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Abstract Meshfree methods based on radial basis function (RBF) approximation are of

interest for numerical solution of partial differential equations because they are flexible

with respect to the geometry of the computational domain, they can provide high order

convergence, they are not more complicated for problems with many space dimensions

and they allow for local refinement. The aim of this paper is to show that the solution of

the Rosenau equation, as an example of an initial-boundary value problem with multiple

boundary conditions, can be implemented using RBF approximation methods. We extend

the fictitious point method and the resampling method to work in combination with an RBF

collocation method. Both approaches are implemented in one and two space dimensions.

The accuracy of the RBF fictitious point method is analyzed partly theoretically and partly

numerically. The error estimates indicate that a high order of convergence can be achieved

for the Rosenau equation. The numerical experiments show that both methods perform well.

In the one-dimensional case, the accuracy of the RBF approaches is compared with that of

the corresponding pseudospectral methods, showing similar or slightly better accuracy for

the RBF methods. In the two-dimensional case, the Rosenau problem is solved both in a

square domain and in an irregular domain with smooth boundary, to illustrate the capability

of the RBF-based methods to handle irregular geometries.
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1 Introduction

The Rosenau equation has become an established research subject in the field of mathematical

physics since its introduction in the late 80s by Philip Rosenau [31]. The equation is intended

to overcome shortcomings of the already famous Korteweg–de Vries (KdV) equation [15]

in describing phenomena of solitary wave interaction. Knowledge about this interaction,

particularly when two or more wave packets called solitons are colliding with one another, is

indispensable in digital transmission through optical fibers. As data carriers, we need solitons

that interact “cleanly” in the sense that none of the solitons loose any information, shape,

or other conserved quantities, when they pass through each other. One may consult [7] for a

fascinating history behind this subject. The Rosenau equation in its general form is given by

ut + α(x, t)∆2ut = ∇ · g(u), (x, t) ∈ Ω × (0, T ], (1.1)

where Ω is a bounded domain in R
d (d ≤ 3), the coefficient α(x, t) ≥ α0 > 0 is bounded

in the domain Ω × [0, T ], and the nonlinear function g(u) is polynomial of degree q + 1,

q ≥ 1. Multiple boundary conditions are required at the boundary ∂Ω , such as

u(x, t) = f1(x, t), (x, t) ∈ ∂Ω × (0, T ], (1.2)

∂u

∂n
(x, t) = f2(x, t), (x, t) ∈ ∂Ω × (0, T ], (1.3)

where n is the outward normal direction from the boundary, and we need an initial condition

u(x, 0) = f0(x), x ∈ Ω.

The well-posedness of the Rosenau equation has been studied theoretically by Park [27,

28]. Yet in practice, the equation poses difficulties to solve numerically due to the presence

of non-linearity, high spatial derivatives, multiple boundary conditions, and mixed time and

space derivatives. Numerical studies based on Galerkin formulations can be found in [5,6,

21,24], and numerical studies based on finite difference methods are found in [1,4,19,26].

The objective of this paper is to derive numerical methods based on radial basis function

(RBF) collocation methods [14,22] for the Rosenau equation, that can be applied to problems

in one, two, and three space dimensions, for non-trivial geometries. These methods will also

be applicable to other higher order partial differential equations. We derive and implement a

fictitious point RBF (FP–RBF) collocation method and a resampling RBF (RS–RBF) collo-

cation method, and perform experiments in one and two space dimensions. We investigate the

accuracy and behavior of the derived methods theoretically and numerically. We also com-

pare the RBF methods with pseudospectral (PS) methods [12,35] with respect to accuracy

in one space dimension.

In this paper we are using global RBF approximation as a test case for implementation of

multiple boundary conditions in general geometries. The current direction in the research on

RBF approximation methods for PDEs is towards the use of localized RBF approximation

methods. The main categories are stencil-based methods (RBF-FD) [2,11] and partition of

unity methods (RBF–PUM) [23,32]. The (FP–RBF) technique should carry over in both
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cases, with minor differences in the implementation, whereas the (RS–RBF) method should

be applicable to RBF–PUM, but not as easily to RBF-FD.

The outline of the paper is as follows: In Sect. 2, a basic RBF collocation scheme is

introduced. Section 3 describes different approaches to handle the multiple boundary con-

ditions. Then in Sect. 4 the theoretical approximation properties of the RBF method for the

one-dimensional Rosenau problem are discussed, while the details of the analysis are given

in Appendix A. The implementation aspects are discussed in Sect. 5, followed by numerical

results in Sect. 6. Finally, Sect. 7 contains conclusions and discussion.

