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Abstract

Many machine learning models are vulnerable

to adversarial attacks; for example, adding ad-

versarial perturbations that are imperceptible to

humans can often make machine learning models

produce wrong predictions with high confidence;

moreover, although we may obtain robust models

on the training dataset via adversarial training, in

some problems the learned models cannot gen-

eralize well to the test data. In this paper, we

focus on ℓ∞ attacks, and study the adversarially

robust generalization problem through the lens of

Rademacher complexity. For binary linear clas-

sifiers, we prove tight bounds for the adversarial

Rademacher complexity, and show that the adver-

sarial Rademacher complexity is never smaller

than its natural counterpart, and it has an unavoid-

able dimension dependence, unless the weight

vector has bounded ℓ1 norm, and our results also

extend to multi-class linear classifiers; in addi-

tion, for (nonlinear) neural networks, we show

that the dimension dependence in the adversar-

ial Rademacher complexity also exists. We fur-

ther consider a surrogate adversarial loss for one-

hidden layer ReLU network and prove margin

bounds for this setting. Our results indicate that

having ℓ1 norm constraints on the weight matrices

might be a potential way to improve generaliza-

tion in the adversarial setting. We demonstrate

experimental results that validate our theoretical

findings.

1. Introduction

In recent years, many modern machine learning models, in

particular, deep neural networks, have achieved success in

tasks such as image classification (He et al., 2016), speech

recognition (Graves et al., 2013), machine translation (Bah-

1Department of Electrical Engineering and Computer Sciences,
UC Berkeley, Berkeley, CA, USA 2Department of Statistics, UC
Berkeley, Berkeley, CA, USA. Correspondence to: Dong Yin
<dongyin@eecs.berkeley.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

danau et al., 2014), game playing (Silver et al., 2016), etc.

However, although these models achieve the state-of-the-

art performance in many standard benchmarks or compe-

titions, it has been observed that by adversarially adding

some perturbation to the input of the model (images, au-

dio signals), the machine learning models can make wrong

predictions with high confidence. These adversarial inputs

are often called the adversarial examples. Typical methods

of generating adversarial examples include adding small

perturbations that are imperceptible to humans (Szegedy

et al., 2013), changing surrounding areas of the main ob-

jects in images (Gilmer et al., 2018a), and even simple

rotation and translation (Engstrom et al., 2017). This phe-

nomenon was first discovered by Szegedy et al. (2013) in

image classification problems, and similar phenomena have

been observed in other areas (Carlini & Wagner, 2018; Kos

et al., 2018). Adversarial examples bring serious challenges

in many security-critical applications, such as medical di-

agnosis and autonomous driving—the existence of these

examples shows that many state-of-the-art machine learning

models are actually unreliable in the presence of adversarial

attacks.

Since the discovery of adversarial examples, there has been

a race between designing robust models that can defend

against adversarial attacks and designing attack algorithms

that can generate adversarial examples and fool the machine

learning models (Goodfellow et al., 2014; Gu & Rigazio,

2014; Carlini & Wagner, 2016; 2017). As of now, it seems

that the attackers are winning this game. For example, a

recent work shows that many of the defense algorithms fail

when the attacker uses a carefully designed gradient-based

method (Athalye et al., 2018). Meanwhile, adversarial

training (Huang et al., 2015; Shaham et al., 2015; Madry

et al., 2017) seems to be the most effective defense method.

Adversarial training takes a robust optimization (Ben-Tal

et al., 2009) perspective to the problem, and the basic idea

is to minimize some adversarial loss over the training data.

We elaborate below.

Suppose that data points (x, y) are drawn according to

some unknown distribution D over the feature-label space

X × Y , and X ⊆ R
d. Let F be a hypothesis class (e.g.,

a class of neural networks with a particular architecture),

and ℓ(f(x), y) be the loss associated with f ∈ F . Consider

the ℓ∞ white-box adversarial attack where an adversary is
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allowed to observe the trained model and choose some x
′

such that ‖x′ − x‖∞ ≤ ǫ and ℓ(f(x′), y) is maximized.

Therefore, to better defend against adversarial attacks, dur-

ing training, the learner should aim to solve the empirical

adversarial risk minimization problem

min
f∈F

1

n

n∑

i=1

max
‖x′

i−xi‖∞≤ǫ
ℓ(f(x′

i), yi), (1)

where {(xi, yi)}ni=1 are n i.i.d. training examples drawn

according to D. This minimax formulation raises many inter-

esting theoretical and practical questions. For example, we

need to understand how to efficiently solve the optimization

problem in (1), and in addition, we need to characterize the

generalization property of the adversarial risk, i.e., the gap

between the empirical adversarial risk in (1) and the popula-

tion adversarial risk E(x,y)∼D[max‖x′−x‖∞≤ǫ ℓ(f(x
′), y)].

In fact, for deep neural networks, both questions are still

wide open. In particular, for the generalization problem, it

has been observed that even if we can minimize the adver-

sarial training error, the adversarial test error can still be

large. For example, for a Resnet (He et al., 2016) model

on CIFAR10, using the PGD adversarial training algorithm

by Madry et al. (2017), one can achieve about 96% adversar-

ial training accuracy, but the adversarial test accuracy is only

47%. This generalization gap is significantly larger than that

in the natural setting (without adversarial attacks), and thus

it has become increasingly important to better understand

the generalization behavior of machine learning models in

the adversarial setting.

