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1 Introduction

The spectrum of unitary two-dimensional conformal field theories (2d CFT) can be conve-

niently packaged into their partition function on the torus Z(q, q̄). Modular transforma-

tions on the torus PSL(2,Z) : q → q′ leave the partition function invariant

Z(q, q̄) = Z(q′, q̄′), (1.1)

and a natural question is which constraints does this impose on the spectrum.1 In the

simpler holomorphic case this question has a long history. Hardy and Ramanujan [1]

considered the generating function for partitions of n

Z(q) = q− 1
24

∑

n=0

p(n)qn = q− 1
24

(

1 + q + 2q2 + · · ·
)

(1.2)

and showed that the asymptotic behaviour for p(n) follows from the properties under the

modular transformation q = e−β → q′ = e
− 4π2

β together with the presence of the 1×q− 1
24 in

the small q expansion. Two decades later Rademacher revisited their argument and gave an

1The modular constraints on the spectrum has been discussed in literature [6–12].

– 1 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
4

exact expression for the Fourier coefficients p(n) in terms of a series known as Rademacher

expansion [2]. The method exploits the full modular invariance/covariance and consist in

applying Cauchy theorem in the presence of a dense tower of essential singularities, one

per each PSL(2,Z) element. Each term in the Rademacher expansion corresponds to one

of such singularities, modulo periodicity.2 More generally, Rademacher proved that the

Fourier coefficients of any holomorphic modular form of non-positive weight of the form3

Z(q) =
∑

n=0

p(n)qn−ĉ =
∑

n<ĉ

p(n)qn−ĉ +
∑

n≥ĉ

p(n)qn−ĉ (1.3)

are again given by a Rademacher expansion and follow from the polar terms, with n < ĉ,

together with the full modular covariance of Z(q). The punchline of the Rademacher

construction is that modular forms of non-positive weight are fully fixed by their polar part.

An alternative way to construct a modular form with a given polar part is to construct its

Poincare series, namely a sum of the polar terms together with all their PSL(2,Z) images.

For holomorphic modular forms of non-positive weight these two constructions agree.

These developments were mimicked by physicists in studying the spectrum of unitary

2d CFT and related questions. A similar argument to the one by Hardy and Ramanujan

led Cardy to his celebrated formula for the asymptotic growth of states [3], and also allows

to compute microscopically the entropy of black holes with AdS3 near horizon geometry, in

terms of states the boundary 2d CFT [4]. Rademacher expansions were first studied in the

context of 2d CFT in [5], where they were used to give an exact expression for the Fourier

coefficients of elliptic genera on CY manifolds.

In this paper we address the following question. Given the partition function of a

unitary 2d CFT on the torus

Z(q, q̄) =
∑

h,h̄

qh−c/24q̄h̄−c/24, (1.4)

where c is the central charge of the theory, what are the constraints imposed by the full

modular invariance. We will study this question in the context of a theory with Virasoro

but not extended chiral symmetry and central charge c > 1. In this case ĉ = c−1
24 is the

natural combination appearing in the partition function. A natural question is whether the

spectrum in the censored region, with either h− ĉ < 0 or h̄− ĉ < 0 and which corresponds to

the polar terms in the holomorphic case, determine the rest of the spectrum. The answer in

the non-holomorphic case is negative. In the holomorphic case the space of modular forms

of a given weight is well understood. In particular one can prove that a bounded modular

form of weight zero is necessarily a constant, so that basically we can only add a constant

to the Rademacher expansion. In the non-holomorphic case this is not the case, and the

space of modular forms with a given weight is much less understood, see for instance [13].

The next question we can ask is how to construct a partition function consistent with

modular invariance and the presence of a given spectrum in the censored region. An

2Hardy and Ramanujan had given a similar looking expression but crucially, their results were only

asymptotic and their sum over PSL(2,Z) was not convergent.
3Since Z(q) is not suppressed as q → 0 it is more precise to denote this a weakly holomorphic modular

form, but from now on we will suppress the term weakly.
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example of such a partition function was constructed by Maloney and Witten [14] and

further analysed by Keller and Maloney [15]. This partition function is the (appropriately

regularised) Poincare series given by a seed with quantum numbers (E, J) plus all its

PSL(2,Z) images. When the seed is in the censored region, the rest of the spectrum is

in the uncensored region. The simplest example corresponds to pure gravity in AdS3: in

this case the only operators in the censored region are the vacuum plus all its Virasoro

descendants. The resulting density of states, denoted by ρP (e, j), suffers from two problems:

it possesses states with negative norms, and results in a continuous spectrum on the energy

e, as opposed to discrete.

In this paper we will follow a different approach and mimic the Rademacher construc-

tion for the non-holomorphic case. In this way we construct a density of states ρR(e, j)

consistent with the presence of a single operator in the censored region and full modular

invariance. This density is given by a Rademacher expansion convergent for all spin j 6= 0.

For large spin it reproduces the asymptotic behaviour previously found in the literature [11]

while for finite spin it is given by a variant of the Maloney, Witten, Keller (MWK) Poincare

density. It is interesting to note that, unlike in the holomorphic case, the Poincare and

Rademacher construction lead to two slightly different answers. We show however, that

they are physically equivalent: the difference between the two corresponds to the Poincare

series for a density of ‘extra’ operators in the uncensored region. This extra contribution

gives an ‘oscillatory’ contribution on top of the exponentially large terms. We conjecture

that this is the sort of ambiguities present in a generic situation. As a byproduct of this

comparison we are able to find analytic expressions for ρP (e, j) and ρR(e, j). They are

sums of terms of the form

ρP (e, j) =
cosh

(√
2π(ζκ+ − jκ−

ζ )
)

+ cosh
(√

2π( jκ+

ζ − ζκ−)
)

− 2
√

e2 − j2
Θ(e − j), (1.5)

ρR(e, j) =
sinh

(√
2π(ζκ+ − jκ−

ζ )
)

+ sinh
(√

2π( jκ+

ζ − ζκ−)
)

√

e2 − j2
Θ(e − j), (1.6)

where κ± =
√

J − E ±
√

−E − J encode the information about the seed and we have

introduced the combination ζ =
√

e +
√

e2 − j2. Although we provide explicit results for

isolated operators, our method can also be applied to situations with accumulation points

in the twist (provided the accumulation is mild enough) and we treat some examples. For

the case of pure gravity the Rademacher construction provides an equally good density, in

the sense that it reproduces the known contributions to the partition function from classical

geometries. On the other hand, it also suffers from the same problems. It has negative

norm states and it leads to a continuous spectrum. While we don’t have any proposals

to render the spectrum discrete, we discuss scenarios to cure the negativity of the density.

The simplest scenario involves adding a tower of extra operators, whose twist we compute.

This paper is organised as follows. In section 2 we discuss the Rademacher construction

in the holomorphic case and show how it works in a few examples. In section 3 we apply

these ideas to analyse the spectrum of unitary 2d CFT. In section 4 we discuss the issue

of ambiguities, make a comparison between the Rademacher and Poincare constructions,
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and discuss a scenario to cure the negativity of states, together with other scenarios with

accumulation points in the twist. We finally end up with a list of open problems. In the

appendix we review the construction by MWK and give an analytic expression for the

density arising from their Poincare construction.

2 From asymptotic to convergent expansions

2.1 A toy model

Consider the generating function for partitions of n

Zpart(q) =
∑

n=0

p(n)qn =
q

1
24

η(τ)
, η(τ) = q

1
24

∏

n=1

(1 − qn), (2.1)

where η(τ) is the Dedekind’s η-function and q = e2πiτ . Our aim is to understand the

asymptotic behaviour of the Fourier coefficients p(n). This problem has a long history. It

turns out p(n) is not known in a closed form, nor does it satisfy any finite order recurrence.

