblage composition were the penetration
ratio of the canopy-understorey (PRh>2m) in the ALS model and
the winter VH (VHwinter) in the radar model. This was
determined consistently across 12 functional groups (Supple-
mentary Figs. 6–17). In the ALS models, PRh>2m was the most
important predictor of the first and second NMDS axes of 11 of
the 12 functional groups, with the exception being the assemblage
composition of necrophagous beetles. Using the same approach
for the radar models, VHwinter was the most important predictor
of 10 of the 12 groups, with the exceptions being the assemblage
compositions of carabid beetles and bats. Nevertheless, among the
exceptional groups, PRh>2m and VHwinter ranked second among
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the list of dominant factors in the ALS models of necrophagous
beetles and in the radar models of bats, respectively.

The most critical predictors of species richness varied across
the different functional groups. The predictors related to
structural heterogeneity as identified by ALS, such as the
coefficient of variation of vegetation height (HCV), the standard
deviation of canopy surface height (CSMSD) and the edge length
of forest gaps (GapEdge), actively contributed to the construction
of the species richness models. Likewise, in the species richness
models derived from radar data, horizontal heterogeneity
predictors, such as standard deviation, dissimilarity and the

entropy of radar backscatters, was of greater importance than in
the corresponding assemblage composition models. In contrast to
the species richness models, the phylogenetic diversity models
derived from ALS and radar were strongly driven by measures
sensitive to forest maturity, such as PRh>2m and PR2m>h>0m and
VHwinter, respectively.

External validation of the assemblage composition models of
two selected groups, birds (n= 72) and saproxylic beetles (n=
91), using data from outside the five forest regions further
demonstrated the substantial predictive power of the models
(coefficients of determination: 0.26 and 0.22, respectively) (Fig. 4).

M
e
a
n
 b

a
c
k
s
c
a
tt
e
rs

H
e
te

ro
g
e
n
e
it
y
 i
n
d
ic

e
s

V

V

H
V

V
V+

H
V

V
V

+

V

V

H

V

VHyear Hmean

1

–1

Hmax

HSD

HCV

PRh > 2 m

PRh > 5 m

PR2 m  > h > 0 m

PR5 m  > h > 2 m

GAPEdge

GAPArea

CSMRatio

CSMSD

FHD

Xca
n1

Yca
n1

Yca
n2

Yca
n3

Yca
n4

Xca
n2

Xca
n3

Xca
n4

VHwinter

VVwinter

VHsummer

VVsummer

VHs–w

VVs–w

VVyear

VV–VH

VV/VH

VHyear (DiS)

VHwinter (DiS)

VHwinter (ENT )

VHsummer (ENT )

VHsummer (SD)

VHwinter (SD)

VHsummer (DiS)

VVsummer (DiS)

VVsummer (DiS)

VVsummer (ENT)

VVsummer (SD)

VHs–w(DiS)

VVs–w (DiS)

VVs–w (ENT )

VVs–w (SD)

VV– VH(DiS)

VV– VH(ENT )

VV– VH(SD)

VV/VH(DiS)

VV/VH(ENT )

VV/VH(SD)

VVyear (DiS)

VVyear (ENT )

VVwinter (ENT )

VVwinter (SD)

VHs–w (SD)

VVyear (SD)

VHs–w (ENT)

VHyear (ENT )

VHyear (SD)

a b

H

V

Radar ALS

Fig. 2 Ecological relevance of the metrics from the two sensors. Pearson’s correlation matrix a between the first four main canonical axes (Xcan1–4) and

the radar metrics and (b between the first four main canonical axes (Ycan1–4) and the ALS metrics at the significance level p < 0.05. The first canonical

axes represent a gradient of decreasing forest maturity, and the second, third, and fourth canonical axes gradients of structural heterogeneity. Positive

correlations are displayed in blue and negative correlations in red colour. Colour intensity and the size of the circle are proportional to the correlation

coefficients. See Supplementary Tables 4 and 5 for details

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12737-x

4 NATURE COMMUNICATIONS |         (2019) 10:4757 | https://doi.org/10.1038/s41467-019-12737-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


However, some of the validation plots featured very different bird
species composition than those from the training space, such as
those of the Rhön region (Fig. 4a and Supplementary Figs. 18a
and 19a), and, as is to be expected, could not be predicted well in
terms of NMDS1.

