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Abstract

The price of an option can under some assumptions be determ-
ined by the solution of the Black–Scholes partial differential
equation. Often options are issued on more than one asset. In
this case it turns out that the option price is governed by the
multi-dimensional version of the Black–Scholes equation. Op-
tions issued on a large number of underlying assets, such as in-
dex options, are of particular interest, but pricing such options
is a challenge due to the “curse of dimensionality”. The multi-
dimensional PDE turn out to be computationally expensive to
solve accurately even in quite a low number of dimensions. In
this thesis we develop a radial basis function partition of unity
method for pricing multi-asset options up to moderately high
dimensions. Our approach requires the use of a lower number of
node points per dimension than other standard PDE methods,
such as finite differences or finite elements, thanks to a high or-
der convergence rate. Our method shows good results for both
European style options and American style options, which allow
early exercise. For the options which do not allow early exer-
cise, the method exhibits an exponential convergence rate under
node refinement. For options that allow early exercise the option
pricing problem becomes a free boundary problem. We incorpor-
ate two different approaches for handling the free boundary into
the radial basis function partition of unity method: a penalty
method, which leads to a nonlinear problem, and an operator
splitting method, which leads to a splitting scheme. We show
that both methods allow for locally high algebraic convergence
rates, but it turns out that the operator splitting method is com-
putationally more efficient than the penalty method. The main
reason is that there is no need to solve a nonlinear problem,
which is the case in the penalty formulation.
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Chapter 1

Introduction

In the last decades derivatives have begun to play a significant role in fin-
ance. A derivative can be seen as a contract on a more basic underly-
ing asset, such as a stock, gold or wheat. Financial contracts have been
known since a long time ago, but only from 1973, when The Chicago Board
Options Exchange (CBOE) started trading call options, derivatives turned
into well-defined contracts. Typical derivatives are futures, forwards, op-
tions, swaps, which are now actively traded throughout the world in large
amounts. Today’s derivative market volume is often estimated at more than
$1,200,000,000,000,000. Therefore, there is a high demand for correct con-
tract prices.

In the same year when CBOE first started trading options, Fisher Black
and Myron Scholes published their famous work “The Pricing of Options and
Corporate Liabilities” [3], where they derived a partial differential equation,
whose solution gives the risk neutral expectation of the price of the option
over time, and a pricing formula for plain European call and put options.
Robert C. Merton was the first to extend the mathematical understanding
of the Black–Scholes model. Scholes and Merton received The Sveriges Riks-
bank Prize in Economic Sciences in Memory of Alfred Nobel for this work in
1997. Fisher Black, unfortunately, passed away just a couple of years before
the award.

The academic research has dramatically increased in volume after this
publication. Nowadays there is a large variety of models and methods which
are used for pricing financial derivatives. Since the range of traded con-
tracts is wide, there does not exist a closed form pricing formula for every
contract. Therefore, contract prices have to be approximated numerically.
Numerical methods that are commonly used can be subdivided into two
groups: stochastic and deterministic. Stochastic methods, such as Monte
Carlo methods [12] are applied to the stochastic differential formulations

3



4 Chapter 1. Introduction

which describe the underlying asset dynamics. They simulate the underly-
ing process to a future date, and then discount the expected payoff to the
present date with a certain discount factor, that depends on the present
interest rate and the time window. These methods are very flexible with
respect to the underlying dynamic process, which can be a simple geomet-
ric Brownian motion (GBM), or a more complex process with, for example,
jumps incorporated to better capture the market features. Binomial tree
methods [4] similarly to Monte Carlo methods simulate the underlying dy-
namics, letting the underlying asset jump or fall at the next time step with
certain probabilities, up to a future date and then discount the expected
cash flow back to the present date. Both these types of methods are widely
used in industry, because of their flexibility and their ease of implement-
ation. A disadvantage of such methods is usually a low convergence rate.
On the other hand, we have deterministic methods, such as finite difference
methods [29], finite element methods [32], spectral methods [8], which deal
with the Black–Scholes partial differential equation (if an underlying pro-
cess other than the geometric Brownian motion is used to simulate the asset
behaviour, then other types of PDEs, PIDEs or FPDEs can be derived to
define the contract price). These methods usually have good convergence
rates, but they suffer from the “curse of dimensionality”, i.e., the problem
size increases exponentially with the number of underlying assets. This is
not the case for the stochastic methods, where the problem size scales lin-
early with the number of underlying assets. A more detailed overview of the
numerical methods is given in Section 2.9.



Chapter 2

The Black–Scholes theory

In this chapter we introduce the Black–Scholes market model and describe
its relation to risk neutral option pricing.

2.1 The Black–Scholes market assumptions

In the celebrated paper [3] Black and Scholes made a number of market
assumptions, which allow to determine option prices. The assumptions are
as follows:

• The asset price follows the lognormal random walk.

• The interest rate r is known and is constant over time.

• There are no transaction costs associated with hedging a portfolio.

• The asset pays no dividends (can be relaxed).

• The market is liquid, i.e., trading can take place continuously.

• There are no penalties to short selling, and fractional holdings are
allowed.

• There are no arbitrage opportunities, meaning that all risk-free port-
folios must earn the same return.

Definition 1. An arbitrage on a financial market is a self-financed port-
folio {ht : 0 ≤ t ≤ T} such that

Uh(0) = 0,

P(Uh(T ) ≥ 0) = 1,

P(Uh(T ) > 0) > 0,

5



6 Chapter 2. The Black–Scholes theory

where Uh denotes the value of the portfolio. This simply means that all
risk-free portfolios must earn the same return. Thus, an arbitrage is a risk-
free profit. The marked is called arbitrage-free if there are no arbitrage
opportunities.

The Black–Scholes model has been and is still being criticised. Some
of the assumptions have been disregarded. For example, dividends can be
paid out discretely or continuously, and other dynamics than the GBM asset
dynamics have been proposed to better capture the stock behaviour. The
Merton jump-diffusion process [21] incorporates jumps into the stock dy-
namics to reflect sudden changes which occur in stock prices due to, e.g., a
crisis. Also, the distribution of the Merton process has heavy tails. That
is, the occurrence of rare events is more probable than in GBM. This can
also be observed on exchanges. The Heston model [13] assumes that the
volatility has a stochastic nature. The volatility is indeed a stochastic vari-
able, and even derivatives on volatility are traded. Another commonly used
asset dynamic is the Carr–Geman–Madan–Yor (CGMY) process [5], that
incorporates jumps and reflects heavy tails and skewness of the asset return
distributions. Nevertheless, in this work we adhere to the classical model,
since this is not the main focus, but our focus is on the numerical methods.

Definition 2. Consider a financial market with vector price process Xt. Let
FX
t denote the σ-algebra generated by Xt on the interval [0, t], i.e., it con-

tains the information generated by the random process Xt. A contingent

claim with the maturity time T , also called T -claim, is any stochastic
variable X ∈ FX

T . A contingent claim is called a simple claim if it is of
the form X = Φ(XT ), where Φ(XT ) is called the contract function or the
payoff function .

In other words, a contingent claim is a contract which postulates that
the holder will receive the ammount X (can be positive or negative) at the
time of maturity t = T . The aim is to determine the arbitrage-free price of
a simple T -claim for t < T .

2.2 The Black–Scholes equation

Assume that the market consists of two assets, one risk-free asset Bt (bank
account) and one risky asset Xt (stock), with dynamics given by

dBt = rBtdt, (2.1)

dXt = αXtdt+ σXtdW
P
t , (2.2)
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where the short interest rate r, the mean return of the stock α and the
volatility σ are deterministic constants, and W P

t is a Wiener process under
the objective probability measure P, that describes our real world, i.e., the
world in which the trading takes place. We consider a simple contingent
claim of the form

X = Φ(XT ), (2.3)

and we assume that this claim can be traded on the exchange and that its
price process is defined as follows

Π(t;X ) = V (t,Xt), (2.4)

where V is some smooth function. Thus, the problem is reduced to finding
the form of V . Applying the Itô formula and taking into account that the
market is arbitrage-free we can show that for every t > 0 on the entire real
positive line, V has to satisfy the following (deterministic) PDE

∂V

∂t
+

1

2
σ2x2

∂2V

∂x2
+ rx

∂V

∂x
− rV = 0, (2.5)

V (T, x) = Φ(x), (2.6)

which is known as the Black–Scholes equation (for detailed derivations
see [2]). The final condition (2.6) specifies that at the time of maturity T
an amount, depending on the payoff function Φ, will be paid out. Note that
here x defines the deterministic value of the underlying asset, whereas Xt is
its stochastic representation.

2.3 Risk neutral valuation

In financial applications the objective probability measure P is often substi-
tuted by an equivalent risk neutral probability measure Q, under which the
assets Bt, Xt have the following dynamics

dBt = rBtdt, (2.7)

dXt = rXtdt+ σXtdW
Q
t , (2.8)

where WQ
t is a Q-Wiener process different from W P

t . Such a probability
measure Q exists if the market is complete, i.e., if every contingent claim
can be hedged. The probability measure Q describes the world in which all
investors are indifferent to risk, that is why it is called risk neutral probab-
ility measure. Note that now the expected return on the stock Xt is equal
to r. In the risk neutral world the expected return on all securities is the
risk-free interest rate.
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We know that the arbitrage free price of a contingent claim X = Φ(XT )
is given by Π(t; Φ(XT )) = V (t,Xt), where the function V is the solution
of the pricing equation (2.5)–(2.6). We notice that the solution of (2.5)–
(2.6), given the asset dynamic (2.8), can be found using the Feynman–Kac
representation theorem [2]

V (t, x) = e−r(T−t)E
Q
t [Φ(XT )|Xt = x] , (2.9)

where EQ is the expected value, taken under the risk neutral probability
measure Q.

The economical interpretation of the formula (2.9) is the following: given
today’s date t and today’s stock value x, the derivative price is taken as the
expectation of the final payment EQ

t [Φ(XT )|Xt = x] and discounted to the
present value using the discount factor e−r(T−t). It is important to note that
the expected value in the formula (2.9) cannot be taken under the objective
probability measure P.

2.4 The multi-dimensional Black–Scholes equation

Formulation (2.5)–(2.6) can be extended to the case when the contract
is written on several underlying assets. Thus, the arbitrage-free price of
a simple T -claim X = Φ(X1

T , X
2
T , . . . , X

m
T ) at time t < T is Π(t;X ) =

V (t,X1
t , X

2
t , . . . , X

m
t ), where V (t, x1, x2, . . . , xm) satisfies the multi-dimensional

Black–Scholes equation

∂V

∂t
+

1

2

m
∑

i,j=1

σiσjρijxixj
∂2V

∂xi∂xj
+

m
∑

i=1

rxi
∂V

∂xi
− rV = 0 (2.10)

V (T, ~x) = Φ(~x), (2.11)

where ~x = (x1, . . . , xm), σi is the volatility of the i-th asset and ρij is the
correlation between assets i and j. Such multi-dimensional problems often
arise in practice, when it is needed to price multiple-asset contracts such
as index options, multi-asset swaps, cross-currency options, and become a
challenge from the computational point of view.

2.5 The European option

In this works we focus on pricing simple contingent claims that are called
options.

Definition 3. An option is a financial contract which gives the buyer the
right, but not the obligation, to buy or sell an underlying asset at a specified
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strike price on or before a specified date. An option that gives to the owner
the right to buy an asset at a specific price is referred to as a call . An option
that gives to the owner the right to sell an asset at a specific price is referred
to as a put . An option that may only be exercised on the expiration date
is called a European option . An option that may be exercised any time
before or at the expiration date is called an American option .

For call options the payoff function is given by

Φ(x) = max(x−K, 0) := (x−K)+, (2.12)

that is, if the asset value is greater than the strike price, then it is worth to
exercise the option, if it is not, then the option expires worthless. For put
options the payoff function is given by

Φ(x) = (K − x)+, (2.13)

that is the opposite situation, if the asset price is less than the strike, then
the option should be exercised, and if it is greater than the strike we let the
option expire unexercised.

Thus, prices of a European call option C and a European put option P
satisfy the Black–Scholes equation. For the European call it reads

∂C

∂t
+

1

2
σ2x2

∂2C

∂x2
+ rx

∂C

∂x
− rC = 0, x > 0, t ∈ [0, T ), (2.14)

C(T, x) = (x−K)+. (2.15)

And for the European put we have

∂P

∂t
+

1

2
σ2x2

∂2P

∂x2
+ rx

∂P

∂x
− rP = 0, x > 0, t ∈ [0, T ), (2.16)

P (T, x) = (K − x)+. (2.17)

Prices of European multi-asset options can be defined through multi-dimen-
sional versions of equations (2.14), (2.16), that can be written out similarly
to (2.10).

Under assumptions of risk neutral valuation, the Black–Scholes formula,
which determines the value of a European single-asset option, can be derived
from equation (2.9). Thus, for a European call option C(t, x)

C(t, x) = xN(d1)− e−r(T−t)KN(d2), (2.18)

where N(x) is the standard normal cumulative distribution function

N(x) =
1√
2π

∫ x

−∞
e−z2/2dz, (2.19)
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and

d1 =
ln
(

x
K

)

+
(

r + σ2

2

)

(T − t)

σ
√
T − t

, (2.20)

d2 =
ln
(

x
K

)

+
(

r − σ2

2

)

(T − t)

σ
√
T − t

= d1 − σ
√
T − t. (2.21)

Similarly, the price can be defined for a European put option P (t, x)

P (t, x) = e−r(T−t)KN(−d2)− xN(−d1). (2.22)

Numerical approximation of option prices is necessary, unless we price
a single-asset European option with constant coefficients r and σ. Numer-
ical experiments cannot be performed on an infinite domain, therefore, in
order to enable numerical experiments the infinite domain of definition is
truncated at the point x∞, which is located far enough from the origin, and
boundary conditions are assigned there.

2.6 The American option

As follows from Definition 3 an American-style option can be exercised any
time before or at the maturity. Merton, Samuelson and McKean [19, 20,
26, 27] showed that prices of an American call option C and an American
put option P satisfy the following free boundary problems for the Black–
Scholes equation. Here we assume that the asset continuously pays out an
amount of proportional dividend d. This assumption is especially important
to highlight some properties of American call options. Thus, for the call
option we have

∂C

∂t
+
1

2
σ2x2

∂2C

∂x2
+(r−d)x

∂C

∂x
−rC = 0, 0 ≤ x < xc(t), t ∈ [0, T ), (2.23)

subject to the final and boundary conditions

C(T, x) = (x−K)+, (2.24)

C(t, 0) = 0, (2.25)

C(t, xc(t)) = (xc(t)−K)+, (2.26)

Cx(t, xc(t)) = 1. (2.27)

And for the put option the problem reads

∂P

∂t
+

1

2
σ2x2

∂2P

∂x2
+ (r − d)x

∂P

∂x
− rP = 0, x > xp(t), t ∈ [0, T ) (2.28)
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subject to the final and boundary conditions

P (T, x) = (K − x)+, (2.29)

P (t, 0) = K, (2.30)

P (t, xp(t)) = (K − xp(t))
+, (2.31)

Px(t, xp(t)) = −1. (2.32)

The free boundaries xc(t) and xp(t) are called the optimal exercise bound-
aries and fulfil the properties, see, e.g., [16]

c.i xc(t) > max
(

r
dK,K

)

, t ∈ [0, T ),

c.ii x ∈ [0, xc(t)) ⇐⇒ C(t, x) > (x−K)+, t ∈ [0, T ),

c.iii x ≥ xc(t) ⇐⇒ C(t, x) = (x−K)+, t ∈ [0, T ),

for the call option; and

p.i xp(t) < max
(

r
dK,K

)

, t ∈ [0, T ),

p.ii x ≥ xp(t) ⇐⇒ P (t, x) > (K − x)+, t ∈ [0, T ),

p.iii x ∈ [0, xp(t)) ⇐⇒ P (t, x) = (K − x)+, t ∈ [0, T ),

for the put option. From the properties we can notice that if the dividend
d = 0, then the value of an American call is equivalent to the value of a
European call with the same strike price, and if the risk-free interest rate
r = 0, then the value of an American put is equivalent to the value of a
European put with the same strike price.

The financial interpretation of the optimal exercise boundary xc(t) is that
when the asset spot price x is in the exercise region [xc(t),∞), it is optimal
to exercise an American call option and receive the amount (x−K)+, and
if the asset price x is in the hold region [0, xc(t)), then it is optimal to hold
an American call option, because its value is greater than the payoff that
would be received if the option was exercised. Analogous situation for an
American put option. If the asset price x is in the exercise region [0, xp(t))
then it is worth to exercise the option and receive the payoff. If the asset
price is in the hold region then it is optimal to hold an American put option,
because it is worth more than the payoff. A sketch of the free boundary for
an American call option is drawn in Figure 2.1.

Due to the early exercise opportunity, which gives more flexibility to the
holder, an American option is worth more than a European option written
on the same asset. Figure 2.2 shows the price difference between a European
put option and an American put option issued on the same asset.

No closed form solution exists for the American option pricing problem,
therefore numerical methods have to be applied to evaluate the option price.
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Time
T0

A
s
s
e

t 
v
a

lu
e

0

x
∞

Exercise region:
C(t,x) = x-K

Free boundary x
c
(t)

Hold region:

C(t,x) > (x-K)
+

Figure 2.1: The optimal exercise boundary, the hold region and the exercise
region for an American call option.

Figure 2.2: A sketch of prices for an American put option and a European
put option issued on the same asset with respect to the spot price of the
asset.

2.7 Variational inequalities for the American op-

tion

For the numerical approach it is not convenient to solve the problem in the
domain bounded by a moving boundary. It is possible to modify the Black–
Scholes formulation to a problem stated on the entire semi strip x > 0,
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t ∈ [0, T ], including the exercise regions. In this case the American option
pricing problem is viewed as variational inequalities.

Let us denote the spatial Black–Scholes operator as

LV =
1

2
σ2x2

∂2V

∂x2
+ (r − d)x

∂V

∂x
− rV. (2.33)

With this notation the Black–Scholes equation in the hold region reads as

∂V

∂t
+ LV = 0. (2.34)

What happens with this equation in the exercise regions? We substitute the
payoff into the equation and take into account quantities (2.27), (2.32)

∂V

∂t
+ LV =

{

(r − d)x− r(x−K) = −dx+ rK, for call options,

−(r − d)x− r(K − x) = dx− rK, for put options.

From (c.i) we have that for call options dx > rK in the exercise region and
from (p.i) we have that for put options dx < rK in the exercise region.
Hence, for both, call and put, options we the following inequality holds in
the exercise regions.

∂V

∂t
+ LV < 0. (2.35)

Thus, in the entire semi strip x > 0, t ∈ [0, T ] the American option price
has to fulfil an inequality of the Black–Scholes type

∂V

∂t
+

1

2
σ2x2

∂2V

∂x2
+ (r − d)x

∂V

∂x
− rV ≤ 0. (2.36)

Another inequality can be obtained from the assumption of an arbitrage free
market. For the American option this means that its value always has to be
greater or equal to the payoff value, that is,

V ≥ Φ. (2.37)

Thus, if we combine all these arguments, we can get the following two cases

if V > Φ, then the Black–Scholes equation
∂V

∂t
+ LV = 0

if V = Φ, then the Black–Scholes inequality
∂V

∂t
+ LV < 0.

Formally this can be written as a linear complimentarity problem (LCP)

V − Φ ≥ 0, (2.38)

∂V

∂t
+ LV ≤ 0, (2.39)

(V − Φ)

(

∂V

∂t
+ LV

)

= 0. (2.40)
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2.8 Penalised formulation for the American option

Another way to convert the American option pricing problem into a fixed
domain problem is to introduce a penalty term P (V ) ≥ 0. Then inequality
(2.36) can be written as an equality in the entire semi strip x > 0, t ∈ [0, T ]

∂V

∂t
+

1

2
σ2x2

∂2V

∂x2
+ (r − d)x

∂V

∂x
− rV + P (V ) = 0. (2.41)

The penalty function should ideally be zero (or very small) in the hold region
and positive in the exercise region. When calculating an approximation of V ,
the free boundary location is not known, but the distance from the payoff
V − Φ is available and often serves as a decision-making block of a penalty
function. A common choice for the penalty term, which we also use in this
thesis, is [22]

eC

V + e− q
(2.42)

where e → 0, C is some constant and q is the barrier function, which is
based on the payoff function Φ, for example for the put option q = K − x.
It is easy to understand the role of the penalty term. When the solution
V is distinctly above the payoff Φ, the penalty term P (V ) is negligible,
and the Black–Scholes equation estimates the price reasonably well. When
the solution V approaches the payoff Φ, the penalty term P (V ) grows and
eventually dominates the Black–Scholes part of the equation, keeping the
solution above the payoff. However, the introduction of a penalty term into
the equation leads to an error that depends on the size of the penalty term e.