In this paper, we focus on the adversarially robust gen-

eralization property and make a first step towards deeper

understanding of this problem. We focus on ℓ∞ adversar-

ial attacks and analyze generalization through the lens of

Rademacher complexity. We study both linear classifiers

and nonlinear feedforward neural networks, and both binary

and multi-class classification problems. We summarize our

contributions as follows, and provide detailed comparison

with existing works in Section 6.

1.1. Our Contributions

• For binary linear classifiers, we prove tight upper and

lower bounds for the adversarial Rademacher complexity.

We show that the adversarial Rademacher complexity is

never smaller than its counterpart in the natural setting,

which provides theoretical evidence for the empirical ob-

servation that adversarially robust generalization can be

hard. We also show that under an ℓ∞ adversarial attack,

when the weight vector of the linear classifier has bounded

ℓp norm (p ≥ 1), a polynomial dimension dependence in

the adversarial Rademacher complexity is unavoidable,

unless p = 1. For multi-class linear classifiers, we prove

margin bounds in the adversarial setting. Similar to binary

classifiers, the margin bound also exhibits polynomial di-

mension dependence when the weight vector for each

class has bounded ℓp norm (p > 1).

• For neural networks, we show that in contrast to the mar-

gin bounds derived by Bartlett et al. (2017) and Golowich

et al. (2017) which depend only on the norms of the

weight matrices and the data points, the adversarial

Rademacher complexity has a lower bound with an ex-

plicit dimension dependence, which is also an effect of

the ℓ∞ attack. We further consider a surrogate adver-

sarial loss for one hidden layer ReLU networks, based

on the SDP relaxation proposed by Raghunathan et al.

(2018a). We prove margin bounds using the surrogate

loss and show that if the weight matrix of the first layer

has bounded ℓ1 norm, the margin bound does not have

explicit dimension dependence. This suggests that in the

adversarial setting, controlling the ℓ1 norms of the weight

matrices may be a way to improve generalization.

• We conduct experiments on linear classifiers and neural

networks to validate our theoretical findings; more specif-

ically, our experiments show that ℓ1 regularization could

reduce the adversarial generalization error, and the adver-

sarial generalization gap increases as the dimension of the

feature spaces increases.

Notation We define the set [N ] := {1, 2, . . . , N}. For

two sets A and B, we denote by BA the set of all func-

tions from A to B. We denote the indicator function of

a event A as 1(A). Unless otherwise stated, we denote

vectors by boldface lowercase letters such as w, and the

elements in the vector are denoted by italics letters with

subscripts, such as wk. All-one vectors are denoted by

1. Matrices are denoted by boldface uppercase letters

such as W. For a matrix W ∈ R
d×m with columns

wi, i ∈ [m], the (p, q) matrix norm of W is defined as

‖W‖p,q = ‖[‖w1‖p, ‖w2‖p, · · · , ‖wm‖p]‖q, and we may

use the shorthand notation ‖ · ‖p ≡ ‖ · ‖p,p. We denote the

spectral norm of matrices by ‖ · ‖σ and the Frobenius norm

of matrices by ‖ · ‖F (i.e., ‖ · ‖F ≡ ‖ · ‖2). We use B
∞
x
(ǫ)

to denote the ℓ∞ ball centered at x ∈ R
d with radius ǫ, i.e.,

B
∞
x
(ǫ) = {x′ ∈ R

d : ‖x′ − x‖∞ ≤ ǫ}.

2. Problem Setup

We start with the general statistical learning framework.

Let X and Y be the feature and label spaces, respectively,

and suppose that there is an unknown distribution D over

X × Y . In this paper, we assume that the feature space is a

subset of the d dimensional Euclidean space, i.e., X ⊆ R
d.

Let F ⊆ VX be the hypothesis class that we use to make

predictions, where V is another space that might be different

from Y . Let ℓ : V × Y → [0, B] be the loss function.

Throughout this paper we assume that ℓ is bounded, i.e., B
is a positive constant. In addition, we introduce the function

class ℓF ⊆ [0, B]X×Y by composing the functions in F
with ℓ(·, y), i.e., ℓF := {(x, y) 7→ ℓ(f(x), y) : f ∈ F}.

The goal of the learning problem is to find f ∈ F such
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that the population risk R(f) := E(x,y)∈D[ℓ(f(x), y)] is

minimized.

We consider the supervised learning setting where one has

access to n i.i.d. training examples drawn according to

D, denoted by (x1, y1), (x2, y2), . . . , (xn, yn). A learning

algorithm maps the n training examples to a hypothesis

f ∈ F . In this paper, we are interested in the gap between

the empirical risk Rn(f) :=
1
n

∑n
i=1 ℓ(f(xi), yi) and the

population risk R(f), known as the generalization error.