Discussion
Our results showed a strong correlation between pairs of cano-
nical axes from radar and ALS data describing gradients of forest
maturity and structural heterogeneity in forest ecosystems on a 1-
ha scale. In biodiversity models of 12 functional groups, radar and
ALS performed equally well. While the model performance of
radar was better than that of ALS in predicting species compo-
sition, ALS was better in predicting species richness and phylo-
genetic diversity. The results obtained with both sensors showed
the closer association of species composition and phylogenetic
diversity with gradients of forest maturity, and that of species
richness with structural heterogeneity. However, the models of
the diversity indices were inferior to those of assemblage
composition.

The prediction accuracy of ALS for the structural attributes of
forests and consequently for attributes of the associated com-
munities, such as taxonomic diversity, has been well established
over the last two decades10. Previous studies comparing ALS and
radar in terms of the accuracy of forest attribute estimation for
variables, such as canopy height, stem volume and biomass
revealed the superiority of ALS over radar at the local scale17,18.
ALS was also shown to be better for high-accuracy characterisa-
tions of understorey layering and the structural complexity at
local scales19,20. These findings are not surprising, given the small
footprint and the available high-energy sources of airborne
platforms, compared with the challenges of interpreting the
longer wavelengths and larger footprints of space-borne C-band

SAR21. Nonetheless, while at the scale of individual trees radar
may not be able to provide the same level of height accuracy
provided by ALS, this does not preclude the possibility that
backscatter properties recorded from space can suitably capture
the broader structural properties relevant to forest-dwelling
organisms.

Using a similar CCoA methodology, field inventory data were
previously compared with ALS data to determine the ability of the
latter to predict critical forest stand structure and animal
communities11,22. In their CCoA analysis of ALS and forest field
inventory data, Lefsky et al. 22 found that forest structure could be
characterised by three main factors: aboveground biomass (rela-
ted to height), canopy cover (or openness) and structural het-
erogeneity (related to height variability). Our CCoA analysis of
radar and ALS metrics showed that two main factors, forest
maturity and structural heterogeneity, comprehensively captured
forest structure. The first pair of axes was directly related to forest
maturity, which was represented by canopy cover (or openness)
and canopy height. The fusion of these axes was likely due to
the lower penetration depth of C-band SAR, which is limited to
the very upper layers of the canopy, than of L-band and P-band
systems using longer wavelengths. The relatively short wave-
lengths of C-band SAR account for its poor ability in separating
canopy height or biomass from canopy cover. A weak correlation
between aboveground biomass and the backscatter of C-band
SAR in dense forest has been reported and is generally associated
with the early saturation of backscatter intensities for high
aboveground biomass23,24. The remaining significant axes from
CCoA mostly reflected the structural heterogeneity of the forest
stand, which is in line with the third main characteristic of forest
structure identified by Lefsky et al. 22. The ALS and radar metrics
approximating vertical and horizontal heterogeneity were asso-
ciated with those structural heterogeneity axes. Image texture
was employed in previous studies to improve land cover
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classification25 but it had not been used to characterise the
structural heterogeneity of a forest. Our study demonstrated that,
by using image texture, the structural heterogeneity of a forest at a
1-ha spatial level and a resolution of 10 m can be captured by C-
band radar, despite its limited penetration of the canopy.

The CCoA also demonstrated that, for biodiversity modelling,
multi-temporal radar data can substitute for a large proportion of
the information available from ALS. Moreover, compared to
readily interpretable ALS metrics, we were able to derive an
ecological interpretation from numerous radar metrics, which
was a prerequisite for the later biodiversity modelling.