2.9 Overview of numerical methods

In general, there is a wide choice of numerical methods that are used in
option pricing. Monte Carlo (MC) methods deal with the stochastic for-
mulation (2.8). In the case of Monte Carlo methods, a large number N of
trajectories following (2.8) is simulated (see Figure 2.3) until the maturity
time and then the Feynman–Kac formulation (2.9) is applied to obtain a
risk-neutral option price. The limitation of MC methods is that they usu-
ally have low convergence rates, although the convergence rate can in certain
cases be increased from O(N−1/2) to O(N−1) by using quasi-random num-
bers. On the other hand, they scale well with the number of dimensions and
are suitable for all underlying dynamics models. However, computations of
Greeks (for some examples see (2.43)),

∆ =
∂V

∂x
, V =

∂V

∂σ
, Γ =

∂2V

∂x2
. (2.43)
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which are quantities representing the sensitivity of the price of derivatives
to a change in underlying parameters, can be complicated with these meth-
ods. Greeks are important parameters which are used for designing portfo-
lio hedging strategies. Usually to determine their values a finite difference
approximation based of two nearby values obtained by Monte Carlo simu-
lations is used. Such an approach for computing Greeks is quite inefficient.
For more details on Monte Carlo methods see [12].
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Figure 2.3: An example of a stock evolution following geometric Brownian
motion.

A similar idea is used in binomial tree methods [4]. In the discrete time
at the next time step the stock price can either go up with the probability p
or fall down with the probability 1−p (see Figure 2.4). At the final time we
get a set of simulated stock values to which the Feynman–Kac formulation
is applied. Usually binomial tree methods experience the same problems as
Monte Carlo methods.

Fourier expansion based methods [6, 17] are applied to the Feynman–Kac
formulation (2.9) and perform extremely well, but the knowledge of the char-
acteristic function of the underlying process is required, which is the case for
standard dynamics, e.g., the geometric Brownian motion (2.2) or the Heston
stochastic volatility model, but is not the case for more complex dynamics
with, for example, time-space dependent volatilities. However, characteristic
functions can be estimated numerically [23], but then the problem becomes
nearly as expensive as to solve the original Black–Scholes partial differential
equation using another method.

Grid methods, such as finite difference (FD) methods [29], finite element
methods (FEM) [32], and mesh-free methods, such as radial basis function
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Figure 2.4: An example of a binomial tree, where the growth u is inversely
proportional to the fall d, i.e., u = 1/d.

(RBF) methods [8], are used to solve the differential formulation (2.5)–(2.6),
(2.38)–(2.40) or (2.41). For the PDE methods we obtain the following semi-
discrete problem

dV

dt
= −LV, (2.44)

where L is the discrete representation of the spatial Black–Scholes oper-
ator L.

An implicit finite difference scheme is usually used to discretise (2.44)
in time. Explicit schemes can also be applied, but are not preferred, be-
cause the arising conditions on the time step length is quite severe, whilst
the Black–Scholes equation has a strongly diffusive nature, and not many
steps are needed to resolve the problem in time. An advantage of the PDE
methods is that they allow to obtain option values for the entire range of as-
set values, and, moreover, automatically find estimates for sensitivities, but
they become computationally too expensive already for moderately high-
dimensional problems due to the “curse of dimensionality”.

The early exercise property in the American option pricing problem is
addressed by several techniques. For methods which deal with the stochastic
formulation (2.8) the Longstaff–Schwartz method [18] is used. The main idea
is to estimate the payoff at the current time step and compare it with the
future payoff, which is predicted by a simple regression algorithm, and then
decide whether it is optimal to exercise the option now or it is worth to hold
it longer.

Fourier expansion based methods employ Newton’s method to detect the
free boundary location [7] and then solve the problem in two parts, one in
the hold region and one in the exercise region. It turns out that only one
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of these subproblems (in the hold region) has to be solved and for the other
one there exists an analytical representation.

Grid methods may exploit the operator splitting method [15], which
is applied to formulation (2.38)–(2.40), to resolve the early exercise prop-
erty. This approach splits the scheme in time into two substeps. In the
first substep the Black–Scholes equation is solved and in the second substep
the American constraint (2.37) is examined and if needed the solution is
projected to the payoff function in order to avoid arbitrage. A penalised
formulation of the Black–Scholes equation, as described in section 2.8, is
also a common way to deal with the free boundary. The problem is stated
in the entire domain, and the free boundary location does not play any role.
Thus, numerical methods can be applied straightforwardly. However, it is
important to notice that the penalised formulation is a nonlinear problem.
Therefore the numerical approximation has to involve either nonlinear solv-
ers or some special types of discretisation schemes with explicit treatment
of the penalty term. As was mentioned previously, fully explicit schemes
are not advantageous, therefore implicit-explicit schemes are a popular se-
lection. Nevertheless, they still lead to some time constraint, which however
is milder than in the fully explicit case. Simply ignoring the free bound-
ary and applying the American constraint (2.37) at each time step is also
possible [14].

In this thesis we aim to construct a method which is suitable for prob-
lems of low to moderately high dimensions. For this purpose we use the
radial basis function partition of unity method (RBF–PUM), which is a loc-
alised version of the global RBF method. The locality of the partition of
unity technique allows for a significant reduction of the computational effort
compared with the global method. For the American option pricing problem
we apply and compare both the operator splitting approach and the penalty
approach, to handle the free boundary.





Chapter 3

Radial basis function

methods

Here we give an introduction to the theory of RBF methods. Assume that
we would like to approximate a function u(x) inside a domain Ω ⊂ Rd, given
N scattered nodes ~x1, . . . , ~xN ∈ Ω. The RBF approximation of the function
u(x) with the given values u(~xn), . . . , u(~xN ) defined at the node points takes
the form

Ju(~x) =

N
∑

j=1

λjφ(‖~x− ~xj‖), ~x ∈ Ω, (3.1)

where λj are unknown coefficients, ‖ · ‖ is the Euclidian norm and φ(r) is a
real-valued radial basis function, whose value depends only on the distance
from its centerpoint. To determine coefficients λj we enforce the interpola-
tion conditions

Ju(~xj) = u(~xj), j = 1, . . . , N, (3.2)

and as a result we obtain a linear system

Aλλλ = u, (3.3)

where Aij = φ(‖~xi − ~xj‖), λλλ = [λ1, . . . , λN ]T , u = [u(~x1), . . . , u(~xN )]T .
In order to distinguish between multi-dimensional objects, we denote d-
dimensional objects by ~y and N -dimensional objects by y.

If a time dependent function u(t, ~x) is approximated then we let the coef-
ficients λj be time-dependent. In this case, the approximant takes the form

Ju(~x, t) =
N
∑

j=1

λj(t)φ(‖~x− ~xj‖), ~x ∈ Ω, t ≥ 0. (3.4)

19
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Table 3.1: Examples of radial basis functions.

RBF φ(r)

Multiquadric (1 + (εr)2)1/2

Inverse multiquadric (1 + (εr)2)−1/2

Inverse quadratic (1 + (εr)2)−1

Gaussian e−(εr)2

Thin plate spline r2 ln(r)

Commonly used radial basis functions are presented in Table 4.1. We no-
tice that most of the basis functions depend on the so-called shape parameter
ε, which determines the width of the basis function. In Figure 3.1 the one-
dimensional Gaussian and multiquadric basis functions of different widths
are presented. If flat radial basis functions are used, then the matrix A is
ill-conditioned, because the rows of the matrix A become linearly depend-
ent. Curiously, the best approximation is often achieved when ε is small,
which leads to flat basis functions. In order to solve this issue some stable
methods, such as the Contour–Padé [11] or the RBF–QR method [9, 10],
were designed.
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Figure 3.1: Left: The Gaussian radial basis function of different widths.
Right: The multiquadric basis function of different widths.

For our experiments we use the multiquadric radial basis function, be-
cause it is, in general, less sensitive to changes of the shape parameter and,
therefore, allows for more robust computations.
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3.1 Radial basis function partition of unity method

A property of global RBF methods is that they exhibit high convergence
rates. For smooth problems the convergence rate can be exponential if
infinitely smooth radial basis functions are used [24]. However, the “price”
for the high convergence rate is that the linear system (3.3) is dense, i.e., the
matrix A consists of 100% non-zero elements. Taking into account that the
problem size grows exponentially with the number of dimensions, we can
conclude that solving the system (3.3) will require a large computational
effort. Therefore, we apply a partition of unity technique [1] to introduce
locality and sparsify the system. The main idea is to subdivide the domain Ω
into M smaller overlapping subdomains Ωi, which form an open cover of Ω
(see Figure 3.2), that is,

Ω ⊆
M
⋃

i=1

Ωi. (3.5)

Then we construct local RBF approximations inside each subdomain and
combine them into a global approximant by the partition of unity functions
{wi}Mi=1, subordinated to the open cover {Ωi}Mi=1 of Ω. In mathematical
terms it takes the form

Ju(~x) =

M
∑

i=1

wi(~x)J i
u(~x) =

M
∑

i=1

wi(~x)

Ni
∑

j=1

λi
jφ(‖~x− ~x i

j‖), ~x ∈ Ω, (3.6)

where J i
u are local approximants constructed over Ni node points.

The partition of unity functions wi can be constructed using Shepard’s
method [28] as follows:

wi(~x) =
ϕi(~x)

∑M
k=1 ϕk(~x)

, i = 1, . . . ,M, (3.7)

where ϕi(~x) is a function that is compactly supported on Ωi, which, for
example, can be a compactly supported Wendland’s function [31]

ϕ(r) =

{

(1− r)4(4r + 1), if 0 ≤ r ≤ 1,

0, if r > 1.
(3.8)

The linear system for RBF–PUM arising in standard financial applica-
tions, with the domain parameters that we used, is about 20 times more
sparse than for the global RBF method, that is, only around 5% elements
remain non-zero, while maintaining a similarly high accuracy. Furthermore,
a partition based formulation is also well suited for parallel implementation.
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Figure 3.2: An example of a domain, scattered nodes, and a partitioning.

3.2 Convergence of RBF methods

As was previously mentioned, RBF methods exhibit good convergence prop-
erties. Although theoretical a priori error estimates were found for just a
limited number of basis functions. For example an error estimate for the
global RBF method, when Gaussian kernels are used, was derived in [24]
under conditions that the problem is smooth and the solution lives in the
native space generated by the kernels

‖E(t)‖∞ ≤ Ceγ log(h)/h max
0≤τ≤t

‖u(τ)‖N (Ω), (3.9)

where h is the distance between nodes, γ is the exponential convergence
order, andN (Ω) is the native space generated by the radial basis function. In
financial applications the initial condition is often only a C0 function. Hence
exponential approximation accuracy at the initial time is not possible as this
requires smoothness of the solution [24]. However, due to the smoothing
properties of parabolic problems, the solution can be approximated with
high accuracy at later times [25]. It has been proved in [30], that solutions of
parabolic problems with non-smooth initial condition can be approximated
with optimal order when time is positive.

RBF–PUM inherits high convergence rates from the global method, and
it can be shown for parabolic problems, particularly, for the convection-
diffusion equation [25] that the convergence is exponential under node re-
finement, if the distance between partition centers H is fixed, i.e., the total
number of partitions is kept fixed, and the convergence is algebraic under
patch refinement, if the ratio H/h is fixed, i.e., the number of nodes points
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is adjusted such that each partition always contains the same number of
node points. The error estimates, if inverse multiquadric basis functions are
used, look as follows

‖E(t)‖∞ ≤ CHm− d

2
−k max

0≤τ≤t
max

i
‖u(τ)‖N (Ωi), (3.10)

‖E(t)‖∞ ≤ Ce−µ/
√
h max
0≤τ≤t

max
i

‖u(τ)‖N (Ωi), (3.11)

where m is the maximal polynomial degree which can be supported by the
number of nodes located in each partition and determines the algebraic
convergence order, k is the order of the partial differential equation, the
constant µ defines the rate of exponential convergence, and N (Ωi) is the
native space generated by the radial basis function.





Chapter 4

Summary of papers

Most of the attention in this thesis is dedicated to a design of an efficient
numerical method for option pricing using the radial basis function partition
of unity approach. Primarily, we focus on European- and American-style
vanilla basket option contracts, because they have most of the interesting
features, while being quite simple financial instruments. The American-style
options are of a particular interest, because of the early exercise property,
which turns the pricing problem into a free boundary problem. We test
different techniques to handle the free boundary. Also a large comparison of
various methods was conducted within BENCHOP — The BENCHmarking
Project on Option Pricing, where our approach has been shown competitive,
especially for higher-dimensional problems. A follow up work, where we
improve a weak point of our approach, was done following the results of the
BENCHOP project.

4.1 Paper I

V. Shcherbakov and E. Larsson. Radial basis function partition of unity
methods for pricing vanilla basket options. Accepted for publication in Com-
puters & Mathematics with applications.

In this paper we develop a radial basis function partition of unity method
for pricing vanilla (plain European and American) multi-asset options. We
numerically study convergence properties of the method with respect to the
size of the shape parameter, to the number of partitions per dimension as
well as to the number of node points per dimension. It turns out that for the
European option case, we can observe a spectral converge rate despite of the
discontinuity in the first derivative of the initial condition (see Figure 4.1).
In order to price American multi-asset options we design a suitable penalty
function. We find an error estimate for the continuous solution with respect

25
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Figure 4.1: Left: Error convergence in l∞-norm for a European option on
one underlying asset. Right: Error convergence in l∞-norm for a basket
European option on two underlying assets. ε is the shape parameter.

to the penalty parameter. This directly reflects the dependence of the error
on the size of the penalty parameter and justifies that the selected penalty
function is of the correct form. We numerically study convergence of the
solution against the size of the penalty parameter as well as the number of
node points per dimension. It turns out that RBF–PUM achieves a locally
high algebraic convergence rate. All error convergence and time efficiency
results we compare to the results obtained by the central second order finite
difference method, which is a standard method for such kind of problems.
Our approach in most of the cases outperforms the standard finite difference
method and its advantage become more evident in higher-dimensional cases.

4.2 Paper II

L. von Sydow, L.J. Höök, E. Lindström, S. Milovanović, J. Persson, V. Shch-
erbakov, Y. Shpolyanskiy, S. Sirén, J. Toivanen, J. Waldén, M. Wiktorsson,
J. Levesley, J. Li, C. Oosterlee, M. Ruijter, A. Toropov, and Y. Zhao. BEN-
CHOP — The BENCHmarking project in Option Pricing. International
Journal of Computer Mathematics, 92(12), 2361–2379, 2015.

This was a large benchmarking project, where a number of methods com-
monly used for financial computations were tested on six benchmark prob-
lems (with quite many subproblems). RBF–PUM showed itself competitive
in all test cases where it was applied, except the American-style option pri-
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Figure 4.2: Left: Error convergence in l∞-norm for an American option on
one underlying asset. Right: Error convergence in l∞-norm for a basket
American option on two underlying assets. ε is the shape parameter, e is
the penalty parameter.

cing problem, while for the two dimensional problems RBF–PUM was the
best among the PDE methods. The reason for such a failure in pricing
American options is that RBF–PUM used a penalty approach to resolve
the free boundary issue, while most of the other methods used the operator
splitting method. The penalty function used was nonlinear, and, therefore,
in order to avoid nonlinear iterations we chose to treat it explicitly, while
the rest of the spatial operator was treated implicitly. The use of the semi-
implicit scheme imposed a condition on the time step, which resulted in a
necessity to select a tiny time step to maintain stability. In the next paper
we approach the free boundary problem with the operator splitting method,
and this leads to a significant increase in the computational efficiency.

4.3 Paper III

V. Shcherbakov. Radial basis function partition of unity operator splitting
method for pricing American multi-asset options. Submitted.

We correct our approach to the American option pricing problem and we
extend the operator splitting formulation (OS) to the radial basis func-
tion partition of unity method. Also we implement a fully implicit method
for the penalty approach (PIM), i.e., we involve nonlinear iterations, and it
turns out that the Newton method requires just a few iterations to converge.
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These two methods allow for a significant improvement in terms of compu-
tational efficiency. However, the operator splitting method outperforms the
penalty method, and this advantage increases with the problem dimension.
Some numerical results for a single-asset problem can be found in Table 4.1.
Just for comparison we present the results of the semi-implicit (PIMEX),
where the penalty function is defined explicitly, and fully explicit (PEX)
implementations of the penalty method. For the double-asset problem the
semi-implicit and the explicit penalty formulation become noncompetitive,
therefore in Table 4.2 we display the results only for the implicit version of
the penalty method and for the operator splitting method.

Table 4.1: The American put option reference values Vr and the deviation
of the approximate solution V from Vr for one underlying asset. The grid
sizes and the execution times for the operator splitting method and for the
three versions of the penalty method are also presented. The ∗ denotes the
reference solution, which was obtained by the Fourier Gauss Laguerre (FGL)
method [17]. N denotes the number of node points in space, and Nt denotes
the number of time steps.

Values
Method N × Nt Time (s) x = 90 x = 100 x = 110

FGL∗ - - 10.726487 4.820608 1.828208
PEX 232 × 14000 1.5421 0.000515 0.000083 -0.000100
PIMEX 604 × 6500 0.4977 0.000729 0.000406 0.000177
PIM 74 × 75 0.0378 0.000601 0.000151 0.000126
OS 87 × 480 0.0249 0.000228 -0.000474 -0.000112

It is worth to notice that the number of grid points is different for the
three penalty implementations. This is mostly due to the size of the penalty
parameter combined with the focus on the time efficiency of each implement-
ation. Let us consider PIM. This method has no constraint on the time step
implied by the penalty size. Therefore we can select e = 10−5, that is, the
error introduced by the penalty approach will be an order of magnitude
lower than the required tolerance. It simply means that we need 74 space
nodes and 75 time step to have an accurate approximation. On the other
hand, the efficiency of the PIMEX implementation suffers from the choices
of small penalty parameters. The smaller the parameter is the smaller time
steps we have to take. In the experiment for PIMEX we used e = 10−4 and
it led to 6500 time steps and 604 space points to suppress the error intro-
duced by the penalty, which is roughly of the same size as the tolerance.
If in this case we chose e = 10−5 we would need around 74 space points
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(as in the PIM case), but then the constraint on the time step size would
become even more severe and we would require around 150000 steps. This
would negatively affect the overall computational time. A similar argument
applies to the PEX case.

Table 4.2: The American put option reference values Vr and the deviation of
the approximate solution V from Vr for two underlying asset. The grid sizes
and the execution times for the operator splitting method and for the implicit
penalty method are also presented. The ∗ denotes the reference solution,
which was obtained by the Fourier–cosine series expansion [6]. N denotes
the number of node points in space, and Nt denotes the number of time steps.

Values

Method
√
N × Nt Time (s) x = [90, 100] x = [100, 100] x = [100, 110]

COS∗ - - 6.649395 4.051099 2.325955
PIM 73 × 22 62.9980 0.000173 0.000115 0.000105
OS 76 × 160 14.6647 0.000366 0.000420 -0.000054





Chapter 5

Conclusion and outlook

In this thesis we have developed the radial basis function partition of unity
method for pricing multi-asset options with and without early exercise fea-
tures. We have also compared a large number of methods that are widely
used both in industry and in academia. Of course the main focus was
on the comparison of RBF–PUM with finite difference methods, because
these methods, roughly speaking, belong to the same class. In Paper I we
clearly could see the advantage of using RBF–PUM instead of finite differ-
ence methods for pricing European options. Moreover, RBF–PUM achieves
an exponential convergence rate, even though the initial condition has a
discontinuous first derivative. Finite difference methods are able to achieve
only a second order convergence rate, despite the order of a scheme, if no
other special measures are taken, such as for example smoothing of the
initial condition by a Rannacher step. In the case of American options,
RBF–PUM should also be preferred over finite difference methods, if both
use the penalty approach for handling the free boundary. We also extend
the operator splitting formulation to RBF–PUM for pricing American multi-
asset options. As observed in Paper III, this allows for a significant increase
in computational efficiency since no nonlinear problem has to be solved, in
contrast with the penalty formulation.