The leading asymptotic behaviour was first found by Hardy and Ramanujan [1]. This can be

done as follows. The Dedekind’s η-function satisfies the following modular transformation

η

(

−1

τ

)

=
√

−iτη(τ), (2.2)

which implies that for complex z with Re(z) > 0

Zpart(e
−z) =

∑

n=0

p(n)e−zn =

√

z

2π
e

π2

6z e− z
24

(

1 + O
(

e− 4π2

z

))

. (2.3)

The r.h.s. diverges exponentially as z → 0+. This behaviour cannot arise from a finite

number of terms on the l.h.s., hence it must come from the tail with n ≫ 1. In this regime

we can approximate the sum by an integral and we must have

∫ ∞

0
p(n)e−zndn ∼

√

z

2π
e

π2

6z e− z
24 . (2.4)

Performing the inverse Laplace transform we then obtain

p(n) ∼ 2
√

3e
1
6

π
√

24n−1
(

π
√

24n − 1 − 6
)

π(24n − 1)3/2
. (2.5)

Which indeed gives the asymptotic behaviour found by Hardy and Ramanujan. The ma-

nipulations we have done are justified by the following theorem from Tauberian theory,

first proven by Wright [16].

Theorem 1. Suppose Z(q) =
∑∞

n=0 anqn is a power series, analytic for |q| < 1 and

q 6∈ R≤0, such that it satisfies the following two conditions. First

Z(e−z) = zαe
κ2

z

(

N−1
∑

s=0

αszs + O(zN )

)

+ · · · , (2.6)
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as z = x + iy → 0 in the arc Arg[z] < δ, with δ < π/2, and α, κ, αs real coefficients.

Here the dots denote contributions exponentially suppressed with respect to the leading one.

Second

Z(e−z) ≪ Z(e−x)e− d
x , (2.7)

for some d > 0 and as z = x + iy → 0 in the complementary arcs π
2 − δ ≤ Arg[z] < π

2 .

Then, one can prove the following asymptotic expansion for the coefficients an in the large

n limit

an = e2κ
√

nn− α
2

− 3
4

(

N−1
∑

r=0

prn−r/2 + O(n−N/2)

)

+ · · · , (2.8)

where the coefficients pr are computable in terms of the coefficients αs

pr =
r
∑

s=0

αsws,r−s, ws,r =
2−2r−1

(

− 1
κ

)r
κα+s+ 1

2 Γ
(

r + s + α + 3
2

)

√
πΓ(r + 1)Γ

(

−r + s + α + 3
2

) (2.9)

and dots represent contributions exponentially suppressed with respect to the leading one in

the large n limit.

An alternative proof was presented in [17]. Very recently this was also discussed

in [18], among other Tauberian theorems, where the importance of the second condition

was stressed. Note that it is important that Z(e−z) is defined for complex z, and the

above conditions hold in the specified arcs. To make this point clear, suppose the asymp-

totic expansion contains the term an = (−1)nbn, where bn grows at least as fast as the

contribution in the theorem. How can we exclude the presence of such terms? For real

and positive x these terms would not contribute to the exponential behaviour of Z(e−x) as

x → 0. However, they would invalidate the second condition of the theorem. The result

of the theorem agrees with approximating the sum by an integral and taking the inverse

Laplace transform. The conditions of the theorem specify under which circumstances this

is the correct procedure. One can explicitly check that the example above, the generating

function for partitions, indeed satisfies the conditions of the theorem. Note that the out-

put of this theorem is stronger than that of the Tauberian theorem presented in [10], see

also [19], where only the leading power law can be determined. The crucial difference of

course is that we are considering an evenly spaced series, so that the input is stronger too.

The theorem above can be generalised to problems involving alternating series with a

slight modification. Suppose the following power series satisfy the asymptotics

∑

n

ane−zn = zα1eκ1/z, (2.10)

∑

n

an(−1)ne−zn = zα2eκ2/z, (2.11)

with κ1 > κ2 > 0. We can now consider the sum and difference of the two series, and upon

rescaling 2z → z, we can apply the theorem. The final answer is then

an ∼
(

n

κ1

)− α1
2

− 1
2

I−α1−1 (2
√

nκ1) + (−1)n
(

n

κ2

)− α2
2

− 1
2

I−α2−1 (2
√

nκ2) + · · · . (2.12)

– 5 –
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Which gives an asymptotic expansion for an. Here Iα(x) is the modified Bessel function

of the first kind which arises after taking the inverse Laplace transform of zαe
κ
β . Going

back to the problem of the number of partitions, covariance under different elements of the

modular group give asymptotic expressions for the series
∑

n=0 p(n)ωne−zn, where ω is a

root of unity. This allows to write an asymptotic series for p(n), where each term is written

in terms of modified Bessel functions, as above. This was the result given by Hardy and

Ramanujan. This series, however, is only asymptotic, and for any finite value of the spin

it starts exploding at some point. As we review below, in the case of a modular invariant

function (or covariant with appropriate weight) we can replace this asymptotic series by

an exact expression.

2.2 From asymptotic to convergent series

2.2.1 Modular transformations

We will now focus our attention on functions

Z(q) =
∑

µ>0

a−µ

qµ
+

∞
∑

n=0

anqn, (2.13)

where q = e2πiτ . As a function of τ the function Z(e2πiτ ) will be assumed to be holo-

morphic in the upper half plane with poles as τ → i∞, as shown. We find it convenient

to separate the principal part
∑

µ>0
a−µ

qµ from the regular part as τ → i∞. The modular

group PSL(2,Z) acts on τ by

τ → aτ + b

sτ − r
, ar + bs = −1, (2.14)

with integers a, b, r, s, positive s and coprime (r, s) = 1. We assume Z(q) transforms

in a specific way (either invariantly or covariantly) under the entire group of modular

transformations:

Z
(

e−β+ 2πir
s

)

= fr,s(β)Z

(

e
− 4π2

s2β
+ 2πia

s

)

, (2.15)

where the weights fr,s(β) are given. We consider complex β ≡ −2πiτ +2πi r
s with Re(β) > 0

in what follows. For fixed s, the shifts r → r + s and a → a + s lead to exactly the same

relations, hence we can take 0 < a, r ≤ s. In this region the relation above imposes a

constraint whenever ar + bs = −1 has integer solutions.

Let us consider a few examples. For s = 1 we only have a = r = 1, and this fixes

b = −2. For s = 2 and r = 2 the constraint ar + bs = −1 does not have integer solutions.

For s = 2, r = 1 it implies a = 1, b = −1. In general, for s = 2, 3, · · · , an integer solution

exists for all 0 < r < s provided (r, s) = 1, i.e. r, s are coprimes. In this case the Euler’s

totient theorem implies

a = ar,s ≡ (−r)φ(s)−1 mod s, φ(s) = number of coprimes to s between 1 and s,

(2.16)
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where φ(s) is the Euler’s totient function. Let’s now return to the relation (2.15). Express-

ing both sides in their respective power expansions we obtain

polar +
∑

n=0

ane
2πir

s
ne−βn = fr,s(β)

(

∑

µ

a−µe
µ 4π2

s2β
+µ 2πia

s + a0 + · · ·
)

. (2.17)

In the examples we consider fr,s(β) behaves as a power law as β → 0, maybe up to an

exponential term that can be absorbed by shifting µ. Note that only the principal part on

the r.h.s. contributes to the exponential behaviour. Following the discussion in the previous

section we could write down an asymptotic expansion for an. This expansion is expected

to be only asymptotic, and give a good approximation for large n. For a fixed, finite n, it is

expected that the best estimate for an is given by a finite number of terms, and after that

adding new terms we would deviate from the correct result. Note furthermore that the

use of the inverse Laplace transform, is not entirely justified: the transformations above,

together with periodicity under β → β + 2πi, imply the presence of an infinite tower of

essential singularities along the real axis in the τ plane.

As we will show below, modular invariance/covariance actually allows to do much

better! A powerful machinery was developed by Rademacher [2] to give a convergent series

for the number of partitions p(n), introduced in the previous section. The method was

further developed for other modular forms and further refined, see [20, 21]. It is a beautiful

adaptation of the Hardy-Littlewood circle method, a technique of analytic number theory.

A detailed description of the method can be found in [22]. Below we will discuss the

main ideas of Rademacher’s machinery and we will show its relation to the inverse Laplace

transform. It turns out that the leading exponential asymptotic behaviour is unchanged,

but each contribution contains in addition a tower of exponentially suppressed terms, with

the net effect that the asymptotic series becomes now convergent.