Rademacher complexity (Bartlett & Mendelson, 2002) is

one of the classic measures of generalization error. Here,

we present its formal definition. For any function class

H ⊆ R
Z , given a sample S = {z1, z2, . . . , zn} of size n,

and empirical Rademacher complexity is defined as

RS(H) :=
1

n
Eσ

[
sup
h∈H

n∑

i=1

σih(zi)

]
,

where σ1, . . . , σn are i.i.d. Rademacher random variables

with P{σi = 1} = P{σi = −1} = 1
2 . In our learn-

ing problem, denote the training sample by S, i.e., S :=
{(x1, y1), (x2, y2), . . . , (xn, yn)}. We then have the follow-

ing theorem which connects the population and empirical

risks via Rademacher complexity.

Theorem 1. (Bartlett & Mendelson, 2002; Mohri et al.,

2012) Suppose that the range of ℓ(f(x), y) is [0, B]. Then,

for any δ ∈ (0, 1), with probability at least 1 − δ, the

following holds for all f ∈ F ,

R(f) ≤ Rn(f) + 2BRS(ℓF ) + 3B

√
log 2

δ

2n
.

As we can see, Rademacher complexity measures the

rate that the empirical risk converges to the population

risk uniformly across F . In fact, according to the anti-

symmetrization lower bound by Koltchinskii et al. (2006),

one can show that RS(ℓF ) . supf∈F R(f) − Rn(f) .

RS(ℓF ). Therefore, Rademacher complexity is a tight

bound for the rate of uniform convergence of a loss func-

tion class, and in many settings can be a tight bound for

generalization error.

The above discussions can be extended to the adversarial

setting. In this paper, we focus on the ℓ∞ adversarial attack.

In this setting, the learning algorithm still has access to n
i.i.d. uncorrupted training examples drawn according to D.

Once the learning procedure finishes, the output hypothesis

f is revealed to an adversary. For any data point (x, y)
drawn according to D, the adversary is allowed to perturb

x within some ℓ∞ ball to maximize the loss. Our goal is to

minimize the adversarial population risk, i.e.,

R̃(f) := E(x,y)∼D

[
max

x′∈B∞

x
(ǫ)

ℓ(f(x′), y)

]
,

and to this end, a natural way is to conduct adversarial

training—minimizing the adversarial empirical risk

R̃n(f) :=
1

n

n∑

i=1

max
x′

i∈B∞

xi
(ǫ)

ℓ(f(x′
i), yi).

Let us define the adversarial loss ℓ̃(f(x), y) :=

maxB∞

x
(ǫ) ℓ(f(x

′), y) and the function class ℓ̃F ⊆
[0, B]X×Y as ℓ̃F := {ℓ̃(f(x), y) : f ∈ F}. Since the

range of ℓ̃(f(x), y) is still [0, B], we have the following

direct corollary of Theorem 1.

Corollary 1. For any δ ∈ (0, 1), with probability at least

1− δ, the following holds for all f ∈ F ,

R̃(f) ≤ R̃n(f) + 2BRS(ℓ̃F ) + 3B

√
log 2

δ

2n
.

As we can see, the Rademacher complexity of the adversar-

ial loss function class ℓ̃F , i.e., RS(ℓ̃F ) is again the key quan-

tity for the generalization ability of the learning problem. A

natural problem of interest is to compare the Rademacher

complexities in the natural and the adversarial settings, and

obtain generalization bounds for the adversarial loss.

3. Linear Classifiers

3.1. Binary Classification

We start with binary linear classifiers. In this setting, we

define Y = {−1,+1}, and let the hypothesis class F ⊆ R
X

be a set of linear functions of x ∈ X . More specifically, we

define fw(x) := 〈w,x〉, and consider prediction vector w

with ℓp norm constraint (p ≥ 1), i.e.,

F = {fw(x) : ‖w‖p ≤ W}. (2)

We predict the label with the sign of fw(x); more specif-

ically, we assume that the loss function ℓ(fw(x), y) can

be written as ℓ(fw(x), y) ≡ φ(y〈w,x〉), where φ : R →
[0, B] is monotonically nonincreasing and Lφ-Lipschitz. In

fact, if φ(0) ≥ 1, we can obtain a bound on the classification

error according to Theorem 1. That is, with probability at

least 1− δ, for all fw ∈ F ,

P(x,y)∼D{sgn(fw(x)) 6= y}

≤ 1

n

n∑

i=1

ℓ(fw(xi), yi) + 2BRS(ℓF ) + 3B

√
log 2

δ

2n
.

In addition, recall that according to the Ledoux-Talagrand

contraction inequality (Ledoux & Talagrand, 2013), we have

RS(ℓF ) ≤ LφRS(F).

For the adversarial setting, we have

ℓ̃(fw(x), y) = max
x′∈B∞

x
(ǫ)
ℓ(fw(x′), y)=φ( min

x′∈B∞

x
(ǫ)
y〈w,x′〉).