In future work we would like to further continue the development of
RBF–PUM and to incorporate the least squares method instead of pure
collocation. That is, we will have more evaluation points than node points.
We expect that it will lead to problems with a smaller number of degrees of
freedom, but more importantly, this will lead to more robust and efficient
computations, since we reduce sensitivity to node point locations.

In order to accelerate computations even more, we plan to apply a new
partition of unity approach compared with the way it is used now. Currently,
given a domain we first scatter node points and then we choose an open cover
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of the domain and construct the partition of unity subordinated to the open
cover. We would like to propose an approach, where given a domain we
cover it by patches which include scattered nodes and partition of unity
weights. That is, node points are scattered over the patches and then the
patches cover the domain. Such an approach will allow us to precompute
patches and local differentiation matrices in advance and save a significant
amount of the computational work.

Mesh free methods facilitate the implementation of refinement strategies,
where extra node points can easily be added without remeshing. Therefore
another idea for the future work is to better exploit the advantage of RBF
methods to work on a set of scattered node points and implement an adapt-
ive RBF–PUM solver. In Papers II and III we used unstructured grids with
node points clustered in the regions where it was needed the most, i.e., in
the regions where a higher computational accuracy was required or in the
regions where the numerical error was expected to be large and needed to
be reduced by having more node points to allow for an appropriate order
of approximation. In reality it is quite hard to predict where the highest
error should be expected. Therefore, an adaptive solver can be designed. In
the partition of unity frameworks the grid refinement could be done inside
a separate patch or a group of neighbouring patches. Moreover, using pre-
computed patches and differentiation matrices would allow for just a simple
substitution of elements in the global RBF matrix.

We expect that a combination of the two above mentioned ideas will res-
ult in an efficient tool for solving time-dependent partial differential equa-
tions. As a test case we are going to use a relevant financial problem, for
example, computing transition densities for a two-factor interest rate model.
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Radial basis function partition of unity methods for pricing

vanilla basket options
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Sweden

Abstract

Meshfree methods based on radial basis function (RBF) approximation are becoming
widely used for solving PDE problems. They are flexible with respect to the problem
geometry and highly accurate. A disadvantage of these methods is that the linear
system to be solved becomes dense for globally supported RBFs. A remedy is to
introduce localisation techniques such as partition of unity. RBF partition of unity
methods (RBF–PUM) allow for a significant sparsification of the linear system and
lower the computational effort. In this work we apply a global RBF method as well
as RBF–PUM to problems in option pricing. We consider one- and two-dimensional
vanilla options. In order to price American options we employ a penalty approach.
A penalty term, suitable for American multi-asset call options, has been designed.
RBF–PUM is shown to be competitive compared with a finite difference method and
a global RBF method. It is as accurate as the global RBF method, but significantly
faster. The results for RBF–PUM look promising for extension to higher-dimensional
problems.

Keywords: radial basis function, partition of unity, option pricing, basket option,
penalty method
2010 MSC: 65M70, 35K15

1. Introduction

Option contracts have been used for many centuries, but trading of options, as
well as academic research on option pricing, increased dramatically in volume after
1973, when Black and Scholes published their market model [1]. Nowadays a variety
of options are traded at the world exchanges, starting with simple vanilla options and
continuing to multi-dimensional index options. Therefore, there is a high demand
for correct option prices. Moreover, option prices play an important role in risk
management, hedging, and parameter estimation.
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In this paper we consider the problem of pricing so called vanilla basket op-
tions, i.e., European and American options, with several underlying assets. A Euro-
pean option is a contract with a fixed exercise date, while an American option can be
exercised at any time before maturity. Among the different available models of the
underlying behaviour, such as the Heston model with stochastic volatility or the Mer-
ton model with jump diffusion, we select the standard Black-Scholes model, since it
is a basic test case. Under the Black-Scholes model the price of European and Amer-
ican options can be determined by solving either a partial differential equation or
a stochastic differential equation [2]. In the case of a single-asset European option
the price is known analytically, while for multi-assets options the prices have to be
computed numerically. The American option is more difficult due to the opportunity
to exercise the option at any time. Such an opportunity introduces a free exercise
boundary, which complicates the problem. The price for an American option needs
to be computed numerically even in the single-asset case.

There are several techniques to handle the free exercise boundary. The most
commonly used technique consists in rewriting the free boundary problem as a linear
complementarity problem (LCP) and then solving it by a standard method, such
as projected successive over-relaxation (PSOR) [3]. The drawback of this method
is that it is relatively slow. Another method, that is used in industry, is the opera-
tor splitting (OS) method [4]. It is fast and effective for one-dimensional problems.
Alternatively, a penalty approach can be taken as proposed in [5], and further de-
veloped in [6, 7, 8]. A penalty term designed to approximately enforce the early
exercise condition is added to the PDE, which allows for removing the free bound-
ary and solving the problem on a fixed domain. In combination with radial basis
function (RBF) methods, variations of the penalty approach have been popular for
handling American options, see [9, 10, 11, 12, 13]. It is also possible to in which
in each time step ignore the free boundary and then apply the American constraint
explicitly. This has been done for RBF methods in [14, 15, 16]. In this paper, we
evaluate the performance of the penalty approach in the RBF setting with respect
to accuracy and computational cost.

There are various numerical methods, which are used for option pricing in indus-
try as well as in academia. Perhaps the most popular methods are Monte Carlo (MC)
methods [17] and finite difference (FD) methods [3]. Both of them have their own
strengths and weaknesses. MC methods converge slowly but are effective for pric-
ing high-dimensional options, because the computational cost scales linearly with
the number of underlying assets. On the other hand, FD methods have a better
convergence rate, while the computational cost grows exponentially with the num-
ber of underlying assets. Other types of methods that are used are binomial tree
methods [18] and Fourier expansion based methods [19].

We aim to construct a method for option pricing, based on radial basis function
approximation, that can be competitive for low-dimensional to moderately high-
dimensional problems. RBF methods can achieve high order algebraic, or for some
problems even exponential, convergence rates [12, 20]. It means that in order to get
the same accuracy the problem size will be smaller than with FD, which is crucial if
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we work in a many-dimensional space. A global RBF method was shown to compare
favourably with an adaptive FD method in [21] in one and two dimensions.

Another advantage of RBF methods is that they are meshfree and therefore can
accommodate non-trivial geometries. In financial applications, the computational
domains that are used in the literature are often regular. For example, squares, cubes
or hypercubes can easily be used. However, depending on the nature of the contract
function, using another shape of the domain can lead to substantial computational
savings, see, e.g., [21], where a simplex domain is used instead. Furthermore, with
a meshfree method, the discretisation can easily be adapted to resolve local features
in the solution.

A drawback of global RBF methods is that the linear system that needs to be
solved is dense and often ill-conditioned. The situation can be improved by intro-
ducing localisation techniques, see e.g., [22, 23, 24]. One way to introduce locality
is to employ a partition of unity framework, which was proposed by Babuška and
Melenk in 1997 [25]. A partition based formulation is also well suited for parallel
implementation. Some work on parallelisation for localised RBF methods has been
done, see for example [23, 26, 27]. The ill-conditioning can be addressed by, for
example, the RBF–QR technique [28, 29, 30].

In this paper we consider the problem of pricing dividend paying vanilla basket
call options. In order to solve the problem we use global RBF and RBF partition
of unity methods (RBF–PUM). We show that RBF based methods provide a good
alternative to already existing methods. All comparisons of the solutions are made
against a standard FD solution for European options an FD–OS solution for Amer-
ican options.

The outline of the paper is as follows. In Section 2, we introduce the Black-Scholes
model for European and American basket call options. In Section 3, we discuss the
penalty approach for American options and its form in the case of call options. Then
in Section 4, we give an overview of RBF methods and RBF–PUM. Section 5 contains
numerical experiments and comparisons. Finally, Section 6 concludes the paper.

2. The Black-Scholes model

The multi-dimensional Black-Scholes equation takes the form

∂V

∂t
= LV, x 2 Ω, t 2 (0, T ] , (2.1)

where V is the value of the option, x = (x1, . . . , xd) defines the spot prices of the d
underlying assets, Ω is the domain of definition, t is the backward time, i.e., time to
maturity, and T is the maturity time of the option. The spatial operator L takes the
form

L =
1

2

d
X

i,j=1

Σijxixj
∂2

∂xi∂xj

+
d
X

i=1

(r �Di)xi
∂

∂xi

� r, (2.2)

where Di is the continuous dividend yield paid out by the ith asset, the matrix
Σ = [σσ⇤], where σ is the volatility matrix, and r is the risk-free interest rate.
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The payoff function for the call option is given by:

Φ(x) = max

 

d
X

i=1

αixi �K, 0

!

, (2.3)

where K is the strike price and αi is the weight of the ith asset in the portfolio. This
is the value of the option at the time of maturity, but since we use backward time
the initial condition becomes

V (x, 0) = Φ(x), x 2 Ω. (2.4)

2.1. The European case

In the case of the European option Ω = ΩE = R
d
+, but in order to enable numerical

simulations we truncate R
d
+ sufficiently far away from the origin that asymptotical

results hold to high accuracy. We denote the truncated domain by Ω̂E and the
far-field (truncation) boundary is given by Γ

F =
Sd

i=1 Γ
F
i , where Γ

F
i = {x | x 2

ΩE, xi = x1}. The near-field boundary can be seen as the single point x = 0, and
there we have the condition

V (0, t) = 0, t 2 [0, T ] , (2.5)

and at the far-field boundary we use the asymptotic condition

V (x, t) =
d
X

i=1

αixie
�Dit �Ke�rt, x 2 Γ

F , t 2 [0, T ] . (2.6)

At the boundaries Γi = {x |x 2 ΩE,x 6= 0, xi = 0}, the spatial operator (2.2)
is degenerate and reduces to a (d � 1)-dimensional operator. Fichera [31] derived
general conditions for when to impose boundary conditions for parabolic PDEs with
degenerate diffusion operators (see also the Feller condition [32]). In the case of the
Black–Scholes operator, boundary conditions should not be imposed at Γi unless
required for numerical purposes.

2.2. The American case

In the case of the American option, Ω = ΩA is a subdomain of Rd
+, which falls

inside the free early exercise boundary Γ(x, t). We use the same near-field boundary
condition as for the European option

V (0, t) = 0, t 2 [0, T ] . (2.7)

At the free boundary we have

V (x, t) = Φ(x), x 2 Γ(x, t), t 2 [0, T ] , (2.8)

∂V

∂xi

(x, t) = αi, x 2 Γ(x, t), t 2 [0, T ] . (2.9)

Outside the free boundary the solution is given by V (x, t) = Φ(x).
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3. The penalty method

Penalty methods can be used for solving boundary value problems. An early
reference to the penalty method appears in 1943 in Courant’s work on motion in
a bounded domain [33]. In relation to option pricing, the penalty method was in-
troduced by Zvan et al. in [5], where a penalty approach for a Black-Scholes model
with stochastic volatility for American options is discussed. Then, Nielsen et al.
[7] proposed a new form of the penalty term for American put options, which has
subsequently been used by several authors, combined with finite differences [34] and
radial basis functions [9, 10, 11, 12, 13].

In this paper we consider a penalty method for pricing American basket call op-
tions. In the case of call options, dividends must be present, otherwise the Amer-
ican call is equivalent to the European call [35], while in the case of put options
dividends may be zero. Hence, we propose a penalty term for the American basket
option with dividends,

P =
e
⇣

rK �
Pd

i=1 αiDixi

⌘

V + e� q
, (3.1)

where e is the penalty parameter, which has to be chosen sufficiently small, and q(x)
is the barrier function, which is the non-zero part of the payoff function,

q(x) =
d
X

i=1

αixi �K. (3.2)

Adding the penalty term to the Black-Scholes equation allows us to convert the
free boundary problem to a fixed domain problem. The error introduced by the
penalty is expected to be O(e). The modified equation takes the form

∂V

∂t
= LV � P (V ), x 2 Ω̂E, t 2 (0, T ] , (3.3)

where Ω̂E is the same domain as for the European option, since the free boundary
has been removed and the modified problem is defined on the entire extended domain
Ω̂E. The equation is subject to the following initial and boundary conditions

V (x, 0) = Φ(x), x 2 Ω̂E, (3.4)

V (0, t) = 0, t 2 [0, T ] , (3.5)

V (x, t) = Φ(x), x 2 Γ
F , t 2 [0, T ] . (3.6)

3.1. Substantiation of the form of the penalty term

In this subsection, we will show why our choice of the form of the penalty term
for the American basket call option is motivated.

The value of an American call option must be larger or equal to the payoff value
in order to exclude all arbitrage opportunities. The penalty function is designed in a
way that it is negligible (of order e) when the solution is away from the barrier q, but
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it increases and penalises when the solution approaches the barrier. Now we want
to show that the solution of such a penalised equation does not fall below the payoff
and does not permit arbitrage opportunities. Moreover the solution will stick to the
payoff after crossing the free boundary, that is, it will mimic the behaviour of the
true solution. We consider the single-asset case. Equation (3.3) takes form

∂V

∂t
=

1

2
σ2x2∂

2V

∂x2
+ (r �D)x

∂V

∂x
� rV � e (rK �Dx)

V + e� q
. (3.7)

We assume that the solution V is close to the payoff function, i.e., V ⇡ x � K, or
we can write it as V = x�K + δ, for some 0 < δ < e. Inserting this representation
of V into the right part of (3.7) we obtain

∂V

∂t
= (r �D)x� r(x�K + δ)� e(rK �Dx)

x�K + δ + e� (x�K)
. (3.8)

We reorganise the terms

(e+ δ)
∂V

∂t
= �Dxδ + rKδ � rδ2 � reδ (3.9)

and use the fact that Dx > rK when x is above the free boundary [35], thus we get

(e+ δ)
∂V

∂t
= �(Dx� rK)δ � rδ2 � reδ < 0, (3.10)

which as e + δ > 0 implies ∂V
∂t

< 0. That is, positive perturbations are quickly
recovered and the solution is pulled down to the payoff. Now doing a similar analysis
we show that the solution is not able to fall below the payoff. We assume that V
experiences negative perturbations, i.e., V = x�K�δ, for some 0 < δ < e. Inserting
this form of V into the right hand side of (3.7) we obtain

∂V

∂t
= (r �D)x� r(x�K � δ)� e(rK �Dx)

x�K � δ + e� (x�K)
. (3.11)

Rearranging the summands and using the same fact that Dx > rK when x is above
the free boundary we get

(e� δ)
∂V

∂t
= (Dx� rK)δ + rδ(e� δ) > 0. (3.12)

This as well shows that negative perturbations are immediately recovered with time,
and therefore the solution of the penalised equation with such a choice of a penalty
function is not allowed to fall below the payoff, that is, V � q after the free boundary.
However, going to (3.10) and (3.12) we see that for the region where Dx� rK < 0 a
solution that comes close to q is repelled from q, meaning that whether the solution
is repelled from or attracted to q, it will never cross the barrier function q, and thus
as the initial condition is above q, we conclude that V � q in the entire domain. We
use this result for deriving an energy estimate of the error.
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Now we are going to derive an estimate for the error η(x, t) = V (x, t)� Va(x, t),
where V (x, t) is the solution of the one-dimensional penalised equation (3.7) and
Va(x, t) is the analytical solution of the Black–Scholes which is prolonged by the
payoff after the free boundary. We know that Va(x, t) satisfies the homogeneous
Black–Scholes equation in ΩA, and if we plug in the payoff function into the Black–
Scholes equation we will see that it will satisfy the non-homogeneous Black-Scholes
equation in Ω̂E\ΩA with the right hand side f(x, t) = Dx� rK. Thus in the entire
Ω̂E we can write that Va is the solution of

(

Vt =
1
2
σ2x2Vxx + (r �D)xVx � rV, if x 2 ΩA,

Vt =
1
2
σ2x2Vxx + (r �D)xVx � rV + f, if x 2 Ω̂E\ΩA,

(3.13)

and Va has a continuous first derivative in Ω̂E due to the smooth pasting condition
for the American option (2.9).

The error fulfils the following differential equation
(

ηt =
1
2
σ2x2ηxx + (r �D)xηx � rη � e(rK�Dx)

Va+η+e�q
, if x 2 ΩA,

ηt =
1
2
σ2x2ηxx + (r �D)xηx � rη � e(rK�Dx)

Va+η+e�q
+ f, if x 2 Ω̂E\ΩA,

(3.14)

subject to initial and boundary conditions

η(x, 0) = 0, x 2 Ω̂E, (3.15)

η(0, t) = 0, t 2 [0, T ], (3.16)

η(x, t) = 0, x 2 Γ
F , t 2 [0, T ], (3.17)

and it is a C1(Ω̂E)-function due to the smoothness properties of the analytical and
approximate solutions (Va and V ).

Thus, now we can write out an energy estimate for the error in L2(Ω̂E)-norm
taking into account that in the weak form we are able to combine the two domains
despite of the discontinuity in the second derivative of Va

d
dt
||η||2 = 2(ηt, η) =

(σ2x2ηxx, η) + 2 ((r �D)xηx, η)� 2(rη, η)� 2(F, η)� 2
⇣

e(rK�Dx)
Va+η+e�q

, η
⌘

, (3.18)

where

F =

(

0, if x 2 ΩA,

f, if x 2 Ω̂E\ΩA.
(3.19)

We take a closer look at each term individually.

1. Integrating the first summand by parts gives us

(σ2x2ηxx, η) = �σ2(2xηx, η)� σ2(xηx, xηx)  �2σ2(xηx, η). (3.20)

If we then integrate 2(xηx, η) by parts we see that

2(xηx, η) = (η, η), (3.21)

Therefore,
(σ2x2ηxx, η)  σ2||η||2. (3.22)
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2. Using (3.21) the second summand becomes

2 ((r �D)xηx, η) = �(r �D)||η||2. (3.23)

3. The third term
�2(rη, η) = �2r||η||2. (3.24)

4+5. The last two terms we consider in two parts: before and after the free boundary,
which for the one-dimensional case we denote as x⇤.

(a) Before the free boundary we have

Q1 = �2

Z x∗

0

Fη dx� 2

Z x∗

0

e (rK �Dx)

Va + η + e� q
η dx =

�2

Z x∗

0

0 · η dx+ 2

Z x∗

0

e (Dx� rK)

Va + η + e� q
(V � Va) dx 

2

Z x∗

0

|e (Dx� rK) |

|Va + η + e� q|
|V � Va| dx (3.25)

Since Va � q, V � q, we have that |V � Va|  |V � q|. Also using that
Va + η � q = V � q � 0 and e � 0 then we obtain

Q1  2

Z x∗

0

|e (Dx� rK) |

|V � q|
|V � q| dx. (3.26)

Extending the integration region to Ω̂E we have

Q1  2e||(Dx� rK)||  2e||Dx� rK||1  2e(Dx1 � rK). (3.27)

(b) After the free boundary we have

Q2 = �2

Z x∞

x∗

Fη dx� 2

Z x∞

x∗

e (rK �Dx)

Va + η + e� q
η dx =

�2

Z x∞

x∗

(Dx� rK)η dx+ 2

Z x∞

x∗

e (Dx� rK)

Va + η + e� q
η dx. (3.28)

As V � q and Va = q in this region we know that η � 0. Furthermore,
Dx� rK � 0. Therefore, we can write

Q2 = �2

Z x∞

x∗

|(Dx� rK)||η| dx+ 2

Z x∞

x∗

�

�

�

�

e (Dx� rK)

Va + η + e� q

�

�

�

�

|η| dx. (3.29)

Since Va = q and η � 0

e

Va + η + e� q
 1. (3.30)

Applying this fact to (3.29) we obtain that

Q2  �2

Z x∞

x∗

|(Dx� rK)||η| dx+ 2

Z x∞

x∗

|(Dx� rK)||η| dx = 0. (3.31)
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Thus, summing up all the terms we get an estimate

d

dt
||η||2  (σ2 � 3r +D)||η||2 + 2(Dx1 � rK)e, (3.32)

or after integration taking into account that ||η(0)|| = 0

||η||2 
(

µe
ν
(exp(νt)� 1), if ν 6= 0,

2µet, if ν = 0,
(3.33)

where ν = σ2�3r+D and µ = 2(Dx1�rK). We have a dependence of the error on
the penalty parameter size. That is, as e ! 0 the solution of the penalised problem
will converge to the solution of the original problem. This dependence is investigated
numerically in section 6.4. A similar analysis could be done in the multi-dimensional
case, but an estimate in line with the result in [35] would be needed.