Both the changes in openness as a consequence of forest suc-
cession and the accompanying changes in microclimatic condi-
tions heavily structure species composition26–30. These
accumulated effects associated with forest maturity were well
reflected in the radar as well as the ALS models, as both showed
the strong effects of forest maturity on the species composition of
most of the 12 functional groups, even after controlling for
repeated measurements in a specific region. Interestingly, the
model performance of radar in predicting species composition
was better than that of ALS. Although radar cannot provide the
highly detailed information on forest structure that is generated
by ALS, its measurements still allow a sufficiently fine-scale
description of forest maturity. Moreover, multi-temporal radar
data had a better discriminatory ability with respect to the
composition of dominant tree species than did ALS data on single
leaf-on acquisition (see Supplementary Fig. 21 for additional
models predicting the conifer tree ratio). The split between
conifers and broadleaved trees greatly affects the composition not
only of herbivores but also of fungi31 and may cascade to higher
trophic levels32,33. Similarly Schaffers et al. 34 found that plant
composition is a more powerful predictor of the communities of
predators and herbivores than is the physical habitat structure of
grasslands. Therefore, radar data combine two important deter-
minants of forest assemblage composition: maturity and conifer
proportion. The drop in predictive power regarding the assem-
blage composition of carabids, spiders and bats after accounting
for regions may reflect the geographical patterns or unmeasured
environmental determinants of these groups. In the case of bats,
the number of species found in Germany is highly regionally
restricted (see Supplementary Fig. 5). For ground-dwelling car-
abids and spiders, climate and soil conditions, mostly related to

regional differences, likely override the structural patterns derived
from remote-sensing data. However, within a specific region,
remote-sensing data well predicted both ground-dwelling beetles
and spiders11,35.

Overall, the models of species richness and phylogenetic
diversity were inferior to those of assemblage composition. This
was not surprising, as species richness does not consider the
taxonomic identity of species and ignores species turnover. For
example, two forest patches with different environmental condi-
tions, such as open vs. closed forests, might exhibit the same
species richness but harbour assemblages that differ completely in
their composition. This was previously shown for saproxylic
beetles, in which large numbers of conifer specialists were present
in open forests whereas broadleaf specialists predominated in
forests characterised by a closed canopy36. Hence, in predictions
of species richness and assemblage composition based on envir-
onmental information, that is, on remote-sensing data, the rela-
tionship between predictor and response is much weaker for the
former than for the latter. This was also suggested by Leutner
et al. 28, who found that plant assemblage composition, but not
species richness, could be successfully modelled with ALS and
hyperspectral data. Along the same lines, a recent study reported
an overall weak and highly variable relationship between species
richness and carbon stock at the stand scale in the temperate
forests of Europe, presumably because of trade-offs between
species37.

However, we showed that various structural heterogeneity
indices in both the ALS and radar metrics strengthened the
respective species richness models. The structural heterogeneity
metrics of ALS were important for the species richness of most
groups (Supplementary Figs. 6–17). This is consistent with the
habitat-heterogeneity hypothesis, which assumes increasing spe-
cies richness with the increase in niche availability arising from
habitat heterogeneity38. Support for this assumption comes from
previous ALS studies in which the strong effects of 3-D structural
heterogeneity on species richness were described10. In our
approach, radar-derived data were used to derive heterogeneity
metrics in forests that were then applied successfully in biodi-
versity modelling. These metrics appeared to have been those
representing the most important drivers in the species richness
models of several taxonomic groups. Hence, our study well
demonstrates the high explanatory and predictive power of
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coarse, space-borne, radar-derived data in ecological studies at
local scales.