2.2.2 Rademacher’s circle method

Consider again the series Z(q) = principal +
∑

n=0 anqn. The coefficients an are given by

the Cauchy residue theorem

an =

∮

dq

q

Z(q)

qn
, (2.18)

where the contour encloses the origin and has radius smaller than 1. In the τ plane the

integral becomes

an =

∫

Γ
Z(q)e−2πiτndτ, (2.19)

where the contour Γ is chosen to be a path between τ = i and 1 + i. The next step is to

use modular covariance

Z
(

e−β+ 2πir
s

)

= fr,s(β)

(

a−µe
µ 4π2

s2β
−µ 2πia

s + · · ·
)

. (2.20)

For simplicity we will assume fr,s(β) ∼ βα and take into account the contribution of a

single polar term. All other polar terms can be treated in exactly the same way, while

– 7 –
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Figure 1. Ford circles corresponding to the Farey sequences of order three (left) and five (right).

regular terms are exponentially suppressed and will not contribute to the Rademacher ex-

pansion. This modular transformation implies that in the τ -plane Z(e2πiτ ) has an essential

singularity at each point of the form r/s with integer r, s. What Rademacher did was to

split the contour Γ in a series of smaller contours Γr/s such that in each of those only the

essential singularity at r/s contributes. Let us now explain this construction.

Farey sequences and Ford circles. Consider the segment [0, 1] and mark the initial

and final points which we write as 0/1 and 1/1. This is the sequence at order one. Now

mark all rational points of the form h/2 that were not marked before, namely only 1/2.

All marked points give the sequence at order two. Now mark all rational points of the

form h/3 that were not marked before, namely 1/3 and 2/3. This gives the sequence at

order three, and so on. For example the Farey sequence at order 5 is given by the following

marked points
{

0,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
, 1

}

. (2.21)

Next, given a Farey sequence of a given order, we draw a series of circles in the τ -plane.

To each fraction r
s with (r, s) = 1 we associate a circle Crs with centre τrs = r

s + i
2s2 and

radius 1
2s2 . In figure 1 we can see the circles corresponding to the Farey sequences of third

and fifth order. Note that each circle touches the real axis, and that given two consecutive

fractions r/s and r′/s′ in the Farey sequence, their respective circles touch each other, but

do not intersect.

Rademacher’s contour. Let’s go back to the problem of computing an. Above we have

written them in terms of an integral over the τ plane along a path between τ = i and

τ = i + 1. The simplest contour would be a straight segment between these two points.

Rademacher instead, considered the following sequence of contours. Given a Farey sequence

of order N , we defined the contour as follows. Start from the point τ = i and follow the

Ford circle C01. We follow this circle until it touches with the consecutive circle, which for

the case at hand will be C1N . Now we follow this circle until it teaches the consecutive

circle, and so on. For instance, figure 2 shows the Rademacher’s contour for the case N = 3.

– 8 –
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Γ01

Γ13
Γ12

Γ23

Γ11

0 1/3 1/2 2/3 1
0

1

Figure 2. For N = 3 we deform the contour as shown in the figure and write Γ = Γ01 ∪ Γ13 ∪ Γ12 ∪
Γ23 ∪ Γ11.

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

Figure 3. Γ01 ∪ Γ11 tend to the circle C ′

01
, shown in the figure, as N → ∞.

The crucial observation by Rademacher was the following: this construction naturally splits

the path of integration Γ into a series of consecutive paths Γrs. For forms of non-positive

weight it turns out that for each path Γrs only the corresponding essential singularity at

τ = r/s contributes, and all the others can be ignored. The error in doing this tends to

zero as we take N → ∞. Note that for each finite N , the paths never touch the real line,

so that the essential singularities are avoided.

Computing the integrals and final expression. Let us analyse the leading contribu-

tion, corresponding to s = 1 and arising from the singularity at 0 (and at 1 by periodicity).

The corresponding path is Γs=1 = Γ01 ∪ Γ11. By periodicity we can shift Γ11 the left, so

that the path Γs=1 is just an arc. As N → ∞ the path tends to the circle C01 with centre

τ = i
2 and radius 1/2, where the origin is excluded, see figure 3. Let’s denote this path by

– 9 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
4

C ′
01 to stress the fact that the origin is excluded. We are then led to compute the following

integral

as=1
n =

∫

C′

01

βαe
κ
β e−2πiτndτ, (2.22)

where β = −2πiτ for s = 1 and we have introduced κ = 4π2µ. We now make a change of

variables, and go from τ to w = 1
β = − 1

2πiτ . The resulting integral can then be evaluated

in terms of the Bessel function of the first kind

as=1
n =

1

2πi

∫ 1
2π

+i∞

1
2π

−i∞
w−αeκwe

n
w

dw

w2
=

(

κ

n

)
1+α

2

Iα+1
(

2
√

κn
)

. (2.23)

For latter convenient we introduce a Rademacher inversion function R−1 (f(β)), defined

by the Rademacher integrals, and such that

R−1
(

βαe
κ
β

)

=

(

κ

n

)
1+α

2

Iα+1
(

2
√

κn
)

. (2.24)

We can proceed in exactly the same way for every essential singularity. In case of a general

modular transformation (2.15) of exponential form, the final result for the coefficients an

takes the form

an =
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

e
−2πir

s
nR−1







fr,s(β)
∑

µ>0

a−µe
µ 4π2

s2β
−µ 2πia

s







.

Note that only the principal part on the r.h.s. will contribute to this series. The claim

is then that for a large class of modular forms the above series converges to the correct

an, allowing to reconstruct the full modular form from its principal part. Note that in

order for this to be true the sum over s must be convergent, and the error terms from the

Rademacher procedure must tend to zero as N → ∞. Rademacher showed that this was

the case for the generating function of partitions in his original work [2], while later with

Zuckerman and by himself [20, 23] he extended the treatment to modular forms of non-

positive weight. The status for positive weights is more complicated, see for instance [24].

For weights higher than two, the Rademacher procedure converges to the right result, while

for positive weights smaller than two the Rademacher procedure may converge, but not

necessarily to the correct result. In this range the Rademacher construction will generally

lead to a mock modular form, as opposed to a modular form.

Let us comment on the difference between this result and a naive inverse Laplace

transform. The relevant integrand is the same in both cases, but the contours are different.

The inverse Laplace transform gives

L−1
(

βαe
κ
β

)

=
1

2πi

∫ σ+i∞

σ−i∞
βαe

κ
β eβndβ =

(

κ

n

)
1+α

2

I−α−1
(

2
√

κn
)

. (2.25)

The integral does not depend on σ > 0, as it simply shifts the line along the imaginary

axis. The results are very similar, but the sign on the Bessel function has changed. The
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asymptotic behaviour for the Bessel function for x real implies

Iν(x) − I−ν(x) = e−x

(

−
√

2

π

√

1

x
sin(πν) + · · ·

)

, (2.26)

so that the difference between the two results is exponentially small for large x. This small

difference, however, makes the Rademacher expansion convergent for finite n.

2.3 Examples

Example 1. Let us now consider the j-invariant function J(q) = j(q) − 744. This is a

modular invariant function with the Fourier expansion

J(q) =
∑

n=−1

anqn =
1

q
+ 196884q + · · · . (2.27)

Since J(q) is modular invariant, we simply get

J
(

e−β+ 2πir
s

)

= e
4π2

s2β
− 2πia

s + · · · . (2.28)

So that the Fourier coefficients are given by the following Rademacher sum

an =
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

2πe− 2πir
s

n− 2πia(r,s)
s

I1

(

4
√

nπ
s

)

√
ns

=
∑

s=1,2,···
K(−n, 1, s)

2π√
ns

I1

(

4
√

nπ

s

)

, (2.29)

where we have introduced the Kloosterman sum

K(a, b; s) =
∑

0<r≤s,
(r,s)=1

e
2πi

s
(ar+br−1). (2.30)

Here r−1 is the inverse of r modulo s, namely an integer such that rr−1 = 1 mod s. The

convergence of this expression depends on estimates for the Kloosterman sum at large s.

The Weil bound implies

K(a, b; s) ≤ τ(s)
√

(a, b, s)
√

s, (2.31)

for a, b 6= 0, where (a, b, s) is the greatest common divisor of a, b and s, and τ(s) is the

number of positive divisors of s, which grows at most logarithmically with s. On the other

hand we have
2π√
ns

I1

(

4
√

nπ

s

)

∼ 1

s2
. (2.32)

So that for fixed n 6= 0 the sum is convergent. On the other hand, for n = 0 we have

K(0, 1, s) ∼ s (for instance, for prime numbers), so that the sum naively fails to converge.