4. Radial basis function methods

RBF methods are meshfree and based on scattered nodes, therefore they are
very flexible in terms of the geometry of the computational domain. Given N scat-
tered nodes x1, . . . ,xN 2 Ω ⇢ R

d, the RBF interpolant of a function with values
u(x1), . . . , u(xN) defined at those points takes the form

Ju(x) =
N
X

j=1

λjφ(kx� xjk), x 2 Ω, (4.1)

where λj is an unknown coefficient, k·k is the Euclidean norm and φ(r) is a real-valued
radial basis function, such as the Gaussian φ(r) = e�(εr)2 or the multiquadric φ(r) =
p

1 + (εr)2, which we use for our numerical experiments. In order to determine λj,
j = 1, . . . , N , we enforce the interpolation conditions Ju(xj) = u(xj) and as a result
we obtain a linear system

Aλ̄ = ū, (4.2)

where Aij = φ(kxi � xjk), λ̄ = [λ1, . . . ,λN ]
T , ū = [u(x1), . . . , u(xN)]

T .
When we approximate a time dependent function u(x, t), we let λj be time-

dependent, such that

Ju(x, t) =
N
X

j=1

λj(t)φ(kx� xjk), x 2 Ω, t � 0. (4.3)

4.1. RBF partition of unity methods

In spite of the many advantages of RBF methods, there is one computationally
expensive disadvantage. The interpolation matrix A becomes dense when globally
supported RBFs are used. Employing a partition of unity method (PUM) is one
way to introduce locality and sparsity. A collocation RBF–PUM is introduced in
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the forthcoming paper [22] for elliptic PDEs, and applied to option pricing prob-
lems in [12]. The main idea is to subdivide a larger domain into smaller overlapping
subdomains. Then a local RBF approximation is used within each subdomain. Lo-
cal approximations in neighbouring subdomains are coupled, but the overall matrix
structure is sparse and the computational complexity is reduced. Furthermore, there
is an opportunity for parallel implementation.

We define a partition of unity {wi}
M
i=1, subordinated to the open cover {Ωi}

M
i=1 of Ω,

i.e., Ω ✓
SM

i=1 Ωi, such that

M
X

i=1

wi(x) = 1, x 2 Ω. (4.4)

Now, for each subdomain we construct a local RBF interpolant J i
u, and then

form the global interpolant for the entire domain Ω:

Ju(x) =
M
X

i=1

wi(x)J
i
u(x) =

M
X

i=1

wi(x)

Ni
X

j=1

λi
jφ(kx� xi

jk), x 2 Ω. (4.5)

The partition of unity functions wi can be constructed using Shepard’s method [36]
as follows:

wi(x) =
ϕi(x)

PM
k=1 ϕk(x)

, i = 1, . . . ,M, (4.6)

where ϕi(x) is a function that is compactly supported on Ωi, which we choose to be
a C2 compactly supported Wendland function [37]

ϕ(r) =

(

(1� r)4(4r + 1), if 0  r  1

0, if r > 1.
(4.7)

The elements Ωi of the open cover of Ω will be chosen as circular patches. There-
fore, the Wendland functions will be scaled to get

ϕi(x) = ϕ

✓kx� cik
ri

◆

, i = 1, . . . ,M, (4.8)

where ri is the radius of the patch Ωi and ci is its centre point.

5. Time discretisation and space approximations

When we solve the option pricing problem numerically, we collocate the different
RBF approximations in space as described in Sections 5.2 and 5.3. In time we use a
standard ODE solver. We define the discrete times tn, n = 0, . . . , Nt and denote the
approximate solution at time tn by V n(x) ⇡ V (tn,x).
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5.1. The BDF-2 time stepping scheme

For the time discretisation we choose the second order backward differentiation
formula (BDF-2). That is, for the European option the time discretisation is entirely
implicit. A fully implicit time discretisation for the American option will lead to
unconditional stability, but we will need to solve a nonlinear system of equations at
each time step, and the total computational cost may become high. Another option
is to use either an explicit scheme or a semi-implicit scheme with the penalty term
evaluated explicitly at the middle time level, see equations (5.1–5.2). We have chosen
to use the semi-implicit scheme. We show the discretisation for the American option
only, as the scheme for the European option is identical, except for the presence of
the penalty term.

We divide the time interval [0, T ] into Nt steps of length kn = tn � tn�1, n =
1, . . . , Nt. The BDF-2 scheme has the form [38, p. 401]

(E � βn
0L)V

1
I = V 0

I , (5.1)

(E � βn
0L)V

n
I = βn

1 V
n�1
I � βn

2 V
n�2
I � βn

0P (V n�1
I ), n = 2, . . . , Nt, (5.2)

where V n
I is the solution in the interior, E is an identity operator and

βn
0 = kn 1 + ωn

1 + 2ωn

, βn
1 =

(1 + ωn)
2

1 + 2ωn

, βn
2 =

ω2
n

1 + 2ωn

, (5.3)

where ωn = kn/kn�1, n = 2, . . . , Nt. In [39] it is shown how the time steps can be
chosen in such a way that βn

0 ⌘ β0. Then the coefficient matrix is the same in all
time steps and only one matrix factorisation is needed.

The boundary conditions are enforced at each new time level through

V n
B = fn

B, n = 1, . . . , Nt. (5.4)

The semi-implicit scheme will put a restriction on the time step size of the fol-
lowing form:

∆t  Ce
�

�

�
rK �

Pd
i=1 αiDixi,1

�

�

�

, (5.5)

where ∆t = max{kn}Nt

n=1, xi,1 is the point, at which we truncate the domain in the
direction of i-th asset and C is some constant. This condition is obtained empiri-
cally, but performing a simple linearisation of the penalty term and some heuristic
calculations we can obtain a similar result with C = kn/βn

0 = 3/2 for the BDF-2
scheme on a uniform time grid. This aligns with the condition ∆t  e

rK
, which can

be found in [7] for the case when finite differences are used to price an American put
without dividends. Condition (5.5) does not depend on the grid, therefore for some
choices of e it is less severe than the condition imposed by the explicit scheme.

In section 6.4 we will see that condition (5.5) holds numerically with an observed
constant that is larger than 3/2.
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5.2. Approximation in space using RBF

When using a collocation approach, we work with the nodal solution values vnj =
V n
ε (xj) ⇡ V (tn,xj). We build the approximation at time tn according to (4.3)

V n
ε (x) =

N
X

j=1

λn
j φ(εkx� xjk). (5.6)

The nodal values vnj and the coefficients λn
j fulfil the following relation:

Aλ̄n = v̄n, (5.7)

where the interpolation matrix A has elements apq = φ(εkxp � xqk) and

λ̄n = [λn
1 , . . . ,λ

n
N ]

T , v̄n = [vn1 , . . . , v
n
N ]

T .

For RBFs such as Gaussians, multiquadrics, and inverse multiquadrics, A is non-
singular as long as the node points are distinct. Hence, we can invert the relation to
get

λ̄n = A�1v̄n. (5.8)

This allows us to construct differentiation matrices to evaluate derivatives of the
RBF approximation in terms of the nodal values

∂v̄n

∂xk

= A(k)λ̄n = A(k)A�1v̄n,
∂2v̄n

∂xk∂xm

= A(km)λ̄n = A(km)A�1v̄n, (5.9)

where A(k) and A(km) are matrices of derivatives of radial basis functions with ele-
ments a

(k)
pq = φ0

xk
(εkxp � xqk) and a

(km)
pq = φ00

xkxm
(εkxp � xqk) respectively.

Thus,

Lv̄n =

"

1

2

d
X

k,m=1

ΣkmxkxmA
(km) +

d
X

k=1

(r �Dk)xkA
(k) � rA

#

A�1v̄n, (5.10)

where L is a matrix representation of the spatial operator L and

P (vnj ) =
e
⇣

rK �
Pd

k=1 αkDkxk

⌘

vnj + e� q
. (5.11)

These expressions are then used for populating the blocks in the system of form (5.12),
that arises when collocating (5.1)-(5.2) at interior nodes (I) and (5.4) at boundary
nodes (B).

✓

EI � β0LII �β0LIB

0 EB

◆✓

v̄nI
v̄nB

◆

=

✓

f̄n
I

f̄n
B

◆

, (5.12)

where
f̄n
I = βn

1 v̄
n�1
I � βn

2 v̄
n�2
I � βn

0P (v̄n�1
I ). (5.13)
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5.3. Approximation in space using RBF–PUM

We define the nodal solution values vnj = V n
ε (xj) ⇡ V (tn,xj). For the RBF

partition of unity method we build an interpolant as described in (4.5)

V n
ε (x) =

M
X

i=1

wi(x)V
i,n
loc (x) =

M
X

i=1

wi(x)

Ni
X

j=1

λ
i,n
j φ(εkx� xi

jk). (5.14)

Now as in the global case we can enforce interpolation conditions and obtain a linear
system

v̄n =
M
X

i=1

RiWiAiλ̄
i,n, (5.15)

where Ri is a permutation operator which maps the local index set Ii = {1, . . . , Ni}
corresponding to the nodes in the i-th partition into the global index set I =
{1, . . . , N}, Wi is a diagonal matrix with element wi(xj) on it, and Ai is a local
RBF matrix.

By requiring the local nodal values vi,nj to coincide with the global nodal values
vnj , we simplify the coupling together of the local solutions (otherwise, there would
be more unknown values than equations, requiring extra conditions). Through the
local interpolation property we have

v̄i,n = Aiλ̄
i,n, ) λ̄i,n = A�1

i v̄i,n. (5.16)

Then we construct approximations for the derivatives

∂v̄n

∂xk

=
M
X

i=1

Ri

h

W
(k)
i Ai +WiA

(k)
i

i

λ̄i,n =
M
X

i=1

Ri

h

W
(k)
i Ai +WiA

(k)
i

i

A�1
i v̄i,n,

∂2v̄n

∂xk∂xm

=
M
X

i=1

Ri

h

W
(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

i

λ̄i,n =

M
X

i=1

Ri

h

W
(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

i

A�1
i v̄i,n,

where W
(k)
i , W

(km)
i are diagonal matrices containing the derivatives of wi and A

(k)
i ,

A
(km)
i are local derivative RBF matrices. Note that the partition of unity {wi}

M
i=1

must be at least two times differentiable.
Thus,

Lv̄n =
M
X

i=1

Ri

"

1

2

d
X

k,m=1

Σkmxkxm

⇣

W
(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

⌘

+

+
d
X

k=1

(r �Dk)xk

⇣

W
(k)
i Ai +WiA

(k)
i

⌘

� rWiAi

#

A�1
i v̄i,n,
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and

P (vnj ) =
e
⇣

rK �
Pd

k=1 αkDkxk

⌘

vnj + e� q
.

Figure 1: Left: Price of an option on one underlying dividend paying asset. Right:
Price of a basket option on two underlying dividend paying assets.

6. Numerical results

In order to solve the option pricing problems numerically, we truncate the domain
where the problem is defined. For call options we truncate the domain at x1 = 4dK
in each direction, at this distance the true solution is close enough to the asymptotic
value. Therefore we will carry out numerical experiments on Ω = [0, 4dK]d. Figure
1 displays typical solutions for European and American options on one and two
underlying dividend paying assets.

For the numerical experiments we use the semi-implicit discretisation described in
the previous section. The type of basis functions we select is the multiquadric RBF
φ(r) =

p
1 + ε2r2. It is infinitely smooth and less sensitive to the choice of the shape

parameter than, e.g., the Gaussian RBF. We use the following set of parameters:
K = 1, T = 1, r = 0.1, D = 0.05, σ = 0.3 for one underlying asset, and α1,2 = 0.5,
D1,2 = 0.05 and

σ =

✓

0.3 0.05
0.05 0.3

◆

for two underlying assets.
In order to assess the errors in the numerical solutions the results were compared

with accurate reference solutions. In the one-dimensional case for the European call
option we use the closed-form solution and for the American call option we use an
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operator splitting finite difference solution with 2048 discretisation points in space
and 8192 points in time. In the two-dimensional case for the European call we use
a finite difference solution on a 256 ⇥ 256 grid with 2000 steps in time, and for the
American call we use an operator splitting solution on the same 256⇥ 256 grid with
2000 time steps. The error in the uniform norm was measured over the around-strike
area U , which in the one-dimensional case is U = [K

3
, 5K

3
] and for the two-dimensional

case U = [K
3
, 8K

3
] ⇥ [K

3
, 8K

3
]. These are the relevant regions from the financial point

of view.
All methods were implemented in MATLAB R2014b. The codes can be down-

loaded from http://www.it.uu.se/research/project/rbf/software/rbfpu_amop_

penalty. All experiments were performed on a laptop with a 2.3 GHz Intel Core i7
processor.

6.1. Choice of shape parameter ε

The accuracy of RBF methods highly depends upon the shape parameter ε of
the basis functions, which is responsible for the flatness of the functions. For smooth
functions, the best accuracy is typically achieved when ε is small, but then the
condition number of the linear system becomes very large. In this section we try to
find the best compromise for the size of ε for our problem. Figure 2 displays the
dependence of the error on the size of the shape parameter for European options
issued on one and two assets. In 1D the error is measured against the analytical
solution, while in 2D a finite difference solution on a fine grid is used as the reference.
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Figure 2: Left: Error in the price of the European option on one underlying asset
against the shape parameter ε. Right: Error in the price of the European option on
two underlying assets against the shape parameter ε. RBF denotes the global RBF
method and PUM denotes RBF–PUM.

For the rest of the experiments in this paper, for each method, we use the ε that
was optimal for the finest grid that was used. For example to study the convergence
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of the global RBF method for the European option on two underlying assets we
choose ε = 1, because our finest grid in that experiment is 40 ⇥ 40 nodes, and it
turns out that ε = 1 is the optimal choice for that grid.

Error bounds in terms of the number of nodes and the number of partitions for
RBF–PUM were derived in [12] based on the results in [20]. These are valid in the
case of constant ε. That is, if for the global RBF method we refine the grid and keep
ε = ε0 then we can expect exponential convergence; if we seek the optimal ε for each
grid then the convergence behaviour is less clear.

We use ε = 1 for all European option experiments, ε = 1.4 for the American
option on one asset with the global RBF method, ε = 1.7 for the American option
on one asset with RBF–PUM, and ε = 1 for the American option on two assets with
both methods.

6.2. Refinement strategies for RBF–PUM

For the global RBF method exponential convergence in space with respect to the
number of nodes can be expected [12, 20]. For RBF–PUM there are two general
methods of refinement: the number of partitions is kept fixed, this means that the
number of nodes per partition is increasing under refinement, or the number of points
per partition is kept fixed, this means that the number of partitions is growing under
refinement. Error estimates were found in [12] of the form:

kE(t)k1  CHm� d

2
�2 max

0τt
max

i
ku(τ)kN (Ωi), (6.1)

kE(t)k1  Ce�γ/
p
h max
0τt

max
i

ku(τ)kN (Ωi), (6.2)

where H is the distance between partition centres, h is the distance between nodes,
m is the maximal polynomial degree which can be supported by the number of
nodes located in each partition and determines the algebraic convergence order, and
γ determines the exponential convergence order. Inequality (6.2) identifies an expo-
nential convergence rate for the case when the number of partitions is fixed, while
inequality (6.1) identifies an algebraic convergence rate when the number of points
per partition is fixed.

In Figure 3 we test the above estimates for the basket European option on two
underlying assets. In the right plot we can see the convergence rate h1.6 for nearly
16 points in each partition and h3.5 for nearly 33 points per partition; expected
convergence rates are h2 and h4 respectively. In the left plot we see an exponential
convergence with γ = 2 for 36 partitions over the domain, and γ = 2.1 for 64
partitions.

This leads us to a reasonable question of what number of partitions (points per
partition) is optimal in the sense of computational efficiency? From Figure 3 we
can conclude that the fewer the number of partitions (points per partition) the lower
(higher) the error becomes. However, the linear system becomes denser (sparser) and
requires more (less) time to solve. This trade-off we study in the following subsection.
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Figure 3: Left: Error in the price of the European option on two underlying assets
against the problem size with respect to the number of partitions. Right: Error in
the price of the European option on two underlying assets against the problem size
with respect to the number of points per partition. Shape parameter ε = 1.

M
1/2

2 3 4 5 6 7 8 9 10

||
E

||
∞

10
-4

10
-3

10
-2

N
1/2

=32

N
1/2

=40

M
1/2

2 3 4 5 6 7 8 9 10

C
P

U
 T

im
e
 (

s
e
c
)

0.5

1

1.5

2

2.5

3 N
1/2

=32

N
1/2

=40

M
1/2

2 3 4 5 6 7 8 9 10

E
ff
ic

ie
n
c
y

10
-4

10
-3

10
-2

N
1/2

=32

N
1/2

=40

Figure 4: Left: Error in the price of the European option on 2 underlying assets
against the number of partitions in one spatial dimension. Centre: Computational
time against the number of partitions in one spatial dimension. Right: Efficiency
computed as product between the error and CPU time. Shape parameter ε = 1.

6.3. Number of partitions

In the case of RBF–PUM there is a freedom to choose the number of partitions
that will cover the domain. A cover with smaller partitions will lead to worse ap-
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proximation results, but will on the other hand be computationally cheaper, because
the linear system will be more sparse.

In Figure 4 the error in the price of the European option on two underlying
assets versus the number of partitions in one spatial dimension is shown on the left,
the corresponding computational time is shown in the centre, and computational
efficiency as a product of the two on the right. The efficiency gives us a flavour of
which number of partitions is optimal in terms of error–time.

From the figure we see for example that for 100 partitions the computational
time is low while the error is large. Then the product will be moderately large.
For four partitions it is the other way around, the time is high and the error is
low. The optimum is found at 36 partitions, where the error is the lowest and
the computational time is average. Based on this we select

p
M = 6 for our two-

dimensional experiments. This leads to about 100 nodes in each partition for the
finest grid (40 ⇥ 40 nodes) and about 10% non-zero elements in the linear system.
For the one-dimensional experiments we choose M = 4. Note that the optimal RBF
shape parameter is not sensitive to the number of partitions and for this experiment
ε = 1.

6.4. Penalty parameter

In this section we study the dependence of the solution and the numerical scheme
on the penalty parameter e. We have already mentioned that the error is expected to
decay linearly with the penalty size, even if our theoretical result for the continuous
problem shows a bound involving

p
e. Figure 5 confirms our expectations. The

dependence is roughly linear in both the one-dimensional and two-dimensional case.
When we designed the numerical scheme we mentioned that the semi-implicit

scheme may impose a less severe condition on the time step size than a fully explicit
scheme. This is true for some choices of e. In the right part of Figure 5, we show
the dependence of the time step size on the penalty parameter size together with the
level of the time step for the explicit scheme. Here we should not forget that there is
no sense in using a small penalty parameter for coarse grids and vice versa, because
the two types of errors should be balanced.

The experiment shows that the use of the semi-implicit scheme does not always
have an advantage in terms of time step size for the RBF methods, because the
condition imposed by treating only the penalty explicitly is more severe than the
condition in the fully explicit scheme, which depends on the space discretisation. As
RBF methods have high convergence rates, few points are needed in space and hence
a relatively large time step can be used also in the explicit scheme.