Let us define the following function class F̃ ⊆ R
X×{±1}:

F̃ =

{
min

x′∈B∞

x
(ǫ)

y〈w,x′〉 : ‖w‖p ≤ W

}
. (3)

Again, we have RS(ℓ̃F ) ≤ LφRS(F̃). The first major

contribution of our work is the following theorem, which

provides a comparison between RS(F) and RS(F̃).
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Theorem 2 (Main Result 1). Let F := {fw(x) : ‖w‖p ≤
W} and F̃ := {minx′∈B∞

x
(ǫ) y〈w,x′〉 : ‖w‖p ≤ W}. Sup-

pose that 1
p +

1
q = 1. Then, there exists a universal constant

c ∈ (0, 1) such that

max{RS(F), cǫW
d

1

q

√
n
} ≤ RS(F̃) ≤ RS(F) + ǫW

d
1

q

√
n
.

We prove Theorem 2 in Appendix B. We can see that the

adversarial Rademacher complexity, i.e., RS(F̃) is always

at least as large as the Rademacher complexity in the nat-

ural setting. This implies that uniform convergence in the

adversarial setting is at least as hard as that in the natural

setting. In addition, since max{a, b} ≥ 1
2 (a+ b), we have

c

2

(
RS(F) + ǫW

d
1

q

√
n

)
≤ RS(F̃) ≤ RS(F) + ǫW

d
1

q

√
n
.

Therefore, we have a tight bound for RS(F̃) up to a constant

factor. Further, if p > 1 the adversarial Rademacher com-

plexity has an unavoidable polynomial dimension depen-

dence, i.e., RS(F̃) is always at least as large as O(ǫW d1/q
√
n
).

On the other hand, one can easily show that in the natural

setting, RS(F) = W
n Eσ[‖

∑n
i=1 σixi‖q], which implies

that RS(F) depends on the distribution of xi and the norm

constraint W , but does not have an explicit dimension depen-

dence. This means that RS(F̃) could be order-wise larger

than RS(F), depending on the distribution of the data. An

interesting fact is that, if we have an ℓ1 norm constraint

on the prediction vector w, we can avoid the dimension

dependence in RS(F̃).

3.2. Multi-class Classification

Margin Bounds for Multi-class Classification We pro-

ceed to study multi-class linear classifiers. We start with

the standard margin bound framework for multi-class clas-

sification. In K-class classification problems, we choose

Y = [K], and the functions in the hypothesis class F map

X to R
K , i.e., F ⊆ (RK)X . Intuitively, the k-th coordinate

of f(x) is the score that f gives to the k-th class, and we

make prediction by choosing the class with the highest score.

We define the margin operator M(z, y) : RK × [K] → R

as M(z, y) = zy − maxy′ 6=y zy′ . For a training example

(x, y), a hypothesis f makes a correct prediction if and

only if M(f(x), y) > 0. We also define function class

MF := {(x, y) 7→ M(f(x), y) : f ∈ F} ⊆ R
X×[K]. For

multi-class classification problems, we consider a particular

loss function ℓ(f(x), y) = φγ(M(f(x), y)), where γ > 0
and φγ : R → [0, 1] is the ramp loss:

φγ(t) =





1 t ≤ 0

1− t
γ 0 < t < γ

0 t ≥ γ.

(4)

One can check that ℓ(f(x), y) satisfies:

1(y 6= arg max
y′∈[K]

[f(x)]y′) ≤ ℓ(f(x), y)

≤ 1([f(x)]y ≤ γ +max
y′ 6=y

[f(x)]y′).
(5)

Let S = {(xi, yi)}ni=1 ∈ (X × [K])n be the i.i.d. training

examples, and define the function class ℓF := {(x, y) 7→
φγ(M(f(x), y)) : f ∈ F} ⊆ R

X×[K]. Since φγ(t) ∈
[0, 1] and φγ(·) is 1/γ-Lipschitz, by combining (5) with

Theorem 1, we can obtain the following direct corollary as

the generalization bound in the multi-class setting (Mohri

et al., 2012).

Corollary 2. Consider the above multi-class classification

setting. For any fixed γ > 0, we have with probability at

least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
y 6= arg max

y′∈[K]
[f(x)]y′

}

≤ 1

n

n∑

i=1

1([f(xi)]yi
≤ γ +max

y′ 6=y
[f(xi)]y′) + 2RS(ℓF )

+ 3

√
log 2

δ

2n
.

In the adversarial setting, the adversary tries to maxi-

mize the loss ℓ(f(x), y) = φγ(M(f(x), y)) around an

ℓ∞ ball centered at x. We have the adversarial loss

ℓ̃(f(x), y) := maxx′∈B∞

x
(ǫ) ℓ(f(x

′), y), and the function

class ℓ̃F := {(x, y) 7→ ℓ̃(f(x), y) : f ∈ F} ⊆ R
X×[K].

Thus, we have the following generalization bound in the

adversarial setting.

Corollary 3. Consider the above adversarial multi-class

classification setting. For any fixed γ > 0, we have with

probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
∃ x

′ ∈ B
∞
x
(ǫ) s.t. y 6= arg max

y′∈[K]
[f(x′)]y′

}

≤ 1

n

n∑

i=1

1(∃ x
′
i ∈ B

∞
xi
(ǫ),[f(x′

i)]yi
≤γ +max

y′ 6=y
[f(x′

i)]y′)

+ 2RS(ℓ̃F ) + 3

√
log 2

δ

2n
.