Forest attributes not only differentiate between communities,
but they also can be used to recognise the phylogenetic diversity
within communities. For example, forest succession has been
shown to shift communities in terms of their phylogeny, from
closely related species in early-stage forests to more remotely
related species in mature forest stands39. This finding was sup-
ported by our study, which showed the dominance of forest
maturity in the phylogenetic models whose performance for
several groups was moderate, such as bryophytes, saproxylic
beetles and fungi. However, the phylogenetic diversity of higher
trophic groups was not well predicted, as the determinants of
those models were associated with the density of the understorey
(Supplementary Figs. 6–17). Species richness and phylogenetic
diversity patterns in forests may follow very different and at times
even opposite patterns40,41. Hence phylogenetic diversity is not a
surrogate but a complementary biodiversity measure that pro-
vides additional information on local diversity. However, the high
R² of the coefficient of determination determined using the radar-
based models for both the phylogenetic diversity of some groups,
such as plants and saproxylic beetles, and the species composition
support the global monitoring of phylogenetic diversity from
space, and not only for plants42.

The results of our studies of five forest regions in Central
Europe demonstrate the potential of open-access space-borne
radar data in predicting different components of biodiversity.
Importantly, the correlation between radar and ALS gradients
indicated the substantial cost-effectiveness of Sentinel-1 approach
when applied to large-area mapping. As evidenced by the attri-
butes of Sentinel-1 backscatters in their representation of forest
maturity and tree composition, two of the main drivers of local
species turnover, and by the various measures of structural het-
erogeneity, open-access Sentinel-1 clearly offers an alternative
method to model the biodiversity of different functional groups.
Furthermore, as gamma diversity could be estimated as a product
of alpha and beta diversity, Sentinel-1 can be applied to estimate
gamma diversity even for large landscapes where ground esti-
mations will stay impossible.

The shortcoming of Sentinel-1 data that we uncovered was in
the prediction of species richness and phylogenetic diversity for
groups that were more strongly driven by the development of the
understorey. Weak permeability through overstorey layers is
unavoidable with space-borne C-band SAR systems, due to their
short wavelengths21, whereas L-band and P-band systems make
use of longer wavelengths. Nonetheless, Sentinel-1 performed as
well as ALS with respect to the biodiversity models of groups
driven by forest maturity or specific indices of structural het-
erogeneity. In the near future, L-band and S-band SAR data will
become increasingly availability (e.g. NASA-ISRO synthetic
aperture radar (NISAR), a dual-frequency SAR carried on an
Earth observation satellite). Used in conjunction with Sentinel-1’s
C-band, they may allow a better characterisation of the unders-
tory and of the different-sized elements of forest structure.

Although our study covered five forested regions, these were
representative only of the major temperate forest ecosystems of
Central Europe. Nonetheless, given that radar data for the Earth’s
forested regions are ubiquitously available, there is more than
ample opportunity to test the generality of our findings in
essentially all forests. The major barrier to the larger-scale
application of our methodology is the lack of availability of
georeferenced and well-stratified (both spatially and ecologically)
biodiversity data that span multiple taxa. Datasets such as those
from the Biodiversity Exploratories43 together with those gener-
ated in well-established long-term biodiversity monitoring, such
as undertaken at the Steigerwald44 and in the Bavarian Forest

National Park45 at the scale of the individual forest, provide
excellent test-dataset allowing the broader application of the
approach described herein. However, at larger scale such as at the
country level or within the EU as a whole, standardised mon-
itoring systems with high resolution are currently available only
for a few taxa, for example, bird surveys by the Umbrella Orga-
nization of German Avifaunists (Dachverband Deutscher Avi-
faunisten, DDA). Until governments compile or generate data
from the well-stratified, consistent sampling of a larger number of
taxonomic and trophic levels, the immediate application of
Sentinel-1 data will be restricted to existing data, such as the
DDA’s bird data. For forests, Sentinel-1 data may well be highly
suitable for the mapping of environmental gradients at national
scales, which in turn can facilitate the stratified random selection
of appropriate locations for field-based biodiversity calibration
and validation sites, e.g. selected sites from national forest
inventories. For generations, biodiversity data have been collected
according to a bottom-up approach. However, the tools to
complement this information, by analyses conducted on top-
down-collected data, are now available. Their use will ensure that
a broad spectrum of biodiversity is covered. Our research has
shown a way forward in the mapping of structural indicators of
biodiversity as determined from space. Yet, the question remains:
how well can changes in biodiversity be monitored? Since radar
provides multi-temporal measurements needed to detect trends, it
has the potential to provide a basis for future research. Further-
more, thresholds for the detection of alterations in habitat con-
ditions that trigger positive and negative biodiversity outcomes,
the time delay in extinction after the habitat degradation and
synergistic process with other threats such as climate change must
still be defined.