The right part of Figure 5 also displays that the time step should be chosen
according to condition (5.5). The purple line indicates the analytical time step limit
obtained from (5.5) with C = 3/2, and the turquoise line indicates the largest time
step for which a stable numerical result was computed.

6.5. Convergence study: European option

Here we study the convergence rates of the global RBF method and RBF–PUM
and compare them with a standard second order central finite difference (FD) method
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Figure 5: Left: Error measured in the region U against the penalty parameter size
for the one asset and two asset cases. Right: Stable time step size for different sizes
of the penalty parameter. Analytical—obtained from inequality (5.5) with C = 3/2,
Experimental—experimentally obtained maximal time step for which stability holds.
The three black lines show the time step size required for stability with the fully
explicit scheme.

on a uniform grid. In one dimension a closed-form solution for the European option
exists, whilst in two dimensions it does not, and we have to use a reference solution
obtained by the FD method on a fine enough (256⇥ 256) grid to compare with. For
this experiment we choose a large number of discretisation points in time (Nt = 1000)
in order to avoid any influence of the time discretisation on the convergence rates of
the methods.

As expected, in Figure 6, we observe a second order algebraic convergence rate
for the FD method and exponential convergence for both RBF methods with γ = 1.5
for the global method, and γ = 1.5 in 1D and γ = 2 in 2D for RBF–PUM.

For the European option pricing problem, the initial condition is only a C0 func-
tion. Hence exponential approximation accuracy at the initial time is not possible as
this requires smoothness of the solution [20]. However, due to the smoothing prop-
erties of parabolic problems, the solution can be approximated with high accuracy
at larger times [12]. It has been proved in [40], that solutions of parabolic problems
with non-smooth initial condition can be approximated with optimal order when
time is positive.

For financial applications an error of the size 10�4 is considered to be precise
enough, and it is clear that to reach the desired accuracy the FD method requires
a larger number of node points. In order to reach this error level, the global RBF
method and RBF–PUM require 40 nodes (40 in each direction in 2D), while the FD
method needs 100 nodes (112 in each direction in 2D). However, the computational
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Figure 6: Left: Error convergence in l1-norm for a European option on one under-
lying asset. Right: Error convergence in l1-norm for a basket European option on
two underlying asset.

cost per time-step is very different for the three methods and a time-comparison is
therefore performed in section 6.7.

A property of the global RBF method and RBF–PUM is that they can easily reach
error levels of 10�4 � 10�5, but then the system becomes ill-conditioned and lower
error levels cannot be reached [30]. To overcome this problem the RBF–QR method
was invented. It allows stable computations when the shape parameter ε ! 0 and
it allows for achieving higher accuracy. We do not employ the RBF–QR technique
because our error target can be attained without it, but it can be useful when a low
price of an option is expected and a higher precision in the result is required. More
details about RBF–QR can be found in [28, 29, 30].

6.6. Convergence study: American option

Here we study the convergence rates of the global RBF and RBF–PUM penalty
methods and compare them with the FD penalty method. Since no closed-form
solution exists in the case of American options, as a reference to measure the error
we use a solution obtained by second order central finite differences combined with
the operator splitting (OS) method [4] on a fine enough grid (2048 points in 1D and
256⇥ 256 points in 2D). Note that the OS method approximates the original PDE,
and therefore the error introduced by the penalty term is not present. The number
of required discretisation points in time is governed by the stability condition (5.5),
for example if the chosen e = 10�5, then to maintain stability the required Nt ⇡ 104.

In the case of American options, the second derivative of the solution has a
discontinuity at the free boundary. This will limit the order of convergence.

As we said before, we aim for error of the order 10�4 which is sufficient for financial
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two underlying asset. All the three methods use the penalty approach.

applications. The error introduced by the penalty term is O(e). Therefore we have
to choose the penalty parameter e smaller than 10�4.

In Figure 7 we see that all the three methods reach the specified error limit, but
the FD-penalty method requires a smaller penalty parameter (which leads to a larger
number of time steps to fulfil the stability condition) as well as a higher number of
computational nodes in space.

As expected, the discontinuity in the second derivative of the solution does not
allow for exponential convergence, but for the error range investigated here we get
a high order algebraic convergence rate both for the global RBF method and RBF–
PUM.

6.7. Computational efficiency

As we mentioned previously, RBF methods require fewer computational nodes
than standard FD methods, but the cost of each time step is higher. Table 1 shows
computational times needed to achieve a certain level of accuracy for the FD method,
the global RBF method, and RBF–PUM for pricing a double-asset European option.
The number of time steps is adjusted to be nearly optimal (in terms of computational
time and accuracy) for each run. We can see that in order to get to the error level
10�4, RBF–PUM requires 40 times less time than the standard FD method and 26
times less time that the global RBF method. The main reason for the significant time
gain with RBF–PUM is that the number of time steps needed is much lower than for
the global RBF method. We cannot fully quantify this effect, but an advantage of
RBF–PUM compared with the global method is that we avoid at least parts of the
high frequency oscillations induced in the strike region and at the boundaries when
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using a global RBF approximation [41]. As low frequency components in a parabolic
PDE propagates at a slower time scale, we can then use a lower resolution in time.

For the experiments we measured only the time corresponding to the time-
stepping loop, while the setup cost is not included. For RBF–PUM, the compu-
tations of the local matrices and the assembly can easily be parallelised and will not
greatly affect the overall time. Therefore we do not take it into account.

Table 1: European double-asset option. The CPU time (sec) required to achieve the
given error levels and the discretisation parameters used. Shape parameter ε = 1 for
the global RBF method and RBF–PUM.

FD RBF RBF–PUM

||E||1 Time
p
N ⇥ Nt Time

p
N ⇥ Nt Time

p
N ⇥ Nt

1e–2 0.0028 19 ⇥ 20 0.0024 12 ⇥ 40 0.0026 12 ⇥ 3
5e–3 0.0076 39 ⇥ 30 0.0034 14 ⇥ 40 0.0033 14 ⇥ 3
1e–3 0.0684 47 ⇥ 200 0.0374 22 ⇥ 100 0.0043 22 ⇥ 4
5e–4 0.3439 67 ⇥ 300 0.1581 26 ⇥ 200 0.0050 22 ⇥ 5
1e–4 4.1762 119 ⇥ 680 2.6778 42 ⇥ 500 0.1044 42 ⇥ 10

Table 2 displays computational times for the double-asset American option. The
number of time steps Nt is chosen to be as small as possible while preserving sta-
bility. It is different for different methods, because some methods require a smaller
penalty size, therefore they need a larger Nt to still remain stable. As we can see,
to reach a 10�4 error level RBF–PUM requires roughly 4 times less time than the
standard finite difference method and 2 times less time than the global RBF method.

Table 2: American double-asset option. The CPU time (sec) required to achieve the
given error levels and the discretisation parameters used. Shape parameter ε = 1 for
the global RBF method and RBF–PUM.

FD RBF RBF–PUM

||E||1 Time
p
N ⇥ Nt Time

p
N ⇥ Nt Time

p
N ⇥ Nt

1e–2 0.0026 15 ⇥ 30 0.0036 12 ⇥ 50 0.0053 12 ⇥ 50
5e–3 0.0088 23 ⇥ 70 0.0054 14 ⇥ 60 0.0061 14 ⇥ 50
1e–3 0.1640 43 ⇥ 600 0.1527 22 ⇥ 500 0.2155 28 ⇥ 800
5e–4 1.1127 59 ⇥ 1500 0.9032 30 ⇥ 800 0.4825 32 ⇥ 1000
1e–4 87.552 115 ⇥ 15000 42.996 42 ⇥ 10000 24.238 46 ⇥ 10000
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7. Summary

RBF methods provide an alternative to already existing methods for solving
problems in financial applications. RBF–PUM allows to overcome the high com-
putational cost associated with the global RBF method, while maintaining high
accuracy. RBF–PUM also allows to reach a given level of accuracy with significantly
less computational effort than the standard FD method and the global RBF method
for both European-style and American-style multi-asset options. One way to reduce
the computational time even more is to use the geometrical flexibility of RBF meth-
ods. For example, the two-dimensional problem can be easily solved on a triangular
domain instead of a square domain, thus, halving the problem size.

The fact that RBF methods are meshfree allows an easy implementation of adap-
tive grids, which can be clustered around critical regions such as the strike area or
the free boundary, in order to improve accuracy or reduce overall computational
cost. In the case of RBF–PUM, refinements can be made independently within the
partitions, increasing the flexibility.

With either of the RBF methods, solutions with errors of the order 10�4 can be
stably computed with the direct RBF evaluation method described here. If lower
errors are required, a different evaluation method, such as for example the RBF–QR
method, is needed. However, in the case of American options the accuracy is also
limited by the size of the penalty parameter.

The penalty method combined with RBFs is a good approach for pricing Ameri-
can options. It allows for removing the free boundary and transforming the problem
to a fixed boundary problem. It facilitates the computations, in the sense that we
do not have to track the free boundary location. It can be used in high dimensions
and the introduced error can easily be adjusted to a desirable level.
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The aim of the BENCHOP project is to provide the finance community with a common suite of benchmark
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with methods to compute reference solutions. We have implemented fifteen different numerical methods
for these problems, and compare their relative performance. All implementations are available on line and
can be used for future development and comparisons.

Keywords: option pricing; numerical methods; benchmark problem; Monte Carlo method; Fourier-
method; finite difference method; radial basis function

2010 AMS Subject Classifications: 65-02; 91G60; 91G20

1. Introduction

The research on numerical methods for option pricing problems has been extensive over the last

decades and there is now a plethora of methods targeting various types of options. However,

there is a lack of cross comparisons between methods and a similar lack of common benchmarks

to evaluate new approaches.

The aim of BENCHOP is to provide the finance community with a set of common benchmark

problems that can be used both for comparisons between methods and for evaluation of new

methods. Furthermore, in order to facilitate comparisons, MATLAB implementations of a wide

range of existing methods for each benchmark problem will be made available through the

BENCHOP web site www.it.uu.se/research/project/compfin/benchop.
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We also aim for BENCHOP to serve as a takeoff for future development of methods in option

pricing. We expect future papers in the field to use the BENCHOP codes and problems to evaluate

performance. In this way, we can contribute to a more uniform and comparable evaluation of the

relative strengths and weaknesses of proposed methods.

The benchmark problems have been chosen in such a way as to be relevant both for practi-

tioners and researchers. They should also be possible to implement with a reasonable effort. We

have selected problems with respect to a number of features that may be numerically challenging.

These are early exercise properties, barriers, discrete dividends, local volatility, stochastic volatil-

ity, jump diffusion, and two underlying assets. We have also included evaluation of hedging

parameters in one of the problems, as this adds additional difficulties.

In this paper, we present the benchmark problems with sufficient detail so that other people

can solve them in the future. We also provide analytical solutions where such are available or

methods for computing accurate reference solutions otherwise. Each problem is solved using

MATLAB implementations of a number of already existing numerical methods, and timing

results are provided as well as error plots. For details of the methods, we refer to the origi-

nal papers and additional notes at the BENCHOP web site. The codes are not fully optimized,

and the numerical results should not be interpreted as competition scores. We rather see it as a

synoptical exposition of the qualities of the different methods.

In Section 2, we state and motivate the benchmark problems while the numerical methods are

briefly presented in Section 3. Section 4 is dedicated to the presentation of the numerical results

and finally in Section 5, we discuss the results. In Appendix 1, we present how the reference

values are computed for the different problems and in Appendix 2, we discuss how the local

volatility surface is computed for one of the problems.

2. Benchmark problems

In this section, we state each of the six benchmark problems. In the mathematical formulations,

we let S represent the actual (stochastic) asset price realization, whereas s is the asset price

variable in the PDE formulation of the problem, t is the time (with t = 0 representing today), r

is the risk free interest rate, σ is the volatility, W is a Wiener process, u is the option price as a

function of s, K is the strike price, and T is the time of maturity. The payoff function φ(s) is the

value of the option at time T. In Problem 4, V is the stochastic variance variable, and v is the

variance value in the PDE-formulation.

In practice, the asset value today, S0, is a known quantity, while the strike price K can take

on different values. In the benchmark problem descriptions below we have chosen to fix all

parameters, and then solve for different values of S0 to simulate pricing of options that are ‘in the

money’, ‘at the money’ and ‘out of the money’. The initial values are not given in the problem

descriptions, but for each table and figure in the numerical results section, the values that were

used are listed.

2.1 Problem 1: The Black–Scholes–Merton model for one underlying asset

The celebrated Black–Scholes–Merton [4,39] option pricing model, developed in the early

1970’s, is arguably the most successful quantitative model ever introduced in social sciences,

even initiating the new field of Financial Engineering, which occupies thousands of researchers

in financial institutions and universities across the world.

A key property of the model is that by building on so-called no-arbitrage arguments, it allows

the price of plain vanilla call and put options to be calculated using variables that are either
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directly observable or can be easily estimated. The model is still widely used as a benchmark,

although more advanced models have been developed over the years to take into account real-

world features of asset price dynamics, such as jumps and stochastic volatility (see below).

The Black–Scholes–Merton model has the advantage that closed form solutions exist for

prices, as well as for hedging parameters, for some types of options. It has therefore been exten-

sively used to test numerical methods that are then applied to more advanced problems. The

computation of the hedging parameters (Greeks) is included in this benchmark problem as they

are of significant practical interest and can be expensive and/or difficult to compute for some

numerical methods.

Mathematical formulation

SDE-setting: dS = rS dt + σS dW . (1)

PDE-setting:
∂u

∂t
+

1

2
σ 2s2 ∂2u

∂s2
+ rs

∂u

∂s
− ru = 0. (2)

Deliverables

The pricing problem should be solved for three types of options; (a) a European call option, (b)

an American put option, and (c) a barrier option. For the European option also the most common

hedging parameters $ = ∂u/∂s, Ŵ = ∂2u/∂s2 and V = ∂u/∂σ should be computed.

Parameter and problem specifications

For this problem we have two sets of model parameters, representing less and more

numerically challenging situations, respectively.

Standard parameters: σ = 0.15, r = 0.03, T = 1.0, and K = 100. (3)

Challenging parameters: σ = 0.01, r = 0.10, T = 0.25, and K = 100. (4)

The three types of options are characterized by their exercise properties and payoff functions.

(a) European call : φ(s) = max(s − K, 0).

(b) American put : φ(s) = max(K − s, 0),

u(s, t) ≥ φ(s), 0 ≤ t ≤ T .

(c) Barrier call up-and-out : φ(s) =

{

max(s − K, 0), 0 ≤ s < B

0, s ≥ B
, B = 1.25K.

2.2 Problem 2: The Black–Scholes–Merton model with discrete dividends

A shortcoming of the classical Black-Scholes formula is that it is only valid if the underlying

stock does not pay dividends, invalidating the approach for many stocks in practice. In some

special cases, for example, when dividend yields are constant and paid continuously over time,

closed form solutions can be derived for dividend paying stocks too, see [39]. Usually, however,

numerical methods are needed to calculate the option’s value.

In practice, dividends are paid at discrete points in time, and the size of the dividend payments

depends on the performance of the firm. For example, a firm whose performance has been poor

may be capital constrained and therefore choose not to make a dividend payment, as may a

company that needs its capital for a new investment opportunity. Fairly advanced stochastic

modeling may therefore be needed in practice to capture the dividend dynamics of a company.

In numerical tests, it is common to abstract away from these issues and simply assume that the

firm makes discrete proportional dividend payments (i.e. has a constant dividend yield).
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Mathematical formulation

SDE-setting: dS = rS dt + σS dW − δ(t − τ )D S dt. (5)

PDE-setting:
∂u

∂t
+

1

2
σ 2s2 ∂2u

∂s2
+ rs

∂u

∂s
− ru = 0, (6)

In the SDE case, the (single) dividend at time τ enters explicitly, whereas in the PDE case, it is

implicitly taken into account by enforcing

u(s, τ−) = u(s(1 − D), τ+). (7)

Deliverables

Prices should be computed for a) a European call option and b) an American call option.

Parameter and problem specifications

The dividend is defined by τ = 0.4 and D = 0.03. We use the standard parameters (3)

except for the expiration time, set to T = 0.5, together with standard payoff function φ(s) =

max(s − K, 0) and European and American exercise properties respectively, see Problem 1.

2.3 Problem 3: The Black–Scholes–Merton model with local volatility

As mentioned earlier, the Black–Scholes–Merton model with a constant volatility does not repro-

duce market prices very well in practice. One discrepancy is the so-called volatility smile (which

after the October 1987 crash is known to have turned into a smirk). If the implied volatility—

the volatility in the Black–Scholes–Merton model that is consistent with the observed option

price—is calculated for several options with the same exercise date but different strike prices, all

options should under the classical assumptions of Black–Scholes–Merton have the same implied

volatility. Instead, when plotted against the different strike prices, the curve is usually that of a

U-shaped smile (or an L-shaped smirk).

As discussed in [10], an approach to address this discrepancy between model and data is to

assume local volatility, that is, to allow the volatility of the underlying asset to depend instanta-

neously on the stock price s, and time t, generating a whole volatility surface. It is shown in [10]

how to reverse engineer such a volatility surface from observed option prices.

Given a volatility surface, the general Black–Scholes–Merton no-arbitrage approach can be

used to derive the option price, although closed form solutions will typically no longer exist.

We provide two volatility surfaces with different properties in order to see how the numerical

methods handle such variable volatility coefficients.

Mathematical formulation

The equations for the option price are identical to (1) and (2) except that here σ = σ (s, t).

Deliverables

The price for a European call option should be computed in each case.

Parameter and problem specifications

The first local volatility surface is given by an explicit function

σI(s, t) = 0.15 + 0.15(0.5 + 2t)
(s/100 − 1.2)2

(s/100)2 + 1.44
. (8)

The second local volatility surface σII(s, t) is based on market data and does not have an explicit

form. The local surface is computed from a parametrization of the implied volatility data. The

exact steps in the computation and the specific parametrization are given in Appendix 2.

In both cases, we use K = 100 and r = 0.03, but the expiration times are different, with T = 1

for σI , and T = 0.5 for σII . The payoff function for a European call option is as before φ(s) =

max(s − K, 0).
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2.4 Problem 4: The Heston model for one underlying asset

The local volatility model allows for perfect matching of prices of European-style options but,

just like the Black–Scholes–Merton model, also has its weaknesses. It does not perform very well

for path dependent options and, moreover, there is clear evidence that in practice the volatility

of asset prices is in itself random, beyond what can be simply be described as a function of

time and underlying strike price [9,32,45]. The Heston model [20] assumes that in addition to

the risk-factor that drives the value of the underlying asset, there is a another risk-factor that

determines the underlying’s instantaneous variance, V. The PDE formulation of the model is

therefore two-dimensional. Note that in contrast to the previous models, the market in Heston’s

model is incomplete, and therefore additional assumptions about the market price of volatility

risk are needed to determine the option price. The specific assumptions in [20] leads to the model

below.

Mathematical formulation

SDE-setting:

dS = rS dt +

√
VS dW1,

dV = κ(θ − V ) dt + σ
√

V dW2,
(9)

where W1 and W2 have correlation ρ.

PDE-setting:

∂u

∂t
+

1

2
vs2 ∂2u

∂s2
+ ρσvs

∂2u

∂s∂v
+

1

2
σ 2v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(θ − v)

∂u

∂v
− ru = 0. (10)

Deliverables

The price for a European call option should be computed.

Parameter and problem specifications

The model parameters are here given by r = 0.03, κ = 2, θ = 0.0225, σ = 0.25, ρ = −0.5,

K = 100, and T = 1. The payoff function for the European call option is φ(s, v) = max(s −
K, 0). With these parameters, the Feller condition is satisfied.