This can also be understood as follows: to J(q) we can always add a constant, which is

certainly modular invariant. This does not contribute to its principal part but it changes

the coefficient a0. It turns out that the Rademacher expansion selects specific constant,

see [25].4

4We thank Alex Maloney for drawing [25] to our attention.
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Example 2. Let us consider again the generating function for partitions of n.

Z(q) =
∑

n=0

anqn =
q

1
24

η(τ)
= 1 + q + 2q2 + 3q3 + · · · . (2.33)

The Dedekind eta function has the following transformation rules under modular transfor-

mations

η

(

aτ + b

sτ − r

)

= ǫ(r, s)(sτ − r)1/2η(τ), (2.34)

where for s > 0

ǫ(r, s) = eiπ( a−r
12s

+S[r,s]− 1
4 ), (2.35)

with S[r, s] the Dedekind sum

S(r, s) =
s−1
∑

n=1

n

s

(

rn

s
−
[

rn

s

]

− 1

2

)

, S[r, 1] = 0. (2.36)

With this transformation at hand we find

Z(q) =
q

1
24

η(τ)
=

q
1

24

q′ 1
24

ǫ(r, s)(sτ − r)1/2Z(q′), (2.37)

so that

Z
(

e−β+ 2πir
s

)

=

√

βs

2π
e− β

24 e
π2

6s2β eiπS[r,s] (1 + · · · ) , (2.38)

where the next terms after the 1 are exponentially suppressed and do not contribute to the

Rademacher expansion. Applying the result above we obtain

an =
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

e− 2πir
s

neiπS[r,s]R−1







√

βs

2π
e− β

24 e
π2

6s2β







=
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

√
se− 2πir

s
neiπS[r,s]∂n

2
√

3 sinh
(

π
√

24n−1
6s

)

π
√

24n − 1
. (2.39)

Similar estimates to the ones for the Kloosterman sum exist in the case of the extra insertion

of S[r, s] in the exponent, see [26]. On the other hand

∂n

2
√

3 sinh
(

π
√

24n−1
6s

)

π
√

24n − 1
∼ 1

s3
, (2.40)

so that the sum over s is convergent, and actually converges to the right result for n ≥ 0.
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Example 3. For positive and small weight, even if convergent, there is no guarantee

the Rademacher sum will converge to the correct result. Let us see an example of this.

Consider the product

Z(q) = q− 1
24 η(τ)J(q) =

1

q
− 1 + 196883q + · · · . (2.41)

This is relevant when decomposing the partition function of the Monster CFT in Virasoro

characters. In this case the Rademacher sum gives

an =
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

e− 2πir
s

ne−iπS[r,s]R−1

{
√

2π

βs
e

β

24 e
23π2

6s2β
− 2πia(r,s)

s

}

=
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

e− 2πir
s

n−iπS[r,s]− 2πia(r,s)
s

√
2 sinh

(
√

46
3

π
√

n+ 1
24

s

)

√

(

n + 1
24

)

s

. (2.42)

We have checked numerically that this converges to the correct result, although super

slowly, up to a piece proportional to5 q− 1
24 η(τ). Indeed, q− 1

24 η(τ) has exactly the same

weight as Z(q) but no polar part, so we always have the freedom of adding it. A similar

phenomenon occurs when considering N copies of the Monster CFT.

3 Application to 2d CFT

Consider a unitary 2d CFT with central charge c > 1. Its states are classified by their

conformal weights (h, h̄) or alternatively their dimension and spin

∆ = h + h̄, j = h − h̄. (3.1)

We will consider the partition function of the theory on a torus with complex structure

moduli q = e2πiτ and q̄ = e−2πiτ̄ . We will assume the CFT possesses Virasoro symmetry

but not an extended chiral algebra. The partition function can be expanded in Virasoro

characters and takes the form

Z(q, q̄) = χ0(q)χ0(q̄)+
∑

h,h̄>0

nh,h̄χh(q)χh̄(q̄)+
∑

h>0

Nhχh(q)χ0(q̄)+
∑

h̄>0

Nh̄χ0(q)χh̄(q̄). (3.2)

The term χ0(q)χ0(q̄) corresponds to the vacuum, the terms χh(q)χ0(q̄), χ0(q)χh̄(q̄) corre-

spond to conserved currents, while χh(q)χh̄(q̄) corresponds to non-degenerate states. Here

nh,h̄, etc, denote the multiplicity with which such operators appear. For a unitary CFT

they are non-negative integer numbers. The Virasoro characters are given by

χ0(q) = (1 − q)
q− c−1

24

η(q)
, χh>0(q) =

qh− c−1
24

η(q)
. (3.3)

5Numerically very close to 36q−
1

24 η(τ).
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It will be convenient to introduce the concept of twist, given by τ = min(h, h̄). Although

not strictly necessary, we will assume the theory has a twist gap τgap. This forbids the

presence of conserved currents. We expect this to be the generic situation for irrational

CFTs with c > 1, although no such explicit examples are known. In this case the partition

function takes the form

Z(q, q̄) = χ0(q)χ0(q̄) +
∑

h,h̄≥τgap

χh(q)χh̄(q̄), (3.4)

where we have left implicit the multiplicities nh,h̄. Note that for a generic irrational CFTs

with no extra symmetries, we expect most multiplicities to be 1. A crucial property of

the partition function is modular invariance. PSL(2,Z) acts on the complex moduli of the

torus τ, τ̄ as follows

τ → τ =
aτ + b

sτ − r
, τ̄ → τ̄ =

aτ̄ + b

sτ̄ − r
, (3.5)

for integers a, b, s, r with positive s and ar + bs = −1, and in particular (r, s) = 1. This

maps the torus to an equivalent one, and hence the corresponding partition functions should

agree. This implies

Z (q, q̄) = Z
(

q′, q̄′) , (3.6)

where

q = e−β+ 2πir
s , q′ = e

− 4π2

s2β
+ 2πia

s , (3.7)

q̄ = e−β̄− 2πir
s , q̄′ = e

− 4π2

s2β̄
− 2πia

s . (3.8)

We will analyse the constraints on the spectrum imposed by modular invariance and the

twist gap. In particular, we will follow and revisit [11] in view of our discussion in the

previous section. As in [11] it will be important to consider β, β̄ as independent variables,

however, for us it will be important to consider them complex, with positive real part. As

explained in [10] this is possible thanks to unitarity.

3.1 Constraints on the spectrum

Following [15] we define the partition function Zp(q, q̄) = y1/2η(q)η(q̄)Z(q, q̄) where y =

Im(τ). This is clearly modular invariant and has the decomposition

Zp(q, q̄) = y1/2



q−ĉq̄−ĉ(1 − q)(1 − q̄) +
∑

h,h̄

qh−ĉq̄h̄−ĉ



 , (3.9)

where we have introduced a short-hand notation for c−1
24 = ĉ, the sum runs over Virasoro

primaries and we have singled out the contribution of the vacuum. Modular invariance

Zp(q, q̄) = Zp(q′, q̄′) together with this decomposition leads to

vac +
∑

h,h̄

qh−ĉq̄h̄−ĉ =

√

y′

y



vac′ +
∑

h,h̄

q′h−ĉq̄′h̄−ĉ



 , (3.10)
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where we have single-out the contribution of the vacuum on both sides. For a general

modular transformation we have

τ = x + iy = i
β

2π
+

r

s
, τ̄ = x − iy = −i

β̄

2π
+

r

s
(3.11)

so that y = β+β̄
4π , while y′ = π

s2

(

1
β + 1

β̄

)

, which leads to

√

y′

y
=

1

s

√

4π2

ββ̄
. (3.12)

We will now consider the following problem. Given an isolated operator of weights (h0, h̄0),

such that h0 + h̄0 < 2ĉ, in the r.h.s. of (3.10) what are the implications for the density of

operators (to be defined below) on the left? The modular constraints in this case give

vac +
∑

h,h̄

e(−β+ 2πir
s

)(h−ĉ)e(−β̄− 2πir
s

)(h̄−ĉ) =
1

s

√

4π2

ββ̄
e

(− 4π2

s2β
+ 2πia

s
)(h0−ĉ)

e
(− 4π2

s2β̄
− 2πia

s
)(h̄0−ĉ)

.