Methods
Study site. The study was conducted at up to 463 plots in five forest regions
distributed from north to south in Germany and representative of forest habitat
types in Central Europe (Supplementary Fig. 1). The data were compiled from
three different projects: Biodiversity Exploratories43, the BIOKLIM Project45 and
the Steigerwald Project44,46. Data were collected from 150 experimental plots of the
Biodiversity Exploratories study site. These had been established in three regions:
(1) 50 plots in the UNESCO Biosphere Reserve Schorfheide-Chorin, (2) 50 plots in
the National Park Hainich and its neighbouring areas and (3) 50 plots in the
UNESCO Biosphere Reserve, Schwäbische Alb. From the BIOKLIM Project, con-
ducted in the Bavarian Forest National Park, 244 plots among the 293 sampling
plots were selected; the 49 excluded plots were those in which the change in canopy
cover between 2007 (year of ALS acquisition) and 2016 (year of radar acquisition)
exceeded 20% due to disturbances such as bark beetle infestation and wind-
throw47. From the Steigerwald Project, located in the Steigerwald forests in Bavaria,
69 plots were included. For the analysis of each functional group, plots for which
observations of the corresponding group were available were selected. The number
of investigated plots per group was 454 for plants, 298 for bryophytes, 290 for
lichens, 362 for phytophagous beetles, 219 for moths, 361 for saproxylic beetles,
458 for fungi, 361 for spiders, 347 for carabids, 334 for necrophagous beetles, 456
for birds and 201 for bats.

The Schorfheide-Chorin region (SCH) is located in the lowlands (80–140 m
above sea level, a.s.l.)) of north-eastern Germany (N 52°86ʹ–53°19ʹ; E 13°63ʹ–14°
00ʹ). It is a glacially formed landscape with many wetlands. The Hainich region
(HAI) is located in the hilly areas (330–550 m a.s.l.) of central Germany (N 51°
05ʹ–51°37ʹ; E 10°21ʹ–10°53ʹ). The Schwäbische Alb (ALB) region is located in the
low mountain areas (740–870 m a.s.l.) of south-western Germany (N 48°36ʹ–48°50ʹ;
E 9°20ʹ–9°50ʹ). The three regions of the Biodiversity Exploratories cover different
forest management intensities: unmanaged old-growth forests, managed uneven-
aged forests and managed age-class forests including natural broad-leaved tree
species, mainly European beech Fagus sylvatica, and non-natural conifer
plantations, i.e. Norway spruce Picea abies and Scots pine Pinus sylvestris. The
Steigerwald region (STE) is located in a hilly area (400–520 m a.s.l.) in central
Germany (N 49°80ʹ–49°94ʹ; E 10°45ʹ–10°62ʹ) with a large gradient of broadleaf
forest use intensity. It is dominated by F. sylvatica. The Bavarian Forest National
Park region (BAY) is located in a mountainous area (710–1530 m a.s.l.) (N 48°
91ʹ–49°20ʹ; E 13°19ʹ–13°45ʹ). The dominant tree species are P. abies and F.
sylvatica. Half of the area, at the time of data sampling, was dominated by common
production forests, while the other half was covered by strictly protected area with
intensive natural disturbances or old-growth stands. Thus, the 463 plots included a
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long gradient of forest management intensity on the stand scale ranging from
unmanaged old-growth forests to intensively managed forests.