Multi-class Linear Classifiers We now focus on multi-

class linear classifiers. For linear classifiers, each function

in the hypothesis class is linearly parametrized by a matrix

W ∈ R
K×d, i.e., f(x) ≡ fW(x) = Wx. Let wk ∈ R

d be

the k-th column of W⊤, then we have [fW(x)]k = 〈wk,x〉.
We assume that each wk has ℓp norm (p ≥ 1) upper bounded

by W , which implies that F = {fW(x) : ‖W⊤‖p,∞ ≤
W}. In the natural setting, we have the following margin

bound for linear classifiers as a corollary of the multi-class

margin bounds by Kuznetsov et al. (2015); Maximov &

Reshetova (2016).

Theorem 3. Consider the multi-class linear classifiers in

the above setting, and suppose that 1
p + 1

q = 1, p, q ≥ 1.

For any fixed γ > 0 and W > 0, we have with probability

at least 1− δ, for all W such that ‖W⊤‖p,∞ ≤ W ,



Rademacher Complexity for Adversarially Robust Generalization

P(x,y)∼D

{
y 6= arg max

y′∈[K]
〈wy′ ,x〉

}

≤ 1

n

n∑

i=1

1(〈wyi
,xi〉 ≤ γ + max

y′ 6=yi

〈wy′ ,xi〉)

+
4KW

γn
Eσ

[
‖

n∑

i=1

σixi‖q
]
+ 3

√
log 2

δ

2n
.

We prove Theorem 3 in Appendix C.1 for completeness. In

the adversarial setting, we have the following margin bound.

Theorem 4 (Main Result 2). Consider the multi-class lin-

ear classifiers in the adversarial setting, and suppose that
1
p + 1

q = 1, p, q ≥ 1. For any fixed γ > 0 and W > 0, we

have with probability at least 1 − δ, for all W such that

‖W⊤‖p,∞ ≤ W ,

P(x,y)∼D
{
∃ x

′ ∈ B
∞
x
(ǫ), s.t. y 6= arg max

y′∈[K]
〈wy′ ,x〉

}

≤ 1

n

n∑

i=1

Ei+
2WK

γ

[ǫ
√
Kd

1

q

√
n

+
1

n

K∑

y=1

Uy

]
+3

√
log 2

δ

2n
,

where

Ei=1(〈wyi ,xi〉≤γ+max
y′ 6=yi

(〈wy′ ,xi〉+ǫ‖wy′−wyi‖1)),

Uy=Eσ

[
‖

n∑

i=1

σixi1(yi = y)‖q
]
.

We prove Theorem 4 in Appendix C.2. As we can see, simi-

lar to the binary classification problems, if p > 1, the margin

bound in the adversarial setting has an explicit polynomial

dependence on d, whereas in the natural setting, the margin

bound does not have dimension dependence. This shows

that, at least for the generalization upper bound that we

obtain, the dimension dependence in the adversarial setting

also exists in the multi-class classification problems.

4. Neural Networks

We proceed to consider feedforward neural networks with

ReLU activation. Here, each function f in the hypothesis

class F is parametrized by a sequence of matrices W =
(W1,W2, . . . ,WL), i.e., f ≡ fW. Assume that Wh ∈
R

dh×dh−1 , and ρ(·) be the ReLU function, i.e., ρ(t) =
max{t, 0} for t ∈ R. For vectors, ρ(x) is vector generated

by applying ρ(·) on each coordinate of x, i.e., [ρ(x)]i =
ρ(xi). We have1

fW(x) = WLρ(WL−1ρ(· · · ρ(W1x) · · · )).
For K-class classification, we have dL = K, fW(x) :
R

d → R
K , and [fW(x)]k is the score for the k-th class.

In the special case of binary classification, as discussed in

Section 3.1, we can have Y = {+1,−1}, dL = 1, and the

loss function can be written as

1This implies that d0 ≡ d.

ℓ(fW(x), y) = φ(yfW(x)),

where φ : R → [0, B] is monotonically nonincreasing and

Lφ-Lipschitz.

4.1. Comparison of Rademacher Complexity Bounds

We start with a comparison of Rademacher complexities of

neural networks in the natural and adversarial settings. Al-

though naively applying the definition of Rademacher com-

plexity may provide a loose generalization bound (Zhang

et al., 2016a), when properly normalized by the margin, one

can still derive generalization bound that matches experi-

mental observations via Rademacher complexity (Bartlett

et al., 2017). Our comparison shows that, when the weight

matrices of the neural networks have bounded norms, in

the natural setting, the Rademacher complexity is upper

bounded by a quantity which only has logarithmic depen-

dence on the dimension; however, in the adversarial setting,

the Rademacher complexity is lower bounded by a quantity

with explicit
√
d dependence.

We focus on the binary classification. For the natural setting,

we review the results by Bartlett et al. (2017). Let S =
{(xi, yi)}ni=1 ∈ (X × {−1,+1})n be the i.i.d. training

examples, and define X := [x1,x2, · · · ,xn] ∈ R
d×n, and

dmax = max{d, d1, d2, . . . , dL}.