(3.13)

Note that there is one such relation for each pair of positive coprimes (r, s). We find it

convenient to rewrite these relations in terms of x, y and the dimensions and spins of the

operators6

F (x,y) ≡
∑

j,∆

e2πijxe−2πye =
1

s

√

1

(x−r/s)2+y2
e

2πia
s

Je
2iπ(r−sx)

s(r−sx)2+s3y2 J
e

− 2πyE

(r−sx)2+s2y2 , (3.14)

where J denotes the spin of the operator on the r.h.s. and, following [14, 15], we have

introduced the shifted dimensions

e = ∆ − 2ĉ, E = ∆0 − 2ĉ, (3.15)

with ∆0 = h0 + h̄0. As already mentioned, we will consider β, β̄ as independent complex

variables. This means we consider x, y as independent complex variables as well. We would

like to understand the constraints on the spectrum from the presence of the operator on

the r.h.s. of these relations. In order to do this, we will apply the ideas of the previous

section. the first difference is the presence of two quantum numbers: ∆ (or equivalently e)

and j. The sum over j is discrete, while the spectral density, for a given spin, will turn out

to be continuous. We rewrite the l.h.s. as follows

∑

j,∆

e2πijxe−2πye =
∞
∑

j=−∞
aj(y)e2πijx, (3.16)

with aj(y) =
∑

∆ e−2πye where the sum runs over operators with a given spin j.

∞
∑

j=−∞
aj(y)e2πijx =

1

s

√

1

(x − r/s)2 + y2
e

2πia
s

je
2iπ(r−sx)

s(r−sx)2+s3y2 J
e

− 2πyE

(r−sx)2+s2y2 . (3.17)

6This equation may look confusing at first, because the l.h.s. does not contain r, s while the r.h.s. does.

The l.h.s. represents the full partition function and hence is modular invariant. The r.h.s. represents the

contribution of a single operator, with all others left implicit, and hence is not.
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The second difference is that now the sum runs over positive and negative spins, we will

return to this point later. From standard Fourier theory

aj(y) =

∫ 1

0
F (x, y)e−2πijxdx. (3.18)

Let’s consider the integrand in the x-plane. The modular relations imply the presence of

a tower of essential singularities at points

x = ±iy +
r

s
. (3.19)

r/s, together with periodicity x → x + 1 cover all rational points, so there is an essential

singularity at any point of the form x = ±iy + Q. Following the procedure sketched in

the previous section, we can deform the path so that the contribution of each essential

singularity can be taken into account independently. Let us focus in the one corresponding

to r = 0, s = 1. All others will work in very much the same way. The procedure below will

not work for j = 0. For j 6= 0, depending on the sign of j we need to deform the contour

upwards or downwards. For definiteness we assume j > 0. In this case the contour must

be deformed downwards, towards the singularity at x = −iy. The integral to be computed

is then

as=1
j (y) =

∫

C′

0,1

e
− 2πix

x2+y2 J
e

− 2πy

x2+y2 E

√

x2 + y2
e−2πijxdx, (3.20)

where the path C ′
0,1 is a circle with centre at x = −iy/2 and radius y/2, and the point

x = −iy is excluded, as in our discussion in the previous section, and we have taken y

as real and positive. Note that the integrand has two branch cuts x ∈ (−iy, −i∞) and

x ∈ (iy, i∞). See figure 4. We now make the change of variables x → w = − 1
2πi(x+iy) . This

maps the branch cut (−iy, −i∞) in the x-plane to the branch cut (−∞, 0) and (iy, i∞) to

(0, 1
4πy ). In these variables the Rademacher path is a straight line, with real part w = 1

2πy ,

see figure 5. In this variables the integral becomes

as=1
j (y) = −i

∫ 1
2πy

+i∞

1
2πy

−i∞

2ej( 1
w

−2πy)

w
√−1 + 4πwy

e
4π2w(1−2πwy)

4πwy−1
J
e

− 8π3w2y

4πwy−1
E

dw. (3.21)

It is instructive to look at the exponential factor for large values of w

e
4π2w(1−2πwy)

4πwy−1
J
e

− 8π3w2y

4πwy−1
E ∼ e−2π2(E+J)w. (3.22)

This suggests a way to solve the integral. Introducing κ± = −(E ± J) we can rewrite the

integral as

as=1
j (y) = −i

∫ 1
2πy

+i∞

1
2πy

−i∞

2ej( 1
w

−2πy)

w
√−1 + 4πwy

e
− 2π2w

1−4πwy
κ−e2π2κ+wdw. (3.23)

But up to an overall factor, this is nothing but the definition of the Inverse Laplace trans-

form with dual variable 2π2κ+. Expanding in powers of j and κ− we can invert term by

term using the following identity

1

2πi

∫ 1
2πy

+i∞

1
2πy

−i∞

wα

(4πwy − 1)β
e2π2κ+wdw =

(κ+)−α+β−1
1F1

(

β; β − α; κ+π
2y

)

2α+β+1π2α−β+2yβΓ(β − α)
. (3.24)
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iy

−iy

0 1

x

iy

−iy

0

x

(a) (b)

Figure 4. On the left we see the structure of essential singularities in the x-plane, at all points of

the form x = ±iy + Q. On the right we have performed a Rademacher deformation as to isolate

only two of those, at x = ±iy.

iy

−iy

0

x ω

0 1

4πy

1

2πy

(a) (b)

Figure 5. The Rademacher contour for a single pole (left) is mapped to a straight in the w-plane

(right).

We obtain

as=1
j (y) =

∑

p,q=0

e−2πyj
jpκ

p+ 1
2

+ 23p−q+ 3
2 π2p+q+1κq

− 1F1

(

q + 1
2 ; p + 3

2 ; πκ+

2y

)

yq+ 1
2 Γ(2p + 2)Γ(q + 1)

(3.25)

= e−2πyj





2
√

2π
√

κ+√
y

+

√
2π2κ−

√
κ+

y3/2
+

√
2π2κ

3/2
+ (8πjy + 1)

3y3/2
+ · · ·



 .
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aj(y) is given in terms of the spectral density ρ(j, e) by aj(y) =
∫

deρ(j, e)e−2πye. Hence,

having aj(y) we need to take the inverse Laplace transform. We can invert term by term

in the above expansion by using

L−1

{

e−2πyj

ym

}

= 2π
(2π)m−1(e − j)m−1

Γ(m)
Θ(e − j), (3.26)

which leads to

ρs=1
(E,J)(e, j) =

(

4π
√

κ+√
e − j

+
8π3√

κ+(e(3κ− + κ+) + j(κ+ − 3κ−))

3
√

e − j
+ · · ·

)

Θ(e − j), (3.27)

where we denote ρs=1
(E,J)(e, j) the spectral density due to the operator (E, J). Notably, the

final result can be given in a closed form

ρs=1
(E,J)(e,j) =

sinh

(√
2πζ

(√
−E−J +

√
J −E

)

−
√

2πj(
√

J−E−
√

−E−J)
ζ

)

√

e2−j2
Θ(e−j) (3.28)

+
sinh

(√
2πj(

√
−E−J+

√
J−E)

ζ −
√

2πζ
(√

J −E−
√

−E−J
)

)

√

e2−j2
Θ(e−j),

where we have introduced the combination

ζ =

√

e +
√

e2 − j2. (3.29)

Let us make the following remarks. In our derivation we have used j > 0. This is an

arbitrary choice: the spectrum is actually invariant under j → −j together with J → −J ,

so that we can recover the answer for j < 0 from the answer above. On the other hand,

for j = 0 some of the intermediate integrals are not convergent, so the result is not to be

trusted. Second, note that in the censored region either E+J < 0 or E−J < 0. In this case

the density will generically grow exponentially for large quantum numbers. Furthermore,

note that the combinations E ∓ J control the behaviour around the essential singularities

at x = ±iy. An operator in the censored region is the equivalent of a polar term in the

holomorphic case. As for the case of holomorphic forms, other essential singularities can

be treated in exactly the same way. Our final expression for the spectral density for finite

spin j is then

ρ(E,J)(e, j) =
∑

s=1,2,···

∑

0<r≤s,
(r,s)=1

e2πi(− r
s

j+
a[r,s]

s
J)

ρs=1
( E

s2 , J

s2 )
(e, j)

s
(3.30)

=
∑

s=1,2,···

K(j, J, s)

s
ρs=1

( E

s2 , J

s2 )
(e, j), (3.31)

where K(j, J, s) is the Kloosterman sum, introduced in section 2.3. We would like to claim

the sum over s is actually convergent. As can be seen from the explicit answer

ρs=1
( E

s2 , J

s2 )
(e, j) ∼ 1

s
. (3.32)
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The convergence rate exactly agrees with that of the Rademacher expansion for the j-

invariant function, so that the expression for the density converges for all spin |j| > 0.