Radar data. C-band synthetic aperture radar (C-SAR) data acquired by the
Sentinel-1 mission throughout Germany, including in our sampling areas, were
used in this study. The C-SAR data were acquired in the interferometric wide mode
in two polarisations, VV (vertically transmitted, vertically received radar pulse) and
VH (vertically transmitted, horizontally received radar pulse), during both
ascending and descending orbits. The ground-range-detected high-resolution
product (GRDH), with a pixel spacing of 10 m, was downloaded from the ESA
Scientific Hub. The Sentinel Application Platforms (SNAP) Sentinel-1 Toolbox
software48 was used in the further processing of the GRDH product to generate γ0,
defined as the backscatter coefficient normalised by the cosine of the incidence
angle. Processing followed the typical pre-processing steps, involving precise orbit
determination, removal of thermal and border noise, radiometric calibration to β0,
defined as the radar brightness coefficient, and radiometric terrain flattening to γ0

based on the digital elevation model (DEM) of the Shuttle Radar Topography
Mission (SRTM v.4.1), with 1-arc-second resolution. Lastly, a range-Doppler ter-
rain correction was performed, generating γ0 with a 10 × 10 m pixel spacing also
based on the SRTM DEM (see the Supplementary Note 3 for further details and the
batch processing graph at https://github.com/So-YeonBae/Sentinel1-Biodiversity
and Supplementary Software).

Multiple pixel-wise summary statistics were then calculated over these pre-
processed conditions (Supplementary Table 1). The limitation of the short
wavelength of Sentinel-1 was overcome by the application of multi-temporal
approaches. First, the median values of VV and VH backscatter in a year, during
summer and during winter were determined since backscatter varies with the
seasonal changes in canopy structure. The difference between the median winter
and summer values was then computed to detect the seasonal difference in
backscatter. The difference and the ratio between the yearly median values of VV
and VH were computed as well, since they are related to the seasonal canopy
development cycle49. The mean and standard deviation were extracted to
characterise the spatial heterogeneity, within a 9 × 9 pixel neighbourhood. Further
textural variables were then derived by means of the grey-level co-occurrence
matrix (GLCM), which specifically considers the spatial arrangement of different
neighbourhood pixels50. In a GLCM analysis, the contrast group measures the
contrast between adjacent pixels, and the orderliness group the orderliness of the
neighbourhood pixel values. Both the dissimilarity index in the contrast group and
the entropy index in the orderliness group were calculated using window sizes of
9 × 9 pixels51. All metrics-calculations were performed in R, version 3.4.052, using
the package glcm53 with a common discretisation of 32 grey levels (see the
Supplementary Note 3 for details and r script at https://github.com/So-YeonBae/
Sentinel1-Biodiversity and Supplementary Software).

ALS data. ALS data were acquired during leaf-on periods between 2007 and 2018,
depending on the region (see Supplementary Table 2). The same pre-processing and
metrics-calculation methods were applied over the ALS datasets of all five forest
regions. LAStools54 was used in pre-processing, coordinate transformation, outlier
filtering, the classification of the returns into ground and non-ground and the nor-
malisation of the height of the vegetation returns to the height above ground level.

Based on the normalised height, metrics characterising the three-dimensional
forest structure were calculated (Supplementary Table 3). The mean and maximum
height of the vegetation returns were determined as information on forest maturity,
and the standard deviation and coefficient of variation to characterise the vertical
variability of the vegetation distribution. Canopy cover as well as the average and
variability of the vegetation height are among the most significant predictors of
animal species diversity10. To characterise the development of canopy sub-layers,
the penetration ratios were calculated by dividing the number of returns blocked
(or captured) by each sub-layer by the number of returns that reached the layer.
Penetration ratios were calculated for three sub-layers: canopy (above 5 m),
understory (2–5 m) and regeneration layers (below 2m). Foliage height diversity
was then derived using the Shannon entropy index and the penetration ratios of the
three sub-layers. The canopy cover was also determined based on the penetration
ratio of the canopy and the understorey layer (above 2 m).