2.5 Problem 5: The Merton jump diffusion model for one underlying asset

The Merton model [40] addresses another difference between real world asset price dynamics and

the (local volatility) Black–Scholes–Merton model. What was identified early on, is that stock

prices occasionally experience dramatic movements over very short time periods, that is, they

sometimes ‘jump’. Such jumps make return distributions heavier-tailed than for pure diffusion

processes, also in line with empirical observations and, as in the Heston model, causes the market

to be incomplete, necessitating additional assumptions to price the option. The assumption used

in [40] is that the underlying stock price follows a jump-diffusion process, where there is no risk-

premium associated with jump risk. Under these conditions, the option price can be computed

from a Partial-Integro Differential Equation (PIDE).

Mathematical formulation

SDE-setting:

dS = (r − λξ)S dt + σS dW + S dQ, (11)

where Q is a compound Poisson process with intensity λ > 0 and jump ratios that are

log-normally distributed as p(y) = 1/
√

2πyδe−(log y−γ )2/2δ2

[50].
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PIDE-setting:

∂u

∂t
+

1

2
σ 2s2 ∂2u

∂s2
+ (r − λξ)s

∂u

∂s
− (r + λ)u + λ

∫ ∞

0

u(sy, τ )p(y) dy = 0. (12)

Deliverables

The price for a European call option should be computed.

Parameter and problem specifications

The parameters to use are r = 0.03, λ = 0.4, γ = −0.5, δ = 0.4, ξ = eγ+δ2/2 − 1, σ = 0.15,

K = 100, and T = 1. The payoff function is φ(s) = max(s − K, 0).

2.6 Problem 6: The Black–Scholes–Merton model for two underlying assets

As an example of an option with more than one underlying, we use a spread option, which for

K = 0 is called a Margrabe option [38]. This classic rainbow option has a payoff function that

depends on two underlying assets, so the option price dynamic therefore depends on two risk-

factors (as long as the two stocks’ returns are not perfectly correlated). In contrast to the Heston

and Merton models, the model is still within the class of complete market models, and the option

price is therefore completely determined without further assumptions. The reason that the market

is complete in this case, in contrast to the other multi risk-factor models we have introduced, is

that two underlying risky assets may be used in the formation of a hedging portfolio, whereas

only one such asset is available with the Heston and Merton Models.

Mathematical formulation

SDE-setting:

dS1 = rS1 dt + σ1S1 dW1,

dS2 = rS2 dt + σ2S2 dW2,
(13)

where W1 and W2 have correlation ρ.

PDE-setting:

∂u

∂t
+

1

2
σ 2

1 s2
1

∂2u

∂s2
1

+ ρσ1σ2s1s2

∂2u

∂s1∂s2

+
1

2
σ 2

2 s2
2

∂2u

∂s2
2

+ rs1

∂u

∂s1

+ rs2

∂u

∂s2

− ru = 0. (14)

Deliverables

The price for a European spread call option should be computed.

Parameter and problem specifications

The model parameters to use are r = 0.03, σ1 = σ2 = 0.15, ρ = 0.5, K = 0, and T = 1. The

payoff function for the European call spread option is φ(s1, s2) = max(s1 − s2 − K, 0).

3. Numerical methods

In Table 1, we display all methods that we have used. We also provide references to the original

papers describing the methods. More information about the particular implementations used here

can be found at www.it.uu.se/research/project/compfin/benchop.

4. Numerical results

For each benchmark problem, we have decided on three (or five) evaluation points si (or (si, sj)).

Each method must be tuned such that it delivers a solution u(si) with a relative error less than
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Table 1. List of methods used with abbreviations, marker symbol used in figures, and references.

Abbr. Symbol Method References

Monte Carlo methods

MC Monte Carlo with Euler-Maruyama in time [16]

MC-S Monte Carlo with analytical solution/Euler-
Maruyama/quadratic scheme in time and stratified
sampling

[2,16,17,36,42,50]

QMC-S Quasi Monte Carlo with analytical solution/Euler-
Maruyama/quadratic scheme in time, stratified
sampling, and precomputed quasi random
numbers

[2,16,17,21,36,42,44,50]

Fourier methods

FFT Fourier method with FFTs [6,31,33]

FGL Fourier method with Gauss-Laguerre quadrature [1 (Page 890),7,18,31],
[34 (Section 2.1–2.2),
35]

COS Fourier method based on Fourier cosine series and
the characteristic function.

[11,12,52,53]

Finite difference methods

FD Finite differences on uniform grids with Rannacher
smoothed CN in time

[23,51,59,64, Chapter 78]

FD-NU Finite differences on quadratically refined grids with
Rannacher smoothed CN / IMEX-CNAB in time

[22,49,51,55,56]

FD-AD Adaptive finite differences with discontinuous
Galerkin / BDF-2 in time

[19,22,26,46,47,62]

Radial basis function methods

RBF Global radial basis functions with non-uniform
nodes and BDF-2 in time

[19,48]

RBF-FD Radial basis functions generated finite differences
with BDF-2 in time

[13,14,19,41,58,63,65]

RBF-PUM Radial basis functions partition of unity method with
BDF-2 in time

[19,54,57]

RBF-LSML Least-squares multi-level radial basis functions with
BDF-2 in time

[19,27,28]

RBF-AD Adaptive RBFs with CN in time [8,24,43]

RBF-MLT Multi-level radial basis functions treating time as a
spatial dimension

[25,30,60]

10−4 in these points. We have not put any restrictions on the error in the rest of the domain.

Due to this freedom, some codes have been tuned to narrowly target these points, while others

(sometimes automatically) are tuned to achieve an evenly distributed error. Then the codes are

run (on the same computer system) and the execution times are recorded. Each code is run four

times, and the execution time reported in Tables 2–5 is the average of the last three runs. This is

because the first time a MATLAB script is executed in a session it takes a bit longer.

In the tables, we also show the approximate number of correct digits p in the result. This

quantity is computed as p = [− log10 er], where er is the maximum relative error and [·] indicates

rounding. The maximum relative error is computed as

er = max
i

∣

∣

∣

∣

u(si) − uref(si)

uref(si)

∣

∣

∣

∣

.

For the Monte Carlo methods where the error is not deterministic, the errors are averaged over

the different runs. In some cases, a method was not able to reach a relative error of 10−4 within

reasonable time (1 hour), but a lower target 10−3 was attainable. These results are marked with

a * in Tables 2–5. The execution time we report in the tables for Monte Carlo methods is the
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Table 2. Problem 1. Computational time to compute a solution u that has a relative error < 10−4 at t = 0 and s = 90,
100, 110 for the standard parameters and at s = 97, 98, 99 for the challenging parameters.

Standard parameters Challenging parameters

Method (a) European (b) American (c) Up-and-out (a) European (b) American (c) Up-and-out

MC ∗5.7e + 02 (3) – – × – –

MC-S 1.5e + 01 (4) × × 1.6e + 01 (4) 9.8e − 02 (16) ×
QMC-S 5.7e − 01 (5) × – 6.3e − 01 (6) 1.2e + 02 (16) –

FFT 1.3e − 03 (6) – – 1.3e − 03 (7) – –

FGL 3.5e − 03 (14) 7.6e − 01 (5) – 1.8e − 02 (13) 2.2e + 00 (16) –

COS 1.8e − 04 (5) 2.7e − 02 (4) 1.8e − 02 (4) 2.6e − 04 (4) 2.3e − 01 (5) 2.5e − 04 (4)

FD 1.8e − 02 (4) 7.6e − 02 (4) 2.5e − 02 (4) 5.1e + 01 (4) 1.1e − 02 (11) 5.1e + 01 (4)

FD-NU 9.2e − 03 (4) 5.8e − 02 (4) 1.6e − 02 (4) 5.0e − 02 (5) 6.0e − 03 (11) 5.2e − 02 (5)

FD-AD 9.7e − 03 (4) 4.3e − 02 (4) 9.6e − 03 (4) 1.0e + 01 (4) 9.1e − 03 (4) 2.0e + 00 (4)

RBF 6.2e − 02 (4) 4.6e + 00 (4) 1.4e − 01 (4) 7.7e + 01 (4) – 6.6e + 01 (4)

RBF-FD 2.9e − 01 (4) 1.3e + 00 (4) 2.8e − 01 (4) 3.3e + 01 (5) 9.6e − 01 (4) 5.1e + 00 (4)

RBF-PUM 2.8e − 02 (4) 3.6e + 00 (4) 5.4e − 02 (4) 3.4e + 00 (5) 4.5e + 00 (4) 1.9e + 00 (4)

RBF-LSML 4.2e − 02 (4) – 3.0e − 02 (4) 7.5e + 00 (5) – –

RBF-AD 7.9e − 01 (4) 1.7e + 01 (5) 2.4e + 01 (5) 3.3e + 00 (4) 1.2e + 00 (7) 1.6e + 01 (4)

RBF-MLT 1.6e + 01 (4) – 2.4e + 02 (4) ∗3.3e + 02 (4) – ∗1.9e + 03 (3)

Note: The numbers within parentheses indicate the approximate number of correct digits in the result. A ‘ − ’ indicates not implemented,

while ‘ × ’ means implemented, but not accurate.

Table 3. Problem 1. Computational time to compute hedging parameters $ =
∂u
∂s

, Ŵ =
∂2u

∂s2 and V =
∂u
∂σ

that have a

relative error < 10−4 at t = 0 and s = 90, 100, 110 for the standard parameters and at s = 97, 98, 99 for the challenging
parameters.

Standard parameters Challenging parameters

Method $ =
∂u

∂s
Ŵ =

∂2u

∂s2
V =

∂u

∂σ
$ =

∂u

∂s
Ŵ =

∂2u

∂s2
V =

∂u

∂σ

MC-S 3.0e + 00 (5) ∗5.7e + 01 (4) 1.7e + 01 (4) 3.3e + 00 (5) × ∗1.8e + 01 (3)

QMC-S 5.7e − 01 (5) ∗1.0e + 00 (4) 6.3e − 01 (5) 6.3e − 01 (6) × ∗6.7e − 01 (4)

FFT 1.3e − 03 (6) 1.2e − 03 (5) 2.1e − 03 (5) 1.2e − 03 (7) 1.2e − 03 (5) 2.5e − 03 (6)

FGL 3.2e − 03 (14) 2.9e − 03 (14) 2.9e − 03 (14) 1.8e − 02 (14) 1.8e − 02 (11) 2.2e − 02 (11)

COS 1.8e − 04 (4) 2.4e − 04 (5) 2.6e − 04 (5) 2.8e − 04 (4) 4.4e − 04 (5) 4.6e − 04 (5)

FD 1.9e − 02 (5) 1.4e − 02 (5) 2.8e − 02 (4) 4.9e + 01 (5) 2.5e + 02 (4) 5.0e + 02 (5)

FD-NU 7.8e − 03 (4) 8.9e − 03 (4) 1.8e − 02 (4) 6.5e − 02 (4) 5.0e − 01 (4) 1.6e + 00 (4)

FD-AD 1.0e − 02 (4) 9.9e − 03 (4) 2.4e − 02 (4) 1.0e + 01 (4) 4.9e + 01 (4) 9.0e + 01 (4)

RBF 6.6e − 02 (4) 6.9e − 02 (4) 7.9e − 02 (4) 9.3e + 01 (4) 3.1e + 02 (5) 7.0e + 02 (4)

RBF-FD 3.0e − 01 (4) 2.5e − 01 (4) 5.6e − 01 (4) 3.4e + 01 (4) 3.7e + 01 (4) 1.0e + 02 (4)

RBF-PUM 2.7e − 02 (4) 3.2e − 02 (4) 1.0e − 01 (4) 3.1e + 00 (5) 6.2e + 00 (4) 1.1e + 01 (4)

RBF-LSML 1.3e − 01 (4) 2.7e − 01 (4) 7.1e − 02 (5) – – –

RBF-AD 3.4e + 00 (4) 3.4e + 01 (4) 5.0e + 01 (4) 3.6e + 00 (5) 1.8e + 01 (4) 2.1e + 01 (4)

RBF-MLT 1.8e + 01 (4) 1.8e + 01 (4) ∗3.2e + 01 (4) 4.2e + 02 (4) ∗3.4e + 02 (3) ×

Note: The numbers within parentheses indicate the approximate number of correct digits in the result. A ‘ − ’ indicates not implemented,

while ‘ × ’ means implemented, but not accurate.

time to compute the result for one evaluation point, whereas for other methods it is the time to

compute the result for all evaluation points.

In order to see how the errors behave away from the evaluation points, solutions are also

plotted for a range of values in Figures 1–8. The figures show the absolute errors evaluated at

the integer values between s = 60 and s = 160. No figure is shown for the second local volatility

case in Problem 3, because there the local volatility result is only valid for a particular S0, not
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Table 4. Problems 2 and 3. Computational time to compute a solution u that has a relative error < 10−4 at t = 0 and
s = 90, 100, 110.

Discrete dividends Local volatility

Method European call American call Smooth Implied

MC-S ∗6.0e + 01 (3) – × ×
QMC-S 1.6e + 00 (4) – – –

FFT 1.5e − 03 (7) – – –

FGL 3.6e − 03 (14) 8.1e − 02 (6) – –

COS 8.8e − 04 (5) 2.4e − 03 (4) 1.7e − 02 (4) –

FD 2.0e − 02 (4) 1.5e − 02 (4) 2.2e − 02 (4) 1.2e + 00 (4)

FD-NU 1.6e − 02 (4) 1.5e − 02 (4) 3.7e − 02 (4) 8.9e − 01 (4)

FD-AD 2.1e − 02 (4) 2.3e − 02 (5) 3.6e − 02 (4) 8.8e − 01 (4)

RBF 2.3e − 01 (4) 1.1e − 01 (4) 5.5e − 02 (4) 2.4e + 00 (4)

RBF-FD 4.2e − 01 (4) 2.7e + 00 (4) 2.2e + 01 (4) 1.1e + 02 (4)

RBF-PUM 3.3e − 02 (4) 3.0e − 02 (4) 1.4e − 01 (4) 9.0e − 01 (4)

RBF-LSML 5.0e − 01 (4) 1.2e + 00 (4) 1.7e − 01 (4) 4.0e + 00 (4)

Note: The numbers within parentheses indicate the approximate number of correct digits in the result. A ‘ − ’ indicates not implemented,

while ‘ × ’ means implemented, but not accurate.

Table 5. Problems 4, 5, and 6. Computational time to compute a solution u that has a relative error < 10−4 at t = 0
and s = 90, 100, 110 for the Heston and Merton models, and to compute a solution u that has a relative error < 10−4 at
t = 0 and (s1, s2) = (100, 90), (100, 100), (100, 110), (90, 100), (110, 100) for the spread option.

Method Heston Merton Spread

MC-S × 1.6e + 01 (4) ∗2.9e + 01 (4)

QMC-S – 3.4e − 01 (4) 1.8e + 00 (5)

FFT 3.3e − 03 (5) 2.1e − 03 (5) –

FGL 3.8e − 03 (14) 3.1e − 03 (13) 3.1e − 03 (14)

COS 3.4e − 04 (4) 2.2e − 04 (4) 1.5e − 03 (4)

FD – – –

FD-NU 4.3e + 00 (4) 1.4e − 01 (4) 7.4e + 01 (4)

FD-AD – – 4.7e + 01 (4)

RBF 1.9e + 01 (4) – 7.7e + 01 (4)

RBF-FD – – 2.2e + 03 (4)

RBF-PUM 4.3e + 00 (4) – 1.3e + 01 (5)

Note: The numbers within parentheses indicate the approximate number of correct digits in the result. A ‘ − ’ indicates not implemented,

while ‘ × ’ means implemented, but not accurate.

over a range. The vertical axis range in the figures is adjusted to the values that are plotted, but

the lower limit is not allowed to be lower than 10−20. Errors falling below that value are not

visible in the figures.

The experiments have been performed on the Tintin cluster at Uppsala Multidisciplinary Cen-

ter for Advanced Computational Science (UPPMAX), Uppsala University. The cluster consists

of 160 dual AMD Opteron 6220 (Bulldozer) nodes. All codes are implemented (serially) in

MATLAB. The names of the respective codes for each problem are indicated by the boldfaced

heading over each (group of) plot(s). This generic name is then combined with an acronym for

the particular method as for example BSeuCallUI_RBF.m.

5. Discussion

Monte Carlo methods. MC methods are easy to implement in any number of dimensions, but the

slow convergence rate, O(1/
√

N) for standard MC, makes it computationally expensive to reach
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Figure 1. Problem 1(a) European call option. For each problem, results for standard parameters are shown to the left,
and for challenging parameters to the right. Absolute error in the solution u for t = 0 and 60 ≤ s ≤ 160 when the relative
error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters and s = 97, 98, 99 for challenging
parameters.

Figure 2. Problem 1(b) American put option. For each problem, results for standard parameters are shown to the left,
and for challenging parameters to the right. Absolute error in the solution u for t = 0 and 60 ≤ s ≤ 160 when the relative
error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters and s = 97, 98, 99 for challenging
parameters.

the requested tolerance of 10−4. The most challenging problems for the MC methods were the

path dependent options, the hedging parameter Ŵ, and the local volatility.

Because MC methods scale linearly with the number of dimensions, they are increasingly

competitive in higher dimensions. Furthermore, there are a lot of specialized techniques that can

be applied to improve performance. An example of this is the QMC-S method that is comparable

to some of the other methods already in one dimension, and the fastest method apart from the

Fourier methods for the two-dimensional spread option.
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Figure 3. Problem 1(c) Up-and-out call option. For each problem, results for standard parameters are shown to the left,
and for challenging parameters to the right. Absolute error in the solution u for t = 0 and 60 ≤ s ≤ 125 when the relative
error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters and s = 97, 98, 99 for challenging
parameters.

Figure 4. Problem 1(a) European call option. Errors in the hedging parameter $. For each problem, results for standard
parameters are shown to the left, and for challenging parameters to the right. Absolute errors in the hedging parameters
for t = 0 and 60 ≤ s ≤ 160 when the relative error is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters
and s = 97, 98, 99 for challenging parameters.

Fourier methods. Fourier methods (FM) rely on the availability of the characteristic function

(ChF) of the underlying stochastic process. These are available for all problems except Problem

3, local volatility. However, in the recent publication [53], the stochastic process is approximated

by a second order weak Taylor scheme, for which there exists an analytic solution for the ChF.

This method was applied to the smooth local volatility function, but could not easily be used for

the implied local volatility. Apart from Problem 3, the problems that were most challenging for

the FM were the American and Up-and-out options.
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Figure 5. Problem 1(a) European call option. Errors in the hedging parameter Ŵ. For each problem, results for standard
parameters are shown to the left, and for challenging parameters to the right. Absolute errors in the hedging parameters
for t = 0 and 60 ≤ s ≤ 160 when the relative error is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters
and s = 97, 98, 99 for challenging parameters.

Figure 6. Problem 1(a) European call option. Errors in the hedging parameter V . For each problem, results for standard
parameters are shown to the left, and for challenging parameters to the right. Absolute errors in the hedging parameters
for t = 0 and 60 ≤ s ≤ 160 when the relative error is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters
and s = 97, 98, 99 for challenging parameters.

The FM are all very fast and especially the FGL-method is also highly accurate. The fastest

FM, the COS method, is the overall fastest method in all cases but two. The competitiveness of

the FM is even more pronounced for the two-dimensional problems, the Heston model and the

spread option.
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Figure 7. Problem 2(a) European call with dividends (left) and 2(b) American call with dividends (right). Error in the
solution u for t = 0 and 60 ≤ s ≤ 160 when the relative error in u is less than 10−4 at t = 0 and s = 90, 100, 110.

Figure 8. Problem 3 Local volatility, smooth function (top left), Problem 4 Heston (top right), Problem 5 Merton
(bottom left), and Problem 6 Spread option (bottom right). Absolute error in the solution u for t = 0 and 60 ≤ s ≤ 160
when the relative error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for Local volatility and Merton, and for Heston
with variance v = 0.0225. For the spread option, the error is measured in (s1, s2) = (100, 90), (100, 100), (100, 110),
(90, 100), (110, 100), and is plotted for 60 ≤ s1 ≤ 160, and s2 = 100.

Finite difference methods. FD methods rely on the use of structured (possibly non-uniform)

grids and are straightforward to implement. The FD-NU is the only BENCHOP method that

solved all the problems. The computational times are low in all cases, and for two problems

FD-NU or FD-AD is the overall fastest method. For the FD methods in general the challenging

parameter set in Problem 1 is the most difficult feature to handle.