Although we have considered a single operator in the censored region, we could consider

any finite number, or even a density of them, provided this density does not modify the be-

haviour at the essential singularities.7 In the next section we will study an example of this.

We conclude this section by noting that our formula is consistent with the known

asymptotic behaviour for large quantum numbers (e, j). We can consider different regimes.

In the Cardy regime e ≫ j we obtain

ρs=1
(E,J)(e, j) ∼ e2π

√
e(

√
−E−J+

√
J−E)

2e
, (3.33)

which agrees with Cardy asymptotics. In the large spin limit e, j ≫ 1 with e − j = 2h̄ − 2ĉ

fixed we obtain

ρs=1
(E,J)(e, j) ∼ e2

√
2
√

−E−J
√

j

2
√

(h̄ − ĉ)(j + h̄ − ĉ)
. (3.34)

This precisely agrees with the asymptotic behaviour at large spin found in [11]. Note

however that this exponential behaviour receives power law suppressed corrections, but

with the same exponential factor.

4 Ambiguities, comparison to MWK and negative norms

4.1 Ambiguities

We have found a spectral density consistent with the full modular invariance and the

presence of an arbitrary operator in the censored region. This answer is not unique, and

we could have added to the resulting partition function Zp(q, q̄) any Modular invariant

function Zamb(q, q̄) with the following decomposition

Zamb(q, q̄) = y1/2
∑

k,k̄≥0

qkq̄k̄. (4.1)

In the holomorphic case this problem does not arise: one can prove that a bounded modular

form of weight zero is necessarily a constant. This makes it possible for the Rademacher

sums to reconstruct an entire modular form, of appropriate weight, from its principal part

unambiguously. The case of real modular forms is much more complicated, and the space of

real forms with specific weights is much harder to characterise, see [13]. An example of such

an ambiguity is given by the Poincare series starting from an operator in the uncensored

region: this is clearly modular invariant and produces an spectrum only in the uncensored

region. While we don’t have a mathematical proof of such a statement, let us assume this

provides a basis for the possible ambiguities. This has a very interesting implication: recall

7A counterexample of this behaviour is an accumulation point in the twist, where the number of operators

grows exponentially with the spin.
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that a seed operator with quantum numbers (E, J) produces an asymptotic density in the

Cardy regime of the form (3.33)

ρs=1
(E,J)(e, j) ∼ e2π

√
e(

√
−E−J+

√
J−E). (4.2)

Since being in the uncensored region implies E + |J | > 0, the ambiguities above lead to

an oscillatory behaviour in the Cardy regime, and hence we conclude the ambiguity does

not spoil Cardy behaviour. The same is true for the asymptotic density in the large spin

limit. Note that this could be violated if we have a continuous density of ‘ambiguous seed

operators’ which grows exponentially for large e, j. On the other hand, this would produce,

by modular invariance, some operators in the uncensored region. Hence, we assume the

density of ambiguous seed operators grows at most polynomially. This would not spoil the

asymptotic Cardy behaviour. Another important constraint arises from positivity of the

spectrum: in a unitary CFT the density of states should be positive. In our framework

positivity needs to be imposed ‘by hand’. In particular we are free to add the ambiguous

terms above (which are oscillatory) provided we don’t spoil this positivity, or conversely,

may need to add them, to make the density positive. It would be interesting to understand

precisely how this constraints the ambiguities.

4.2 Comparison to MWK

Maloney, Witten and Keller (MWK) constructed a family of modular invariant partition

functions consistent with the presence of a seed operator (E, J). In the following, we would

like to compare their result to ours: we will show that the partition functions that follow

from the Rademacher expansions are an interesting modification of the ones constructed

by MWK. The densities found by MWK have been summarised in the appendix. Let us

analyse first the case of a scalar seed. As reviewed in the appendix the MWK density can

be written as

ρ
P

(e, j) =
∞
∑

s=1

1

s
K(j, 0; s)

∑

m=1,2,3,···

|j|m−1

s2m
cm(−E)mTm(e/|j|), (4.3)

where Tq(t) = cosh(q cosh−1 t) denote the Chebyshev polynomials of the first kind. The

density is denoted by ρ
P

(e, j) to recall that it arises from a Poincare construction. We find

the following remarkable result: for a scalar seed the density found in this paper can be

written in a very similar fashion

ρ
R

(j, ∆) =
∞
∑

s=1

1

s
K(j, 0; s)

∑

m= 1
2

, 3
2

, 5
2

,···

|j|m−1

s2m
cm(−E)mTm(e/|j|), (4.4)

where now the sum over m runs over half-integers. To determine that this is also the case

for a non-scalar seed, with J 6= 0, is non-trivial, as one needs to analytically continue the

expression for Dm
t Tm(t) to non-integer m. This can be done in an expansion around t = 1:

Dm
t Tm(t) =

(−E − J)m

√
2
√

t − 1
+

((2m − 1)(−E − J)m(2Em + E − 2Jm + J))

4
√

2(E + J)

√
t − 1 + · · · ,

(4.5)
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where this series can be continued to very high order in t − 1. Given this expression, the

sum over m can be performed order by order in t − 1. When summing over integer m this

agrees with the expression given in (A.11), while if we sum over half-integer m we obtain

precisely (3.28).

Let us discuss the physical difference between both constructions. The MWK partition

function is modular invariant by construction, since it corresponds to the sum over images

of a seed operator. On the other hand, given a Rademacher expansion it is not always clear

that it lands on a modular invariant form.8 To study this question let us focus in a scalar

seed. In this case the MWK partition function can be written as a sum of well known real

analytic modular forms, denoted the Eisenstein series

E(τ, s) =
1

2

∑

(m,n)=1

ys

|mτ + n|2s
. (4.6)

These have the following Fourier decomposition

E(τ,s) = ys+
ζ̂(2s−1)

ζ̂(2s)
y1−s+

4

ζ̂(2s)

∑

j=1

cos(2πjx)js−1/2σ1−2s(j)y1/2Ks−1/2(2πjy), (4.7)

where σ1−2s(j) is the divisor function and

ζ̂(s) = π−s/2Γ

(

s

2

)

ζ(s). (4.8)

The total partition function Zp
MWK

(τ) is then given by

Zp
MWK

(τ) =
∑

m=1

(2π)m(−E)m

Γ(m + 1)
E

(

τ, m +
1

2

)

. (4.9)

The seed operator is recovered by keeping the first Fourier coefficient in the Eisenstein

series E(τ, s) = ys + · · · , resuming this we obtain

Zp
MWK

(τ) =
√

ye−2πEy + images, (4.10)

which exactly corresponds to a scalar seed operator with E = ∆0 − 2ĉ. The partition

function obtained by the Rademacher procedure is also a linear combination of Eisenstein

series, and hence (formally) modular invariant, where now we sum over half-integer m.9

The corresponding ‘seed’ operator would be

Zp
R

(τ) =
√

ye−2πEyerf
(√

2π
√

−Ey
)

+ images. (4.11)

This corresponds to the usual seed operator, in the censored region, together with a density

of extra scalar operators in the uncensored region (with E > 0) such that

∫ ∞

0
e−2E′πyρextra(E′)dE′ = e−2πEy

(

erf
(√

2π
√

−Ey
)

− 1
)

. (4.12)

8Although convergent, the expansion may land on a Mock modular form.
9Of course this includes the Eisenstein series E(τ, 1) which is not well defined. We will discuss this below.
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We find

ρextra(E′) =

√
−E

π(E − E′)
√

E′ Θ(E′). (4.13)

This is an example of the ambiguities mentioned above. Hence, both constructions are

equivalent up to this extra contribution. We expect something similar to happen for J 6= 0.