Theorem 5. (Bartlett et al., 2017) Consider the neu-

ral network hypothesis class F = {fW(x) : W =
(W1,W2, . . . ,WL), ‖Wh‖σ ≤ sh, ‖W⊤

h ‖2,1 ≤ bh, h ∈
[L]} ⊆ R

X . Then, we have

RS(F) ≤ 4

n3/2
+

26 log(n) log(2dmax)

n
A,

where A = ‖X‖F
(∏L

h=1 sh

)(∑L
j=1(

bj
sj
)2/3

)3/2

.

On the other hand, in this work, we prove the following re-

sult which shows that when the product of the spectral norms

of all the weight matrices is bounded, the Rademacher

complexity of the adversarial loss function class is lower

bounded by a quantity with an explicit
√
d factor. More

specifically, for binary classification problems, since

ℓ̃(fW(x), y)= max
x′∈B∞

x
(ǫ)
ℓ(fW(x′), y)=φ( min

x′∈B∞

x
(ǫ)
yfW(x′)),

and φ(·) is Lipschitz, we consider the function class

F̃ = {(x, y) 7→ min
x′∈B∞

x
(ǫ)

yfW(x′) :

W=(W1,W2, . . . ,WL),
L∏

h=1

‖Wh‖σ≤ r}⊆ R
X×{±1}.

(6)

Then we have the following result.

Theorem 6 (Main Result 3). Let F̃ be defined as in (6).

Then, there exists a universal constant c > 0 such that

RS(F̃) ≥ cr
( 1

n
‖X‖F + ǫ

√
d

n

)
.
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We prove Theorem 6 in Appendix D.1. This result shows

that if we aim to study the Rademacher complexity of the

function class defined as in (6), a
√
d dimension dependence

may be unavoidable, in contrast to the natural setting where

the dimension dependence is only logarithmic.

4.2. Generalization Bound for Surrogate Adversarial

Loss

For neural networks, even if there is only one hidden layer,

for a particular data point (x, y), evaluating the adversar-

ial loss ℓ̃(fW(x), y) = maxx′∈B∞

x
(ǫ) ℓ(fW(x′), y) can be

hard, since it requires maximizing a non-concave func-

tion in a bounded set. A recent line of work tries to

find upper bounds for ℓ̃(fW(x), y) that can be computed

in polynomial time. More specifically, we would like

to find surrogate adversarial loss ℓ̂(fW(x), y) such that

ℓ̂(fW(x), y) ≥ ℓ̃(fW(x), y), ∀ x, y,W. These surrogate

adversarial loss can thus provide certified defense against ad-

versarial examples, and can be computed efficiently. In addi-

tion, the surrogate adversarial loss ℓ̂(fW(x), y) should be as

tight as possible—it should be close enough to the original

adversarial loss ℓ̃(fW(x), y), so that the surrogate adversar-

ial loss can indeed represent the robustness of the model

against adversarial attacks. Recently, a few approaches to

designing surrogate adversarial loss have been developed,

and SDP relaxation (Raghunathan et al., 2018a;b) and LP

relaxation (Kolter & Wong, 2017; Wong et al., 2018) are

two major examples.

In this section, we focus on the SDP relaxation for one hid-

den layer neural network with ReLU activation proposed

by Raghunathan et al. (2018a). We prove a generalization

bound regarding the surrogate adversarial loss, and show

that this generalization bound does not have explicit di-

mension dependence if the weight matrix of the first layer

has bounded ℓ1 norm. We consider K-class classification

problems in this section (i.e., Y = [K]), and start with the

definition and property of the SDP surrogate loss. Since

we only have one hidden layer, fW(x) = W2ρ(W1x).
Let w2,k be the k-th column of W⊤

2 . Then, we have the

following results according to Raghunathan et al. (2018a).

Theorem 7. (Raghunathan et al., 2018a) For any (x, y),
W1, W2, and y′ 6= y,

max
x′∈B∞

x
(ǫ)
([fW(x′)]y′−[fW(x′)]y)≤ [fW(x)]y′−[fW(x)]y

+
ǫ

4
max

P�0,diag(P)≤1
〈Q(w2,y′−w2,y,W1),P〉,

where Q(v,W) :=


0 0 1
⊤
W

⊤ diag(v)
0 0 W

⊤ diag(v)
diag(v)⊤W1 diag(v)⊤W 0


. (7)

Since we consider multi-class classification problems in this

section, we use the ramp loss φγ defined in (4) composed

with the margin operator as our loss function. Thus, we have

ℓ(fW(x), y) = φγ(M(fW(x), y)) and ℓ̃(fW(x), y) =
maxx′∈B∞

x
(ǫ) φγ(M(fW(x′), y)). Here, we design a sur-

rogate loss ℓ̂(fW(x), y) based on Theorem 7.

Lemma 1. Define

ℓ̂(fW(x), y) := φγ

(
M(fW(x), y)

− ǫ

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
.

Then, we have

max
x′∈B∞

x
(ǫ)

1(y 6= arg max
y′∈[K]

[fW(x′)]y′) ≤ ℓ̂(fW(x), y)

≤ 1

(
M(fW(x), y)

− ǫ

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉 ≤ γ

)
.