For Problem 1 the usage of a nonuniform grid, (FD-NU and FD-AD), is superior to using a

uniform grid (FD) but for Problems 2 and 3, using a uniform grid is sometimes faster. The FD

method has not been implemented for the two-dimensional problems, but we believe that FD-NU

and FD-AD would be faster than FD in these cases thanks to the possibility of local refinement.

Radial basis function methods. RBF methods are flexible with respect to node locations and

choice of basis function. This makes it possible to tune the methods to achieve well for particular

targets, but it can also be hard to make a good choice. Problem 5, Merton jump diffusion has not

been implemented in any RBF method, but this could be done. The problems that are challenging
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for RBF methods have non-smooth solutions or very sharp gradients, such as American options

and the challenging parameter set in Problem 1.

The RBF methods as a group are slower than the FD methods for the one-dimensional prob-

lems. However, the results of the fastest RBF method, RBF-PUM, is in the favorable cases of

the same order as those of the FD methods. In two dimensions the RBF-PUM method is as fast

as or faster than the implemented FD methods. Potentially, the RBF-PUM method will be even

more competitive in higher dimensions.
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Appendix 1. The methods used for computing the reference values used in the

comparisons

For many of the benchmark problems here, there are analytical or semi-analytical solutions. For these cases, we state the
closed form expressions. For the cases lacking analytical solutions, we describe the numerical method that was used for
accurate enough computation of a reference solution. MATLAB codes for each problem are available at the BENCHOP
web page.

A.1 Problem 1: The Black–Scholes–Merton model for one underlying asset

For the European call option, the closed form expression for the option price is given in [4]
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and where N(x) is the cumulative distribution function for the standard normal distribution. The hedging parameters can
be found through differentiation, leading to
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where φ(x) = (2π)−1/2 exp(−x2/2) is the density of the standard normal distribution.
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For the American put option, there is no closed form solution. Different analytical and semi-analytical approxima-
tions to the location of the early exercise boundary are analyzed and compared in [29]. Here, we use a relation from
[5, Theorem 1.1], where it is shown that the American put price can be decomposed into a European put price and the
early exercise premium. The general European put price is defined by

/
p
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, T − t
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+ Ke−r(T−t)N
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, (A7)

The American put price becomes

/
p

BS−A(t, S, K, T , r, σ 2) = /
p

BS(t, bp(t), K, T , r, σ 2) + rK

∫ T

t

e−r(u−t)N
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bp(u)
, u − t
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du, (A8)

where bp(t), 0 ≤ t < T is the (unknown) optimal exercise level at time t, and bp(T) = K. The location of the exercise
boundary is determined by solving the following non-linear integral equation numerically:

/
p

BS−A(t, S, K, T , r, σ 2) = K − bp(t). (A9)

This equation is solved by an implicit trapezoidal method, where the implicit step due to the monotonicity in bp(t) can
be found by binary search. This leads to a robust albeit slow method for obtaining the optimal exercise level bp on a fine
time grid from t = T to t = 0. Then, for arbitrary initial stock values satisfying S(0) > bp(0), (A8) provides the option
value. For S(0) ≤ bp(0) the value is set to the exercise value K − S(0).

For the barrier call up–and–out option, a closed form expression for the option price can be found in [3,
Theorem 18.12 p. 271].
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A.2 Problem 2: The Black–Scholes–Merton model with discrete dividends

For the European call option with one proportional discrete dividend payment, there is a closed form solution
[3, Proposition 16.6 p. 235]. Assuming that the dividend is paid out at time τ , where t < τ < T , we have

/c
BS−EDD(t, S, K, T , r, σ 2) = /c

BS(t, S(1 − D), K, T , r, σ 2). (A11)

Note that the option price is independent of when during the contract period the dividend occurs.
The American Call option with one dividend payment at τ = αT , where 0 < α < 1, can be valuated semi

analytically [61].
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where N2(x, y, ρ) is the cumulative distribution function for the bi-variate normal distribution with zero mean and
covariance matrix

1 =

(

1 ρ

ρ 1

)

.

The above formula depends on the unknown variable S∗
t , which can be estimated from the following nonlinear problem:

S∗
τ − K = /c

BS(T − τ , (1 − D)S∗
τ , K, T , r, σ 2).

A.3 Problem 3: The Black–Scholes–Merton model with local volatility

For a general local volatility function, there is no closed form solution. The reference values have in this case been com-
puted to high accuracy by a selection of the contributed deterministic methods with different numerical approximations
in space, different treatments of the boundary, and different approximations in time. In this way, we can be reasonably
certain that numerical bias has been eliminated.
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A.4 Problem 4: The Heston model for one underlying asset

The (almost exact) Heston price is computed through inverse Fourier transform using the Gauss-Laguerre quadrature
method (FGL) with 1000 quadrature points in combination with an optimized choice of integration path in the complex
plane stock value for stock value. The integration path is chosen so that is goes through the uniquely given saddle point
of the integrand (see [34,37]).

A.5 Problem 5: The Merton jump diffusion model for one underlying asset

From [40] we have that the price under Merton jump diffusion is given by a weighted sum of modified Black-Scholes
prices

/c
ME(t, S, K, T , r, λ, γ , δ2, σ 2) =

∞
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e−λ(T−t) (λ(T − t))n

n!
/c
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+ δ2 n

T − t

)

, (A13)

where ξ = eγ+δ2/2 − 1. By using a few hundred terms, a highly accurate price approximation can be computed.

A.6 Problem 6: The Black–Scholes–Merton model for two underlying assets

For the particular case of K = 0, a closed form solution for the European call spread option is given in [38] as

/c
BS−SO (t, S1, S2, T , σ1, σ2, ρ) = /c

BS(t, S1, S2, T , 0, σ 2
1 − 2ρσ1σ2 + σ 2

2 ). (A14)

Appendix 2. The second local volatility function used in Problem 3

The second local volatility function is based on a stochastic volatility inspired (SVI) parametrization [15] of the implied
volatility surface. This approach to local volatility is widely used by practitioners, because it is relatively easy to calibrate
to data, and there are techniques to eliminate different modes of arbitrage.

A.7 The given SVI parametrization

The global total implied variance surface in terms of the time of maturity T and the log moneyness x = log(K/FT ) in the
forward price FT = S0erT is given by

wg(T , x) = a +
r − ℓ

2
(x − m) +

r + ℓ

2

√

(x − m)2 + p2, (A15)

where a, r, ℓ, m, p are parameters that depend on T. Here, the calibrated parameters are given by

a = 0.01 + 0.03
√

T + 0.04, r = 0.06(1 − 0.87
√

T),

ℓ = 0.31(1 − 0.7
√

T), m = 0.03 + 0.01T ,

p = 0.15(0.4 + 0.6
√

T + 0.04).

A.8 Constructing the local volatility surface

In order to compute the local surface, we apply a transformation that corresponds to Dupire’s formula [10] for the SVI
parametrization.
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This gives us a local volatility surface in terms of T and x.
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A.9 Using the local volatility surface

When we use the local volatility surface, we replace K by s and T by t. In order to see what that implies for the log
moneyness, we need to go back to the definition. There we had x = log(K/FT ), then when we use the local volatility
surface

x(s, S0, t) = log
s

Ft(S0)
= log

s

S0ert
.

The local volatility is now given by

σ (s, t) =

√

wlocal(x(s, S0, t), t). (A17)

Note that σ (s, t) cannot be directly evaluated for very small values of s. A function that evaluates this volatility surface
can be downloaded from the BENCHOP web site.
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Radial basis function partition of unity operator splitting

method for pricing multi-asset American options

Victor Shcherbakov

Abstract The operator splitting method in combination with finite differences has

been shown to be an efficient approach for pricing American options numerically.

Here, the operator splitting formulation is extended to the radial basis function par-

tition of unity method. An approach that has previously often been used together

with radial basis function methods to deal with the free boundary arising in Ameri-

can option pricing is to solve a penalised version of the Black–Scholes equation. It is

shown that the operator splitting technique outperforms the penalty approach when

used with the radial basis function partition of unity method. Numerical experiments

are performed for one, two and three underlying assets. The advantage of the operator

splitting technique grows with the number of dimensions.

Keywords American option · Multi-asset option · Radial basis function · Partition

of unity · Operator splitting method · Penalty method

Mathematics Subject Classification (2000) 65M70 · 35K15

1 Introduction

The Benchmark Project in Option Pricing (BENCHOP) [16] was recently launched.

In this project established methods for option pricing were tested and compared on

different benchmark problems. The metric of the comparison was the time to achieve

a relative error tolerance of 10�4.

This work is inspired by the BENCHOP project, where among other methods,

the radial basis function partition of unity method (RBF–PUM) was tested. For many

of the benchmark problems RBF–PUM was competitive with finite difference (FD)

methods, but for the American option problems it performed significantly worse. In

the project RBF–PUM employed the penalty method [10] for handling the free exer-

cise boundary, while the FD methods used the operator splitting (OS) formulation [7].

V. Shcherbakov

Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden
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The penalty approach allows to remove the early exercise boundary and solve the

problem on a fixed domain by adding a (usually non-linear) penalty function, whose

size is adjusted by a penalty parameter e. A property of this approach is that the error

introduced by the penalty is proportional to the penalty parameter size. In order to

avoid solving a non-linear problem in the BENCHOP we used an implicit-explicit

numerical scheme, where the penalty function was explicitly treated. This type of

scheme was proposed in [10] stating that the condition imposed by the explicit treat-

ment of the penalty would be rather mild. Nevertheless, the time step is strongly

dependent on and proportional to the penalty parameter size. Thus, in order to reach

the given tolerance (10�4) we had to use a very small penalty parameter, which im-

posed a severe condition on the time step size to maintain stability. This resulted in

long execution times.

The operator splitting approach works on the linear complementarity problem

(LCP), where a fully implicit scheme can be easily applied. Consequently, it does

not enforce any constraint on the time step size. We believe that the use of the OS

technique made all FD methods noticeably faster than RBF–PUM for the American

option pricing problem.

Thus, the primary goal of this work is to extend the operator splitting approach to

RBF–PUM, which to the author’s knowledge has not yet been done. Then, we com-

pare the results of the new method to those obtained by the penalty approach in the

BENCHOP project. Furthermore, for the penalty approach we also implement a fully

implicit scheme as well as a fully explicit scheme in order to compare against the

previously implemented implicit-explicit scheme. In the fully implicit case, we em-

ploy Newton’s method to handle the non-linearity. It turns out that Newton’s method

on average requires only a few iterations to converge, regardless of the problem’s

dimension. This provides an overall efficient scheme.

The layout of this paper is structured as follows. In section 2, we introduce the

Black–Scholes equation for the American multi-asset put option. In section 3, we

discuss the operator splitting method and the penalty method for American options.

In section 4, we give an overview of RBF–PUM, set up the discrete formulation

and briefly discuss implementation details. In section 5, we test the three penalty

schemes and the operator splitting scheme for the one-dimensional case, and then we

proceed to higher dimensional cases with the best candidates. In section 6, we give

some conclusion.

2 The Black–Scholes equation

Under the Black–Scholes market assumptions [1] we consider the d-dimensional

Black–Scholes equation, whose solution defines the price of an American put option

written on d assets
∂V

∂ t
�LV = 0, x 2 Ω , t 2 (0,T ] , (2.1)

L =
1

2

d

∑
i, j=1

σiσ jρi jxix j

∂ 2

∂xi∂x j

+
d

∑
i=1

rxi

∂

∂xi

� r, (2.2)
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where V is the value of the option, x = (x1, . . . ,xd) defines the spot prices of the d

underlying assets, d is the number of assets in the portfolio, σi is the volatility of

asset i, ρi j is the correlation between assets i and j, r is the risk-free interest rate, t is

the backward time, i.e., time to maturity, and T is the maturity time of the option.

Dividends could also be taken into account, but since we consider only American put

options, the dividends are not necessary in order to allow for the possibility of early

exercise, as for example in the case of call options. The domain Ω is a subdomain of

R
d
+, which falls inside the early exercise boundary Γ (x, t).

The payoff function for the put option is given by:

Φ(x) = max

 

K �
d

∑
i=1

θixi,0

!

,

where K is the strike price and θi is the weight of the i-th asset in the portfolio. The

payoff defines the option value at the time of maturity. Since the problem is stated in

backward time, the payoff provides the initial condition for equation (2.1)

V (x,0) = Φ(x), x 2 Ω . (2.3)

In addition, equation (2.1) is subject to the following boundary condition at the

near-field boundary

V (0, t) = K, t 2 [0,T ] , (2.4)

and at the free boundary

V (x, t) = Φ(x), x 2 Γ (x, t), t 2 [0,T ] , (2.5)

∂V

∂xi

(x, t) =�θi, x 2 Γ (x, t), t 2 [0,T ] . (2.6)

Outside the free boundary the solution is given by V (x, t) = Φ(x).

Remark 2.1 The near-field boundary can be represented by the point x = 0. At the

boundaries νi = {x |x 2 Ω ,x 6= 0,xi = 0}, the spatial operator (2.2) is degenerate and

reduces to a (d �1)-dimensional operator. Fichera [4] derived general conditions for

when to impose boundary conditions for parabolic PDEs with degenerate diffusion

operators. In the case of the Black–Scholes operator, boundary conditions should not

be imposed at νi unless required for numerical purposes.

The above problem can also be reformulated as a linear complimentarity problem

(V �Φ)� 0, (2.7)
✓

∂V

∂ t
�LV

◆

� 0, (2.8)

✓

∂V

∂ t
�LV

◆

(V �Φ) = 0. (2.9)

The formulations (2.1)–(2.6) and (2.7)–(2.9) are equivalent and have the same solu-

tion.
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3 Methodology

In this section we introduce two approaches for solving the Black–Scholes equation

for multi-asset American put options.

3.1 The penalty method

We use the type of penalty function for American put options that was introduced

by Nielsen et al. [10] and has been used later by several authors together with finite

differences [11] as well as radial basis functions [3,13,14].

The penalty function is given by

P(V ) =
erK

V + e�q
,

where e is a penalty parameter, which has to be chosen sufficiently small, and q(x) is

a barrier function equal to the non-zero part of the payoff,

q(x) = K �
d

∑
i=1

θixi. (3.1)

The form of the penalty term has also been generalised for application to American

call options in [14].

Adding the penalty term to the Black–Scholes equation allows us to convert

the free boundary problem to a fixed domain problem. The error introduced by the

penalty is expected to be O(e). The modified equation takes the form

∂V

∂ t
�LV �P(V ) = 0, x 2 Ω̃ , t 2 [0,T ] . (3.2)

Equation (3.2) is defined over the entire R
d
+, but in order to enable numerical simu-

lations we use a truncated domain Ω̃ , which is truncated at xi = x∞ in each direction.

We impose the following boundary conditions

V (0, t) = K, t 2 [0,T ] , (3.3)

V (x, t) = 0, x 2 γ(x), t 2 [0,T ] , (3.4)

where γ(x) = {x | x 2 Ω̃ , xi = x∞, i = 1, . . . ,d} is called the far-field boundary. The

initial condition becomes

V (x,0) = Φ(x), x 2 Ω̃ .

A typical choice for x∞ falls between 2dK and 4dK, depending on the problem

parameters, where d is the problem dimension and K is the strike price.
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3.2 The operator splitting method

In contrast to the penalty approach, the operator splitting method [7] deals with the

Black–Scholes equation in the linear complementarity form. An auxiliary variable

λ is introduced to force the option value to be higher then q, which is defined in

equation (3.1). The problem then reads

λ =
∂V

∂ t
�LV, x > 0, t 2 [0,T ], (3.5)

(V �q)λ = 0, x > 0, t 2 [0,T ], (3.6)

(V �q)� 0, λ � 0, x > 0, t 2 [0,T ], (3.7)

V = Φ , x > 0, t = 0, (3.8)

V = K, x = 0, t 2 [0,T ], (3.9)

V = 0. x 2 γ(x), t 2 [0,T ], (3.10)

4 Time discretisation and space approximation

The space approximation is performed by the radial basis function partition of unity

method. This is a localised modification of the global RBF method, where local ap-

proximants are constructed in overlapping subdomains {Ωi}
M
i=1, which form an open

cover of the entire computational domain Ω̃ . The local approximants are combined

by the partition of unity functions {wi}M
i=1 subordinated to the open cover {Ωi}

M
i=1

into a global approximation function. The locality of the partition of unity technique

allows for a significant reduction of the computational effort compare with the global

method.

We divide our computational domain into M overlapping spherical patches {Ωi}
M
i=1

with radii Ri and Ni computational nodes in each. Thus, in every patch we can con-

struct a local time-dependent RBF approximation over the nodes x j, j = 1, . . . ,Ni,

vi(t,x) =
Ni

∑
j=1

α i
j(t)φ(ε||x�x j||) =

Ni

∑
j=1

α i
j(t)φ j(x),

where φ j(x) is a radial basis function centered at node x j, α i
j(t) are coefficients to

be determined and ε is the shape parameter, which defines the width of the basis

functions.

The local approximants are combined into the global approximant by

v(t,x) =
M

∑
i=1

wi(x)vi(t,x) =
M

∑
i=1

wi(x)
Ni

∑
j=1

α i
j(t)φ j(x), (4.1)

where wi is a partition of unity function compactly supported on Ωi and satisfying

the property
M

∑
i=1

wi(x) = 1.
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The partition of unity can be constructed by Shepard’s method [15]

wi(x) =
ψ i(x)

∑
M
k=1 ψk(x)

,

where ψ i(x) is a compactly supported function on Ωi. We use C2 compactly sup-

ported Wendland functions [17]

ψ(r) =

(

(1� r)4(4r+1), if 0  r  1

0, if r > 1.

For a more detailed description see [14].

4.1 The penalty method

The total number of node point in the entire Ω̃ is N =NI +NB, where NI is the number

of interior nodes and NB is the number of boundary nodes. In order to determine the

values of α i
j(t) we use collocation at the N node points. For the interior nodes x j,

j = 1, . . . ,NI we use equation (3.2), and for the near-field and far-field boundary

points x j, j = NI + 1, . . . ,N we use equations (3.3) and (3.4), respectively. Thus,

vI(t) = [v(t,x1), . . . ,v(t,xNI
)]T and vB(t) = [v(t,xNI+1), . . . ,v(t,xN)]

T . By evaluating

(4.1) at the node points, we get



vI(t)
vB(t)

�

=



AII ABI

AIB ABB

�

α I(t)
αB(t)

�

,

where the global coefficient matrix A consists of elements a jk =wi(xk)φ(ε||x j �xk||)
and has a nearly block-diagonal structure, where the i-th block corresponds to the i-th

patch. The blocks overlap due to the overlapping structure of the open cover {Ωi}
M
i=1.

Consequently,

L vI(t) =
⇥

LII LIB

⇤



α I(t)
αB(t)

�

=
⇥

LII LIB

⇤

A�1



vI(t)
vB(t)

�

=
⇥

CII CIB

⇤



vI(t)
vB(t)

�

,

where the matrix L consists of elements l jk =L
�

wi(xk)φ(ε||x j �xk||)
�

, j = 1, . . . ,NI

and k = 1, . . . ,N. Note that A�1 exists, because for standard choices of basis functions

A is non-singular.

For time marching we select the unconditionally stable second order backward

differentiation formula (BDF-2) [6, p. 401]. The BDF-2 scheme involves three time

levels. To initiate the method, often the BDF-1 scheme (Euler backward) is used for

the first time step. Therefore two different matrices need to be factorised. In order to

avoid this we use the BDF-2 scheme as described in [8].
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We split the time interval [0,T ] into Nt non-uniform steps of length kn = tn+1�tn,

n = 1, . . . ,Nt , then

(E �β n
0 L )v1

I = v0
I ,

(E �β n
0 L )vn

I = β n
1 vn�1

I �β n
2 vn�2

I +β n
0 P(vn�1

I ), n = 2, . . . ,Nt ,

where E is an identity matrix of the proper size and

β n
0 = kn 1+ωn

1+2ωn

, β n
1 =

(1+ωn)
2

1+2ωn

, β n
2 =

ω2
n

1+2ωn

,

where ωn = kn/kn�1, n= 2, . . . ,Nt . In [8] it is shown how the time steps can be chosen

in such a way that β n
0 ⌘ β0. Then the coefficient matrix is the same in all time steps

and only one matrix factorization is needed.