Spatial heterogeneity composed of forest gaps were considered by calculating
the square-root-transformed total edge length of gap and gap area. Both were
determined based on a gap mask raster obtained by mapping pixels with a
penetration ratio of the canopy-understory layer <20% and aggregating
neighbouring gap pixels into gap features. Gap features smaller than 50 m² or
narrower than a perimeter-area-ratio <1.5 were excluded. Lastly, a canopy surface
height model (CHM) with a spatial resolution of 1 m was developed according to
Khosravipour et al. 55 and using the lidR package56. Based on the CHM, the ratio of
the canopy surface area to the flat area and the standard deviation of the CHM
were calculated.

Species data sampling. Bats were recorded using ultrasound detectors or bat-call
recorders and analysed with the corresponding software to the species level (see
Supplementary Note 1). Repeated point counts were conducted for bird surveys
during the breeding seasons. Arthropods were sampled using pitfall traps, flight

interception traps and light traps. Vascular plants, bryophytes, lichens and fungi
were recorded in spatial subsets of the 1-ha plots. However, the species sampling
methods slightly differed between Biodiversity-Exploratories, the Steigerwald
Project and the BioKlim-Project in terms of sampling periods, duration and grain
size. Hence, the species data were refined to achieve comparability among projects
(Supplementary Note 1). We complied with all relevant ethical regulations for
animal research. All the records of species, except for arthropods, were conducted
by sightings or sound-recording in the field. The methods used in this study to
assess arthropod diversity were legally mandated by the field work permits listed in
the acknowledgement section and Supplementary Table 11.

Calculation of biodiversity variables. Among the various aspects of biodiversity,
alpha diversity measures the diversity of species within each plot and beta diversity
the difference of species composition among these plots. Gamma diversity is a
measure of the overall diversity within a region, a product of the alpha diversity for
all the plots within a region and the beta diversity among them, thus often called as
regional diversity57. At our 1-ha local scale, species richness and phylogenetic
diversity, as alpha diversity, and species composition, the base of calculating beta
diversity, were investigated. Functional groups were separated based on taxonomy,
and the assemblage composition per functional group by NMDS was derived using
presence–absence data. The goodness of NMDS for 1–5 dimensions was tested
based on the stress value using the function dimcheckMDS in the R package goe-
veg58. The smallest dimension with a stress value < 0.2 was chosen, as done in
Clarke59. The chosen dimensionality was 2 for plants, lichens, moths, carabid
beetles and bats and 3 for all others. NMDS was performed using the function
metaMDS in the R package vegan;60 the Bray–Curtis dissimilarity index and 30
maximum numbers of random starts were used to identify a stable solution.

The number of observed species in each plot was counted and the value log-
transformed to calculate species richness. The standardised effect size of the mean
phylogenetic distance was determined as phylogenetic diversity which has become
influential for an understanding of ecosystem functioning in association with
assemblage communities and has been used as a proxy for functional diversity61,62.
Accordingly, data on published and newly created phylogenies were merged with
our community data using the ses.mpd function in picante63 (see Supplementary
Note 2). The null-model approach was applied to correct for species richness, by
comparing the diversity value of the observed assemblage per plot with the values
of 999 random artificial assemblages containing the same number of species64. The
species in the 999 assemblages were randomly selected from within each species
pool corresponding to that of our five forest regions.

Canonical correlation analysis. A CCoA was applied to two datasets, the metrics
derived from radar and from ALS. The CCoA represents the observations along
new canonical axes that maximise the correlation between two datasets65. It was
employed in this study to explore the correlation of the radar metrics with the ALS
metrics, as the ecological relevance of the latter with respect to 3-D structure and
resident animal species diversity has already been investigated. The function cancor
in the R package candisc66 was used in the analysis and all variables in the analysis
were standardised. The F-approximations of Wilks’ lambda statistic and its sig-
nificance, the canonical correlations between axes pairs and the RDA-adjusted R²
values were checked to determine whether the canonical axes extracted a con-
siderable variation.