It is tantalising to conjecture that this is the sort of ambiguities expected for generic non-

rational CFTs.

There is an alternative way to understand (4.13). We have seen that (3.28) gives the

density of states that follows from the Rademacher construction, while (A.11) gives the

density that follows from the Poincare series construction. For simplicity lets work in the

regime of small ǫ = e − j. For a scalar seed of dimension E

ρ
R

(j) ∼
√

2 sinh
(

2
√

2π
√−Ej

)

√
j
√

ǫ
, ρ

P
(j) ∼

2
√

2 sinh2
(√

2π
√−Ej

)

√
j
√

ǫ
, (4.14)

where higher orders in ǫ are ignored and only the leading s = 1 contribution is considered.

Let us now imagine we have a density of seeds given by (4.13). The total contribution of

their Poincare series to the density is then

∫ ∞

0

2
√

2 sinh2
(√

2π
√

−E′j
)

√
j
√

ǫ

√
−E

π(E − E′)
√

E′ dE′ =

√
2(1 − e−2

√
2π

√
−Ej)√

jǫ
, (4.15)

which exactly accounts for the difference between ρ
R

(j) and ρ
P

(j).

Extension to j = 0. The Rademacher expansion does not converge for j = 0. A natural

question is whether modular invariance may be used to define an extension. We have seen

that in the case of a scalar light operator the density of states with j > 0 arises from a

partition function which is formally a sum over real Eisenstein series

Zp
R

(τ) =
∑

m= 1
2

, 3
2

,···

(2π)m(−E)m

Γ(m + 1)
E

(

τ, m +
1

2

)

. (4.16)

In the s-plane the real Eisenstein series E(τ, s) is a meromorphic function with a pole at

s = 1

E(τ, s) =
π

s − 1
+ · · · . (4.17)

This pole gives a divergent contribution that affects the density of states only for j = 0.

This is the counterpart of the situation in the MWK construction, where a regularisation

procedure is necessary. It would be interesting to understand whether the Rademacher

construction should naturally land on a specific density for j = 0, as for the holomorphic

case, see example 1 in section 2.3.

4.3 Negative densities

Having the densities (3.28) and (A.11) that follow from the Rademacher and Poincare

constructions we can study several quantitative questions. Let us study the issue of negative
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norm states in the CFT dual of pure gravity on AdS3, first observed in [11]. In its simplest

version the CFT is given by a unitary 2d CFT at large central charge whose operators

consist of the vacuum plus a tower of operators with h, h̄ ≥ ĉ, corresponding to the BTZ

black holes. The partition function of the putative CFT must contain the identity operator,

no other Virasoro primaries outside the region h, h̄ ≥ ĉ, and must be consistent with

modular invariance. A candidate for such a partition function is the Poincare construction

of MWK [14, 15], while another equally good construction is given by the Rademacher

construction considered in this paper. A problem with both partition functions is that they

don’t posses a discrete spectrum. Another problem is the existence of negative norm states,

observed in the regime of large spin by [11]. In the following we will show that such states

are also present at finite spin (as small as one), and discuss scenarios to cure this negativity.

Let us consider the contribution to the density ρ(e, j) from the vacuum operator. Due

to the form of the vacuum character, this is given by the sum of four terms, each of the

form (3.28) or (A.11):

ρvac(e, j) = ρ(−2ĉ,0)(e, j) − ρ(1−2ĉ,1)(e, j) − ρ(1−2ĉ,−1)(e, j) + ρ(2−2ĉ,0)(e, j). (4.18)

We now consider the density ρvac(e, j) in the region of positive spin j and small e − j = ǫ.

When plugging this expression into (3.30) we find the leading contribution, with s = 1,

vanishes as
√

ǫ:

ρs=1
vac (e, j) ∼

4
√

2π2
(

sinh
(

4π
√

ĉj
)

− sinh
(

4π
√

(ĉ − 1)j
))

√
j

√
ǫ, (4.19)

while the next contribution arises from s = 2 and equals

ρs=2
vac (e, j) =

√
2e−iπj

(

sinh
(

2π
√

(ĉ − 1)j
)

+ sinh
(

2π
√

ĉj
)

)

√
j
√

ǫ
+ O(

√
ǫ), (4.20)

with similar behaviour for s = 3, 4, · · · . Note that for any odd spin j we can always

choose ǫ sufficiently small such that the second contribution overcomes the first, and the

total density is negative. Exactly the same conclusions are reached if we analyse the

Poincare density (A.11). This agrees with the asymptotic analysis in [11] but the formulas

presented here are valid for finite values of the spin, modulo the ambiguities mentioned

above. A natural question is whether these ambiguities can cure the negativity of the

density. According to our discussion at the beginning of this section, this could happen in

a regime where the negative density does not grow exponentially. However, this negative

density grows exponentially either at large spin, or large central charge, and this cannot

be cured by the ambiguities. Note that in our discussion we have assumed there is no

accumulation points in the twist or the accumulation is mild enough. We can put this in

a different way: since we got a continuous density, we need to check that the ‘amount’

of operators between e = j and e = j + ǫ with negative norm is exponentially large,

otherwise this can be cured by the ambiguities. Let us estimate the regime at which the

norm becomes negative. The over-crossing happens when

ǫ ∼ e−2π
√

ĉj . (4.21)
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In the regime in which the ambiguities are not relevant ĉj is large, so that ǫ is exponentially

small. The amount of operators in the appropriate regime is then

∫ j+ǫ0

j
ρǫdǫ ∼

∫ j+ǫ0

j

e2π
√

ĉj

√
jǫ

dǫ ∼ eπ
√

ĉj , (4.22)

which is an exponentially large number of operators.

Let us study a few scenarios to cure this negativity. First, as in [11], we can add extra

isolated operators in the censored region. For this consider the density ρs=1
(E,J)(e, j) in the

region under consideration. From (3.28) we obtain

ρs=1
(E,J)(e, j) =

√
2 sinh

(

2
√

2π
√

−j(E + J)
)

√
j
√

ǫ
+ O(

√
ǫ). (4.23)

Its asymptotic form for large j agrees with that given in [11], but this expansion is valid even

for finite spin, again modulo the ambiguities mentioned above. Denoting E + J = 2τ − 2ĉ,

with τ the twist of the new operator, we see that in order to cancel the above negativity we

need τ = 3
4 ĉ, or smaller. Let’s assume τ = 3

4 ĉ. Is this enough? With our formulas we may

ask if this cures the negativity down to finite odd spin. This turns out not to be the case:

we need to add another operator with τ2 = 3
4 ĉ + 1

4 , and then another one with τ3 = 8
9 ĉ.

After this, the amount of operators with negative norm is of order one, and this could in

principle be cured by ambiguities. If we add another operator of twist τ4 = 15
16 ĉ, then the

amount of operators with negative norm is exponentially small.10

Let us consider another scenario where we have an accumulation in the twist. Namely,

we consider a tower of operators with fixed twist τ0 = min(h0, h̄0) and spin J = h0 − h̄0

ranging from minus to plus infinity. Recall E = h0 + h̄0 − 2ĉ. For positive spin τ0 = h̄0 and

E = 2τ0 + J − 2ĉ. For negative spin τ0 = h0 and E = 2τ0 − J − 2ĉ, so that E = E0 + |J |
with E0 = 2τ0 − 2ĉ. In order to run our procedure for this case we need to consider the

appropriate sum on the r.h.s. of (3.21). From (3.26) it follows that in the regime of small

ǫ = e − j the main contribution to the density of states arises from the region of large y.