We prove Lemma 1 in Appendix D.2. With this surro-

gate adversarial loss in hand, we can develop the follow-

ing margin bound for adversarial generalization. In this

theorem, we use X = [x1,x2, · · · ,xn] ∈ R
d×n, and

dmax = max{d, d1,K}.

Theorem 8 (Main Result 4). Consider the neural net-

work hypothesis class F = {fW(x) : W =
(W1,W2), ‖Wh‖σ ≤ sh, h = 1, 2, ‖W1‖1 ≤
b1, ‖W⊤

2 ‖2,1 ≤ b2}. Then, for any fixed γ > 0, with

probability at least 1− δ, we have for all fW(·) ∈ F ,

P(x,y)∼D

{
∃ x

′ ∈ B
∞
x
(ǫ) s.t. y 6= arg max

y′∈[K]
[fW(x′)]y′

}

≤ 1

n

n∑

i=1

Ei +
1

γ

(
4

n3/2
+

60 log(n) log(2dmax)

n
s1s2A

)

+
2ǫb1b2
γ
√
n

+ 3

√
log 2

δ

2n
,

where

Ei =1

(
[fW(xi)]yi

≤ γ + max
y′ 6=yi

[fW(xi)]y′

+
ǫ

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
,

A =
(
(
b1
s1

)2/3 + (
b2
s2

)2/3
)3/2

‖X‖F .

We prove Theorem 8 in Appendix D.3. Similar to linear

classifiers, in the adversarial setting, if we have an ℓ1 norm

constraint on the matrix matrix W1, then the generalization

bound of the surrogate adversarial loss does not have an

explicit dimension dependence.

5. Experiments

In this section, we validate our theoretical findings for linear

classifiers and neural networks via experiments. Our experi-

ments are implemented with Tensorflow (Abadi et al., 2016)

on the MNIST dataset (LeCun et al., 1998).
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5.1. Linear Classifiers

We validate two theoretical findings for linear classifiers:

(i) controlling the ℓ1 norm of the model parameters can

reduce the adversarial generalization error, and (ii) there

is a dimension dependence in adversarial generalization,

i.e., adversarially robust generalization is harder when the

dimension of the feature space is higher. We train the multi-

class linear classifier using the following objective function:

min
W

1

n

n∑

i=1

max
x′

i∈B∞

xi
(ǫ)

ℓ(fW(x′
i), yi) + λ‖W‖1, (8)

where ℓ(·) is cross entropy loss and fW(x) ≡ Wx. Since

we focus on the generalization property, we use a small

number of training data so that the generalization gap is

more significant. More specifically, in each run of the train-

ing algorithm, we randomly sample n = 1000 data points

from the training set of MNIST as the training data, and

run adversarial training to minimize the objective (8). Our

training algorithm alternates between mini-batch stochastic

gradient descent with respect to W and computing adver-

sarial examples on the chosen batch in each iteration. Here,

we note that since we consider linear classifiers, the adver-

sarial examples can be analytically computed according to

Appendix C.2.

In our first experiment, we vary the values of ǫ and λ, and

for each (ǫ, λ) pair, we conduct 10 runs of the training

algorithm, and in each run we sample the 1000 training

data independently. In Figure 2, we plot the adversarial

generalization error as a function of ǫ and λ, and the error

bars show the standard deviation of the 10 runs. As we

can see, when λ increases, the generalization gap decreases,

and thus we conclude that ℓ1 regularization is helpful for

reducing adversarial generalization error.
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Figure 1. Linear classifiers. Adversarial generalization error vs ℓ∞
perturbation ǫ and regularization coefficient λ.

In our second experiment, we choose λ = 0 and study the

dependence of adversarial generalization error on the dimen-

sion of the feature space. Recall that each data point in the

original MNIST dataset is a 28 × 28 image, i.e., d = 784.

We construct two additional image datasets with d = 196
(downsampled) and d = 3136 (expanded), respectively. To

construct the downsampled image, we replace each 2 × 2
patch—say, with pixel values a, b, c, d—on the original im-

age with a single pixel with value
√
a2 + b2 + c2 + d2. To

construct the expanded image, we replace each pixel—say,

with value a—on the original image with a 2 × 2 patch,

with the value of each pixel in the patch being a/2. Such

construction keeps the ℓ2 norm of the every single image

the same across the three datasets, and thus leads a fair com-

parison. The adversarial generalization error is plotted in

Figure 2, and as we can see, when the dimension d increases,

the generalization gap also increases.
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Figure 2. Linear classifiers. Adversarial generalization error vs ℓ∞
perturbation ǫ and dimension of feature space d.

5.2. Neural Networks

In this experiment, we validate our theoretical result that ℓ1
regularization can reduce the adversarial generalization er-

ror on a four-layer ReLU neural network, where the first two

layers are convolutional and the last two layers are fully con-

nected. We use PGD attack (Madry et al., 2017) adversarial

training to minimize the ℓ1 regularized objective (8). We

use the whole training set of MNIST, and once the model is

obtained, we use PGD attack to check the adversarial train-

ing and test error. We present the adversarial generalization

errors under the PGD attack in Figure 3. As we can see, the

adversarial generalization error decreases as we increase the

regularization coefficient λ; thus ℓ1 regularization indeed

reduces the adversarial generalization error under the PGD

attack.
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Figure 3. Neural networks. Adversarial generalization error vs

regularization coefficient λ.