Modelling biodiversity variables. Boosted GAMs were applied to all response
variables (NMDS axes, log-transformed species richness, and standardised effect
size of phylogenetic diversity) with Gaussian error distributions using the function
gamboost in the package mboost67. Boosted GAMs are suitable for ecological
modelling characterised by non-linearity and high collinearity among predictors,
which are very common in metrics derived from remote sensing68. The predictors
chosen in this study had high collinearity; for example, the yearly, summer and
winter backscatter of VH showed strong mutual correlations in the radar metrics
and the same was determined for the mean and maximum vegetation height in the
ALS metrics. Boosted GAMs were chosen because they are suitable for disen-
tangling the effects of variables with collinearity68 and assumed to be non-linear40.
The boosted GAMs were implemented with component-wise gradient boosting
techniques to optimise parameter estimations and variable selection.

Five-fold cross-validations were performed using the kfold function in the R
package dismo69; for each one, regions served as the sub-group, achieved by
separating the training and test datasets by region and then combining the
respective datasets to obtain total training and total test datasets for the five forest
regions. To make use of the full range of environmental spaces and species pools
covering all the gradients of the five regions, training and test data were extracted
from all five regions. For each cross-validation, two models were constructed, one
using the radar metrics and the other the ALS metrics. The 40 metrics derived from
the radar data and the 13 metrics from the ALS data were used as predictors.
Additionally, to account for possible spatial-autocorrelations of plots in the same
region and the slightly different sampling years and methods, mixed effects models
including the region as a random factor were fitted to determine the comparability
with the fixed effects models. However, since the aim of this study was to explore
the potential of remote-sensing data in predicting biodiversity over a large area
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including our external validation area, and not to test a specific ecological
hypothesis, we focused on constructing fixed effects models and adjunctively
included mixed effects models.

In each model in each cross-validation, to find the appropriate number of
boosting iterations (mstop) as a hyper-parameterisation, the mstop was increased
from 10 to 500 and the corresponding cross-validated estimates of the empirical
risk were then checked using the function cvrisk; 25 bootstraps were applied in the
sampling cross-validation using the function cv. Each model was constructed from
a training dataset and a hyper-parameter of mstop using the function gamboost and
then applied to a test dataset to examine its predictive performance, using the
function prediction. The coefficient of determination (R²) between observed values
of a test dataset and the predicted values were calculated together with the RMSE.
Finally, both the R² and the RMSE of the five-fold cross-validations were averaged
to compare the performances of the different models. For the mixed effects models,
in the calculation of R² and RMSE, only the fixed factors were used to predict the
response variables, thereby excluding the variance explained by region (a random
factor). Previous studies have shown that the R² of biodiversity measures increase
with sampling size in arthropod samples collected by flight interception and pitfall
traps up to a sample size of sufficient individuals11. Chao and Jost70 introduced the
sample completeness to standardise the comparability of diversity among
communities. Therefore to check the robustness of our results for arthropods
against the sampling completeness we re-ran the richness and community
composition analyses using a subset of plots with sample coverage more than 90%,
80% and 70%.

As external validations, the first axes of the assemblage composition for birds (n
= 72) and saproxylic beetles (n= 91) outside the five study regions were predicted
using radar metrics and fixed effects models, and R² and RMSE again calculated. In
the last step, the assemblage compositions for birds and saproxylic beetles were
mapped based on the first NMDS scores across the Bavarian Forest National Park
(Supplementary Fig. 20).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available on the BExIS
platform, dataset ID 25206 (https://www.bexis.uni-jena.de/PublicData/PublicDataSet.
aspx?DatasetId=25206). The source data underlying Figs. 1 and 4 and Supplementary
Figs. 2, 5, 18 and 19 are provided as a Source Data file.

Code availability
The batch processing configuration file for the SNAP toolbox software and the R script
for pixel- and summary statistics are publicly available at https://github.com/So-
YeonBae/Sentinel1-Biodiversity and Supplementary Software.
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