In this limit we obtain

∞
∑

J=−∞

2ej( 1
w

−2πy)

w
√−1 + 4πwy

e
4π2w(1−2πwy)

4πwy−1
J
e

− 8π3w2y

4πwy−1
(E0+|J |) ∼ ej( 1

w
−2πy)e−2π2wE0

√
y

w3/2
. (4.24)

This is to be contrasted for the behaviour for a single operator which behaves as y−1/2

instead. From this we conclude that in the small ǫ limit the accumulation in the twist

under consideration produces a density of the form

ρs=1
acc (∆, j) ∼

sinh
(

2
√

2π
√−jE0

)

√
jǫ3/2

. (4.25)

Hence, the presence of a tower of operators results in an enhancement in the behaviour of

the density as e − j → 0. We can consider a generalisation of this toy model, where we

10The fact that states with twists τn can be used to cure the negativity in the density of states was

independently observed by Benjamin, Collier and Maloney, who will discuss the physical interpretation of

this fact in [27].
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have the same tower of operators, but with degeneracy |J |d for spin J . For d = 1, 2, · · ·
this degeneracy gives an even greater enhancement as ǫ → 0, which is easily computable:

ρs=1
acc (∆, j) ∼

sinh
(

2
√

2π
√−jE0

)

√
jǫ3/2+d

. (4.26)

Of course, these toy models, even for d = 0, give a non-integrable density of states, so they

do not provide a satisfactory solution to the negativity problem, but they show that our

framework can be used even in situations with accumulation points in the twist.

5 Conclusions

In the present paper we have considered the spectrum of operators in a unitary 2d CFT

with Virasoro symmetry. Modular invariance of the partition function imposes strong con-

straints, and we have constructed a density ρR(e, j) consistent with full modular invariance

and the presence of a given spectrum in the censored region. The density is given by a

Rademacher expansion, which is convergent for |j| 6= 0. For large spin it reproduces the

correct asymptotic behaviour while for finite spin it is given by a variant of the Poincare

construction developed by Maloney, Witten and Keller. It would be interesting to explore

the following directions.

• It would be interesting to study further the explicit expressions we have derived for

ρR(e, j) and ρP (e, j), specially in the limit of large central charge and a sparse light

spectrum. In particular one should be able to reproduce the results of [8], but also

improve them, since we took into account the full modular invariance.

• We have seen that the densities ρR(e, j) and ρP (e, j) are defined up to ambiguities,

given by modular invariant corrections with a spectrum purely in the uncensored

region. It would be interesting to show mathematically that such ambiguities are

always given by the Poincare series generated from seeds in the uncensored region.

This is physically very natural, and it guarantees the asymptotic behaviour is not

spoilt. Along the same lines, it would be interesting to restrict such ambiguities. As

mentioned above, imposing positivity of the spectrum should give strong restrictions

on the ambiguities we can add.

• We have studied a scenario to cure the negativity of the ‘pure gravity’ density. This

scenario suggests the inclusion of a tower of operators of twist τ1, τ2, · · · given in

section 4.3. It would be interesting to study the resulting partition function, and in

particular the discreteness of the resulting density.

• We have studied toy models with accumulation in the twist. Since they result in

non-integrable densities, they don’t provide a solution to the negativity problem, but

they show that accumulation points in the twist can be studied in our framework. It

would be interesting to study more general models.

– 25 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
4

• In [12] quantum corrections to the extremality bound of the BTZ black hole were

studied. It would be interesting to see if these quantum corrections modify the

statements about negativity of the spectrum.

• It would be interesting to consider scenarios where the spectrum is discrete. We

expect the spectrum to become ‘dense’ in the large c (or large spin) limit, with

e−α(j)
√

c the typical separation between operators, but discreteness should reappear

at finite c and finite j. In this case the integrated density may be a better observable,

and Tauberian theory, studied for instance in see [10], seems to be the appropriate

framework.

• It would be interesting to combine our results with the techniques of [6, 7, 9, 28] in

order to explore bounds in the spectrum of operators in the censored region. Note that

we have made use of the full modular invariance of the partition function, while these

works have obtained impressive results using only a subset, together with positivity.

• Along similar lines it would be interesting to make contact with the sphere packing

problem shown to be related to the modular bootstrap program in [29].

• It would be interesting to combine our techniques/results with the study of four-point

correlators in the context of the modular bootstrap, see [30, 31].
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A MWK density of states

Maloney, Witten and Keller (MWK) constructed a family of modular invariant partition

functions [14, 15] labelled by a seed operator with quantum numbers (E, J), with E =

h0 + h̄0 − 2ĉ. The partition function is given by an appropriately regularised Poincare

series obtained from the seed by summing over all its PSL(2,Z) images. For each integer

spin j the spectral density ρ
P

(e, j), where P stands for Poincare, is a continuous function

of e = ∆ − 2ĉ. We say an operator belongs to the censored region if either e + j < 0 or

e − j < 0. The uncensored region is the complement of this, namely e − |j| > 0. It turns

out that if the seed is in the uncensored region then the spectrum has support only in the

uncensored region, while if the seed is in the censored region, that is, either E − J < 0 or

E + J < 0, then the seed is the only operator in the censored region. The spectral density

can be written as a sum of elementary contributions

ρ
P

(e, j) =
∞
∑

m=0

ρm(e, j). (A.1)

– 26 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
4

The expression for the individual contributions ρm(e, j) depends on whether the seed is

scalar or not, and whether j = 0 or not. In order to compare the MWK spectral density

to ours we will be interested in the case j 6= 0. Let us treat first the case J = 0 and then

the general case.

Scalar seed. In this case and for j 6= 0

ρ0(e,j) = 0, ρm(e,j) =
σ2m(j)

|j|m+1ζ2m+1
cm(−E)mTm(e/|j|)Θ(e−|j|), m = 1,2, · · · , (A.2)

where σ2m(j) is the divisor function, Tq(t) denote the Chebyshev polynomials of the first

kind

Tq(t) = cosh(q cosh−1 t), (A.3)

and we have introduced

cm =
22m+1π2m

Γ(2m + 1)
. (A.4)

We would like to find a close form expression for the density ρ
P

(e, j) in this case, so that

we can make a comparison to our results. For this rewrite the divisor function σ2m(j) in

terms of the Kloosterman sum, see for instance [15] appendix B:

σ2m(j) = j2mζ2m+1

∞
∑

s=1

s−2m−1K(j, 0; s), (A.5)

then

ρ
P

(e,j) =
∞
∑

s=1

1

s
K(j,0;s)

∑

m=1

|j|m−1

s2m
cm(−E)mTm(e/|j|) =

∑

s=1

1

s
K(j,0;s)ρ(s)

P
(e,j), (A.6)

where we have suppressed Θ(e − |j|) for convenience. For each fixed s the sum over m can

be performed. We obtain

ρ(s)
P

(e,j) =

cosh





2
√

2πj
√

−E√
e2

−j2+e

s



+cosh









2
√

2π

√

−E

(√
e2−j2+e

)

s









−2

√

e2−j2
Θ(e−j). (A.7)

Non-scalar seed. In this case and for j 6= 0

ρm(e, j) = Zj,J(m + 1/2)cm|j|m−1Dm
t Tm(e/|j|)Θ(e − |j|), m = 1, 2, · · · , (A.8)

where Zj,J(m + 1/2) is the Kloosterman zeta function

Zj,J(m + 1/2) =
∞
∑

s=1

s−2(m+1/2)K(j, J ; s), (A.9)

and Dt is given by a derivative operator acting on the Chebyshev polynomials. More

precisely

DtTm(t) = (−E + J(∂t +
m

t
))Tm(t). (A.10)
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The resulting density can be computed as a power expansion in E and J . At each order,

only a finite number of ρm(e, j) contributes. The expressions became very cumbersome

very soon, but computing a large number of terms we were able to guess their general

form. They resummed in the following expression for the density

ρs=1
P

(∆, j) =
cosh

(√
2πζ

(√
−E − J +

√
J − E

)

−
√

2πj(
√

J−E−
√

−E−J)
ζ

)

− 1
√

e2 − j2
Θ(e − j)

+
cosh

(√
2πj(

√
−E−J+

√
J−E)

ζ −
√

2πζ
(√

J − E −
√

−E − J
)

)

− 1
√

e2 − j2
Θ(e − j),

(A.11)

where we have introduced the combination

ζ =

√

e +
√

e2 − j2. (A.12)

In finding this result we have excluded the contribution from m = 0, otherwise one would

not have the “1” in the expression above. On the other hand, excluding this contribution

makes the limit J → 0 smooth.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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