For the boundary node points we enforce the following condition

vn
B = fn

B, n = 1, . . . ,Nt ,

where

fB = [ f (t,xNI+1), . . . , f (t,xN)]
T , (4.2)

and

f (t,x) =

(

K, if x = 0

0, if x 2 γ(x).

This leads to a linear system, which needs to be solved at each time step



EI �β0CII �β0CIB

0 EB

�

vn
I

vn
B

�

=



fn
I

fn
B

�

, (4.3)

where

fn
I = β n

1 vn�1
I �β n

2 vn�2
I +β n

0 P(vn�1
I ).

In short notations we write it as

Bvn = fn. (4.4)

Note that in order to avoid solving a non-linear system the penalty term is treated

explicitly here. It imposes some condition on the time step size. Nielsen shows [10]

that in case of finite differences for put options the condition is

∆ t  e

rK
,

where e is the penalty parameter, r is the risk-free interest rate, K is the strike price

and in our case ∆ t = max{kn}Nt
n=1. Experiments for RBFs seem to give nearly the

same bound [14].

We also implement an entirely implicit BDF-2 scheme, where the penalty is de-

fined at the new time level. In this case instead of the linear system (4.3) we obtain

the following non-linear system



EI �β0CII �β0CIB

0 EB

�

vn
I

vn
B

�

�β n
0



P(vn
I )

0

�

=



fn
I

fn
B

�

,
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where

fn
I = β n

1 vn�1
I �β n

2 vn�2
I ,

and fn
B remains as in (4.2). In order to solve the arising non-linear system we employ

the Newton method.

To complete the picture we also consider a second-order explicit scheme. For this

purpose we select Heun’s scheme. This results in the following linear system

wn
I = vn�1

I +∆ t
⇥

Cvn�1 +P(vn�1
I )

⇤

,

wn
B = vn�1

B ,

vn
I = vn�1

I +0.5∆ t
⇥

Cwn +P(wn
I )+Cvn�1 +P(vn�1

I )
⇤

,

vn
B = fn

B,

where wn is an auxiliary variable, fn
B as in (4.2), and

C =
⇥

CII CIB

⇤

.

Apart from the constraint on the time step size enforced by the penalty, there will be

an additional constraint which comes from the explicit time discretisation.

A test of the above three schemes will tell us which method is better suited for the

penalised Black–Scholes equation. The point of view which has been common in the

literature is that the semi-implicit scheme is an optimal choice, because it exempts

us from solving a non-linear system, while the enforced condition on the time step is

not as severe as it could be if one used an entirely explicit discretisation scheme.

We will see that it turns out that the implicit penalty method is the most efficient

out of the three modifications. Therefore we decide to present an algorithm only for

this version.

Algorithm to evaluate an American option by the implicit penalty method

for n= 2 : Nt

while err� τ % Newton iterations

P= e⇤r⇤K./(y+e�q); % Evaluate the penalty

s= spdiags(P./(y+e�q),0,N,N); % Matrix needed for

Newton iterations

v= y� (B�β0 ⇤s)\(B⇤y+β0 ⇤P+f);
err= max(abs(v�y)); y= v;

end while

v0 = v1; v1 = v; % Update to next time step

end for

4.2 The operator splitting method

As in the previous section we use collocation to determine the coefficients α i
j(t)

and the BDF-2 scheme for time evolution. The main steps of the discretisation for
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the operator splitting method can be repeated in the same manner as for the penalty

method.

The operator splitting method has to be solved in two fractional steps at each time

step. At the first fractional step, the linear system is solved, and then, at the second

fractional step, the auxiliary variables λ n are updated. Thereby, problem (3.5)–(3.10)

in the discrete case the takes form

Bṽn = gn +β n
0 λ n�1

vn � ṽn = β n
0

�

λ n �λ n�1
�

(vn �q)λ n = 0,

(vn �q)� 0, λ n � 0,

where n = 1, . . . ,Nt , B is the same matrix as in equation (4.4), gn = [gn
I ,g

n
B]

T with

gn
I = β n

1 vn�1
I �β n

2 vn�2
I

and gn
B = fn

B. The initial value for the auxiliary variable is λ 0 = 0.

Below we present an algorithm for the OS method for the American option prob-

lem, which highlights the main implementation points.

Algorithm to evaluate an American option by the operator splitting method

[L,U] = lu(B);
for n= 2 : Nt

b= g�β0 ⇤λ ;

~v= U\(L\b);
λ1 = λ ; λ = zeros(N,1); % Update λ to next time step

v= ~v+β0 ⇤ (λ �λ1);
ind= find(v�Φ< 0); % Find where solution falls below

the payoff

v(ind) = Φ(ind); % Project to the payoff

λ (ind) = λ1(ind)+(~v(ind)�v(ind))/β0;

v0 = v1; v1 = v; % Update to next time step

end for

5 Numerical experiments

In this section we compute American put option values V with the above mentioned

methods. We evaluate option values at three predefined asset values, which corre-

spond to “in-the-money”, “at-the-money” and “out-of-the-money” cases. All solu-

tions are benchmarked against accurate reference solutions Vr, which are obtained

by Fourier methods. The relative deviation of the approximated values V from the

reference values Vr is restricted to be less than 10�4. By practitioners, this precision

is considered sufficient for financial purposes. Therefore, if the methods succeed in
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meeting this restriction, then the main criteria, which determines the advantage of

one method over another, would be the shorter computational time.

In other words, all numerical experiments are performed with the aim to get the

relative error δ below the tolerance 10�4 in the shortest time,

δ =

�

�

�

�

�

�

�

�

V �Vr

Vr

�

�

�

�

�

�

�

�

∞

.

All corresponding errors and run times are recorded and presented in the tables. To

eliminate randomness, each code was run 10 times, then the two longest and the

two shortest times were removed and the mean over the remaining six times was

measured. Error profiles for the option values evaluated on the cube [80,120]d , where

d denotes the dimension, are also presented in the figures below.

All reference solutions are obtained by using highly accurate versions of Fourier

methods. The FGL method [9] in the single-asset case, and the COS method [12]

in the double-asset case. For the RBF–PUM experiments we select the multiquadric

basis function φ =
p

1+ ε2r2.

The experiments are carried out on a machine with an Intel Core i7 processor,

2.3 GHz and 16 GB RAM. All codes are implemented serially in MATLAB R2014b.

To facilitate an easy reproduction of our results, we publish parameter values,

that were used in the experiments, in Table 5.1. Parameters for different methods

within the same experiment may differ, because they are fine-tuned to give an accurate

solution within “optimal” time.

Remark 5.1 We do not guarantee that the chosen parameters and domain sizes are the

true optimal ones and nothing more optimal can be found. We use quotation marks

in order to denote “minimal”, “optimal”, “shortest” in terms of what we could find

within a reasonable amount of fine-tuning.

5.1 The non-uniform grid

In all our experiments we exploit the flexibility of RBF–PUM to easily handle non-

uniform grids. The non-uniform grid which we used has grid points clustered around

the strike price K. The node coordinates in each direction i are defined by

xi, j = K + l sinh(ξ j), j = 1, . . . ,
d
p

N,

where ξ j 2 [ξ⇤,ξ ⇤] are equidistant points, and l is the parameter which defines the

amount of clustering. Requiring that the nodes xi, j should fall into the interval [0,x∞]
we can find ξ⇤ and ξ ⇤

ξ⇤ = sinh�1(�K/l),

ξ ⇤ = sinh�1 ((x∞ �K)/l) .

The amount of clustering l = 0.4 for all the experiments. We choose equal size par-

titions in order to enable the construction of a higher order approximant in the strike

region, which is critical from the financial point of view.
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Table 5.1 Parameters that were used in the experiments. PEX denotes the explicit penalty method, PIMEX

denotes the IMEX penalty method, PIM denotes the implicit penalty method, and OS denotes the operator

splitting method.

Method 1D 2D 3D

PEX

Domain x 2 [0,3K]
Shape param ε = 0.17

Pen param e = 10�4

Num parts M = 12

PIMEX

Domain x 2 [0,3K]
Shape param ε = 0.2
Pen param e = 10�4

Num parts M = 35

PIM

Domain x 2 [0.5K,2K] x 2 [0,4K]2

Shape param ε = 0.2 ε = 0.1
Pen param e = 10�5 e = 10�6

Num parts M = 5 M = 144

Newton tol τ = 10�4 τ = 10�4

OS

Domain x 2 [0.5K,2K] x 2 [0,4K]2 x 2 [0,6K]3

Shape param ε = 0.6 ε = 0.1 ε = 0.1
Num parts M = 3 M = 144 M = 512

In Figure 5.1 we can see the non-uniform grid and partitioning that were used

in the two-dimensional experiments for the OS method. The use of the partition of

unity technique allows for a significant sparsification of the linear system. For exam-

ple, with 144 partitions only 5.6% of the elements remain. For the numerical experi-

ments we permute the matrix elements according to the sparse reverse Cuthill-McKee

ordering [2].

Fig. 5.1 Left: The non-uniform grid with 5776 computational nodes (76 per dimension) that was used in

the two-dimensional OS experiments. The partition of unity is performed using 144 circular patches of

equal size. Right: The RBF–PUM coefficient matrix that was obtained on this grid. It contains only 5.6%

non-zero elements.
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Remark 5.2 If a global RBF method was used then the system would be dense with

all 100% of the elements non-zero.

5.2 The single-asset case

We evaluate the solution at three points x = [90;100;110], which correspond to “in-

the-money”, “at-the-money” and “out-of-the-money” cases. The strike price K = 100,

the volatility σ = 0.15, the risk-free interest rate r = 0.03, and the time of maturity

T = 1 year.

Table 5.2 The American put option reference values and the difference V �Vr for the approximations for

one underlying asset. The grid sizes and the execution times for the operator splitting method and for the

three versions of the penalty method are also presented. The ⇤ denotes the reference solution.

Values

Method N ⇥ Nt Time (s) x = 90 x = 100 x = 110

FGL⇤ - - 10.726487 4.820608 1.828208

PEX 232 ⇥ 14000 1.5421 0.000515 0.000083 -0.000100

PIMEX 604 ⇥ 6500 0.4977 0.000729 0.000406 0.000177

PIM 74 ⇥ 75 0.0378 0.000601 0.000151 0.000126

OS 87 ⇥ 480 0.0249 0.000228 -0.000474 -0.000112

The first column of Table 5.2 contains names of the methods that were used.

The FGL (Fourier–Gauss–Laguerre) method [9] is the reference solution. The second

column displays the “minimal” grid size that allows to get the relative error down to

10�4. The third column displays the execution times of the four methods in seconds,

and the last three columns show the reference option values for the indicated spot

prices, and the differences V �Vr of the numerical solutions from the reference.

We can see that among the penalty methods the implicit version is preferable. Its

run time is at least 13 times shorter than any of the other versions. A key factor that

makes PIM faster than PEX and PIMEX is that it requires less grid points and time

steps to achieve the given tolerance. This is a consequence of the implicit interpre-

tation of the penalty function, which allows to remove any dependence of the time

step on the penalty parameter. Furthermore, for PIM only a few Newton iterations per

time step are needed and the overall computational time is not severely affected.

Remark 5.3 It is worth to notice that the number of grid points is different for the

three penalty implementations. This is mostly due to the size of the penalty param-

eter combined with the focus on the time efficiency of each implementation. Let us

consider PIM. This method has no constraint on the time step implied by the penalty

size. Therefore we can select e = 10�5, that is, the error introduced by the penalty

approach will be an order of magnitude lower than the required tolerance. It simply

means that we need 74 space nodes and 75 time step to have an accurate approxima-

tion. On the other hand, the efficiency of the PIMEX implementation suffers from the

penalty parameter size. The smaller the parameter is the smaller time steps we have to
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take. In the experiment for PIMEX we used e= 10�4 and it led to 6500 time steps and

604 space points to suppress the error introduced by the penalty, which roughly of the

same size as the tolerance. If in this case we chose e = 10�5 we would need around

74 space points (as in the PIM case), but then the constraint on the time step size

would become even more severe and we would require around 150000 steps. This

would negatively affect the overall computational time. A similar argument applies

to the PEX case.

However, the operator splitting method performs 1.5 times faster than the fastest

of the penalty modifications. If RBF–PUM had employed the operator splitting method,

instead of the IMEX penalty method, in the BENCHOP project, it would have been

significantly more competitive to finite difference methods.

In the BENCHOP project PBF–PUM equipped with the IMEX penalty was on

average 60 times slower than the FD operator splitting based methods. In our experi-

ment operator splitting based RBF–PUM is 20 times faster than PBF–PUM equipped

with the IMEX penalty. That is, by simple calculation we might conclude that if in

the BENCHOP project RBF–PUM instead employed the operator splitting method it

would have been on average just 3 times slower than the FD methods. But even this

3 times difference will be diminished in higher dimensions, because already for two-

dimensional problems RBF–PUM performed better than any of the FD methods [16].

Figure 5.2 displays the error profiles for the given four methods. We can see that

towards the boundaries the errors are increasing. This is caused by the use of the

adapted grid in combination with equal size partitions. The outer partitions contain

fewer computational nodes, consequently the local approximants are less accurate.

Underlying asset value
80 85 90 95 100 105 110 115 120

E
rr

o
r

10
-6

10
-5

10
-4

10
-3

PEX
PIMEX
PIM
OS

Fig. 5.2 The single-asset case. Relative error profiles of the operator splitting method and the three ver-

sions of the penalty method.
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5.3 The double-asset case

Similarly, we evaluate the solution at three points x = [90100; 100100; 100110],
which correspond to “in-the-money”, “at-the-money” and “out-of-the-money” cases.

The strike price K = 100, the volatility σ1 = σ2 = 0.15, the correlation between the

assets ρ = 0.5, the risk-free interest rate r = 0.03, and the time of maturity T = 1 year.

Table 5.3 The American put option reference values and the difference V �Vr for the approximations for

two underlying asset. The grid sizes and the execution times for the operator splitting method and for the

implicit penalty method are also presented. The ⇤ denotes the reference solution.

Values

Method
p

N ⇥ Nt Time (s) x = [90,100] x = [100,100] x = [100,110]
COS⇤ - - 6.649395 4.051099 2.325955

PIM 73 ⇥ 22 62.9980 0.000173 0.000115 0.000105

OS 76 ⇥ 160 14.6647 0.000366 0.000420 -0.000054

For the two-dimensional experiments we keep only one version of the penalty

method—the implicit version—because it performed better for the one-dimensional

problem. In Table 5.3, we can see the reference option values obtained by the COS

method [12] (based on a cosine expansion) and the difference V �Vr between the

approximated values and the reference values, together with the “minimal” grid sizes,

which allow for getting the error down to 10�4 at the three specified points, and the

execution times in seconds. In this test, the advantage of the operator splitting method

over the penalty method becomes even more evident. The OS method is 4 times more

efficient than PIM.

Fig. 5.3 The double-asset case. Left: The error contour in logarithmic scale for the implicit penalty

method. Right: The error contour in logarithmic scale for the operator splitting method. The black dashed

line denotes the strike.
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In Figure 5.3 we plot contours of the error in the option values in logarithmic

scale. We see that the error is larger in the lower left and in the upper right corners.

This depends on the lower accuracy of the local approximants in the partitions cov-

ering those areas, because they contain fewer computational node points.

5.4 The multi-asset case

We do not possess a reference solution for the three-dimensional problem, therefore

we just display the price surface of an American option written on three assets (see

Figure 5.4), and option values at three points x= [90100 90; 100100 100; 110100110],
that correspond to ‘in-the-money”, “at-the-money” and “out-of-the-money” cases

(see Table 5.4). The strike price K = 100, the volatility σ1 = σ2 = σ3 = 0.15, the cor-

relation between the assets ρ12 = ρ13 = ρ23 = 0.5, the risk-free interest rate r = 0.03,

and the time of maturity T = 1 year.

The calculations are only performed for the operator splitting method, because

the execution time of the implicit penalty method becomes unreasonably long even

with only a few grid nodes per dimension. Hence, it makes the use of the implicit

penalty method computationally unfeasible, while the operator splitting method al-

lows computations on moderately large numbers of grid nodes per dimension (⇡ 40)

within reasonable time. Based on the experience from the one- and two-dimensional

problems, this number of nodes would allow for calculating the price up to the third

decimal digit, i.e., sufficiently accurately.

Fig. 5.4 Left: Visualisation of the three-dimensional option price surface. Right: Option values evaluated

on the cube [80,120]3. The bars denote option values, and the axes denote values of the three underlying

assets.
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Table 5.4 Option values of an American put option written on three assets obtained by the operator split-

ting method.

Values

Method x = [90,100,90] x = [100,100,100] x = [110,100,110]
OS 7.536933 3.727650 1.673915

5.5 Convergence

To validate that the methods are numerically well-behaved we study the error con-

vergence of the OS and PIM methods in the one- and two-dimensional cases with

respect to the number of grid points. The error is taken as the maximum of the rel-

ative errors at the three points indicated above. We also consider the execution time

with respect to the number of computational nodes per dimension. The shape param-

eter and the number of partitions are kept fixed (see Table 5.1 for the values) while

the convergence is being tested.

All the methods locally exhibit a high algebraic convergence rate (see Figure 5.5),

which is expected for RBF based methods [13]. Although the implicit penalty method

converges a little faster than the operator splitting method, it is slower in terms of run

time. The reason is that PIM performs Newton iterations in order to deal with the

non-linearity in each time step.

Fig. 5.5 Left: The error convergence with respect to the number of points per dimension in logarithmic

scale. Right: The execution time with respect to the number of points per dimension in logarithmic scale.

Ni = N in the one-dimensional case and Ni =
p

N in the two-dimensional case.

The execution time for both methods is almost independent of the number of

points in the single-asset case, because the time spent on solving the system is negli-

gible compared with the time for construction of local RBF matrices. In the double-

asset case, solving the system of equations becomes the most time consuming opera-
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tion, and we observe a nearly quadratic growth of the run time with the total number

of grid points (4th order growth corresponding to
p

N) for both methods, which goes

in line with the theory for sparse banded matrices. The total theoretical number of

operations to solve the system in both cases would be O(N p2), where p is the band

width of the matrix [5]. In our case the band width is roughly proportional to the

square root of the total size, i.e., p2 ⇠ N. That is, the total cost would be proportional

to O(N2).

6 Conclusion

The operator splitting approach for pricing American options has been extended to

the radial basis function partition of unity method. It has been shown suitable for

multi-asset options. The penalty approach has been implemented in three versions:

implicit, implicit-explicit and explicit. Previously the implicit-explicit formulation

has been commonly used with radial basis functions [3,13,14], because it allowed to

avoid solving a non-linear problem, while enforcing a “rather mild” constraint on the

time step size, which still led to unnecessary extra calculations in the time integration.

This work shows that, if the partition of unity technique is employed, the implicit

version should be preferred. The Newton method requires only a few iterations to

converge regardless of the problem dimension. Thus, it allows to avoid restriction of

the time step by the penalty size and preclude unnecessary calculations.

The operator splitting method has been compared with its penalty counterparts,

where we could observe a significant advantage of the OS method in terms of compu-

tational time. In three dimensions and higher, only the OS method is practically use-

ful, because the execution times for the penalty methods become unreasonably long.

We have also studied the convergence of the OS and the PIM methods in one and

two dimensions. The methods are consistent with the change of grid sizes and exhibit

high algebraic convergence rates, that is characteristic for localised RBF methods.

In conclusion, we can say that if RBF–PUM had been used in combination with

the operator splitting approach in the BENCHOP project, the results of RBF–PUM

would have been comparable to the FD methods. We also assume that it will be more

beneficial to use the operator splitting method with RBF–PUM rather than with FD

methods for pricing options written on several assets, because radial basis function

methods are better suited for higher-dimensional problems, due higher order accuracy

and ease of implementation.
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