6. Related Work

During the preparation of the initial draft of this paper, we

become aware of another independent and concurrent work

by Khim & Loh (2018), which studies a similar problem. In

this section, we first compare our work with Khim & Loh

(2018) and then discuss other related work. We make the

comparison in the following aspects.

• For binary classification problems, the adversarial
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Rademacher complexity upper bound by Khim & Loh

(2018) is similar to ours. However, we provide an adver-

sarial Rademacher complexity lower bound that matches

the upper bound. Our lower bound shows that the adver-

sarial Rademacher complexity is never smaller than that

in the natural setting, indicating the hardness of adversar-

ially robust generalization. As mentioned, although our

lower bound is for Rademacher complexity rather than

generalization, Rademacher complexity is a tight bound

for the rate of uniform convergence of a loss function

class (Koltchinskii et al., 2006) and thus in many settings

can be a tight bound for generalization. In addition, we

provide a lower bound for the adversarial Rademacher

complexity for neural networks. These lower bounds do

not appear in the work by Khim & Loh (2018).

• We discuss the generalization bounds for the multi-class

setting, whereas Khim & Loh (2018) focus only on binary

classification.

• Both our work and Khim & Loh (2018) prove adversar-

ial generalization bound using surrogate adversarial loss

(upper bound for the actual adversarial loss). Khim &

Loh (2018) use a method called tree transform whereas

we use the SDP relaxation proposed by (Raghunathan

et al., 2018a). These two approaches are based on differ-

ent ideas and thus we believe that they are not directly

comparable.

We proceed to discuss other related work.

Adversarially robust generalization As discussed in

Section 1, it has been observed by Madry et al. (2017) that

there might be a significant generalization gap when train-

ing deep neural networks in the adversarial setting. This

generalization problem has been further studied by Schmidt

et al. (2018), who show that to correctly classify two sep-

arated d-dimensional spherical Gaussian distributions, in

the natural setting one only needs O(1) training data, but

in the adversarial setting one needs Θ(
√
d) data. Getting

distribution agnostic generalization bounds (also known as

the PAC-learning framework) for the adversarial setting is

proposed as an open problem by Schmidt et al. (2018). In a

subsequent work, Cullina et al. (2018) study PAC-learning

guarantees for binary linear classifiers in the adversarial

setting via VC-dimension, and show that the VC-dimension

does not increase in the adversarial setting. This result does

not provide explanation to the empirical observation that

adversarially robust generalization may be hard. In fact,

although VC-dimension and Rademacher complexity can

both provide valid generalization bounds, VC-dimension

usually depends on the number of parameters in the model

while Rademacher complexity usually depends on the norms

of the weight matrices and data points, and can often pro-

vide tighter generalization bounds (Bartlett, 1998). Suggala

et al. (2018) discuss a similar notion of adversarial risk but

do not prove explicit generalization bounds. Attias et al.

(2018) prove adversarial generalization bounds in a setting

where the number of potential adversarial perturbations is

finite, which is a weaker notion than the ℓ∞ attack that we

consider.

Provable defense against adversarial attacks Besides

generalization property, another recent line of work aim to

design provable defense against adversarial attacks. Two

examples of provable defense are SDP relaxation (Raghu-

nathan et al., 2018a;b) and LP relaxation (Kolter & Wong,

2017; Wong et al., 2018). The idea of these methods is to

construct upper bounds of the adversarial risk that can be

efficiently evaluated and optimized. The analyses of these

algorithms usually focus on minimizing training error and

do not have generalization guarantee; in contrast, we focus

on generalization property in this paper.

Generalization of neural networks Generalization of

neural networks has been an important topic, even in the nat-

ural setting where there is no adversary. The key challenge

is to understand why deep neural networks can general-

ize to unseen data despite the high capacity of the model

class. The problem has received attention since the early

stage of neural network study (Bartlett, 1998; Anthony &

Bartlett, 1999). Recently, understanding generalization of

deep nets is raised as an open problem since traditional tech-

niques such as VC-dimension, Rademacher complexity, and

algorithmic stability are observed to produce vacuous gen-

eralization bounds (Zhang et al., 2016a). Progress has been

made more recently. In particular, it has been shown that

when properly normalized by the margin, using Rademacher

complexity or PAC-Bayesian analysis, one can obtain gen-

eralization bounds that tend to match the experimental re-

sults (Bartlett et al., 2017; Neyshabur et al., 2017; Arora

et al., 2018; Golowich et al., 2017). In addition, in this

paper, we show that when the weight vectors or matrices

have bounded ℓ1 norm, there is no dimension dependence in

the adversarial generalization bound. This result is consis-

tent and related to several previous works (Lee et al., 1996;

Bartlett, 1998; Mei et al., 2018; Zhang et al., 2016b).

A few other lines of work have conducted theoretical analy-

sis of adversarial examples (Wang et al., 2017; Bubeck et al.,

2018; Gilmer et al., 2018b; Dohmatob, 2018; Mahloujifar

et al., 2018). We provide additional discussions on related

work in Appendix A.
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