2 The Basic RBF Collocation Scheme

The approaches for handling multiple boundary conditions implemented in this paper are

combined with an RBF collocation method. In this section, we introduce the general notation

and quantities we need for RBF approximation of (time-dependent) PDEs. We start from given

scalar function values u(x j ) at scattered distinct node locations x j ∈ R
d , j = 1, . . . , N . We

assume that the function is approximated by a standard RBF interpolant

s(x) =
N

∑

j=1

λ jφ(‖x − x j‖), (2.1)

where ‖·‖ is the Euclidean norm, φ is a real-valued function such as the inverse multiquadric

φ(r) = 1√
ε2r2+1

. The coefficients λ j ∈ R are determined by the interpolation conditions

s(x j ) = u(x j ), j = 1, . . . , N . On matrix form we have

Aλ̄ = ū, (2.2)

where the matrix elements Ai j = φ(‖xi − x j‖), i, j = 1, . . . , N , the vector λ̄ =
[λ1, . . . , λN ]T , and ū = [u(x1), . . . , u(xN )]T . When solving a PDE, we prefer to work

with the discrete function values instead of the coefficients. Using (2.1) and (2.2) together,

we see that the interpolant can be written

s(x) = φ̄(x)λ̄ = φ̄(x)A−1ū, (2.3)

where φ̄(x) = [φ(‖x − x1‖), . . . , φ(‖x − xN ‖)], assuming that A is non-singular. This holds

for commonly used RBFs such as Gaussians, inverse multiquadrics and multiquadrics [25,33]

for distinct node points x j . We can furthermore, use (2.3) to identify cardinal basis functions

such that we can write the approximation on the FEM like form

s(x) = ψ̄(x)ū =
N

∑

j=1

ψ j (x)u(x j ), (2.4)

where φ̄(x)A−1 = ψ̄(x) = [ψ1(x), . . . , ψN (x)]. Because our final target is to solve PDEs,

we need to look at how to apply a linear operator L to the RBF approximation to compute

sL = [L s(x1), . . . , L s(xN )]T . In cardinal form, we get

L s(x) = L ψ̄(x)ū =
N

∑

j=1

L ψ j (x)u(x j ). (2.5)
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Using relation (2.3), the differentiation matrix ΨL = {L ψ j (xi )}i, j=1,...,N under operator

L is given by

ΨL = ΦL A−1, (2.6)

where ΦL = {L φ(‖xi − x j‖)}i, j=1,...,N .

For time-dependent PDE problems, we use the RBF approximation in space and then

discretize the time interval. The solution u(x, t) is approximated by

s(x, t) =
N

∑

j=1

ψ j (x)u j (t), (2.7)

where u j (t) ≈ u(x j , t) are the unknown functions to determine.

3 Dealing with Multiple Boundary Conditions

If we consider the one-dimensional version of equations (1.1)–(1.3) on a symmetric interval

x ∈ [−L , L] we have

ut + α(x, t)uxxxxt = gu(u)ux , (x, t) ∈ [−L , L] × (0, T ], (3.1)

with boundary conditions

u(±L , t) = f1(±L , t), t ∈ (0, T ], (3.2)

ux (±L , t) = f2(±L , t), t ∈ (0, T ]. (3.3)

Even for the one-dimensional case, how to implement multiple boundary conditions for a

time-dependent global collocation problem is not obvious. In our case, we need to enforce

two boundary conditions at each end point resulting in a total of four boundary conditions at

the two boundary points. Collocating the PDE at all interior node points leads to a situation

where we have more equations than node points. That is, unless we accept an overdetermined

system, we need to either increase the number of degrees of freedom or discard some of the

equations.

In fact, the subtleties of implementing multiple BCs are not tied to RBF methods. They have

been actively researched in conjunction with other global collocations methods, particularly

pseudospectral methods, since the 70s. We list the following five popular methods:

1. Mixed hard and weak BCs [17]

2. Spectral penalty method [16]

3. Transforming to lower order system [34]

4. Fictitious/ghost point method [13]

5. Resampling method [9]

In this paper, we only consider methods (3)–(5) as we currently do not have a way to find

penalty parameters for methods (1) and (2) that give numerically stable solutions.

3.1 Transforming to Lower Order System

A common approach when solving PDEs containing high order derivatives is to transform

them into a system with lower order derivatives. By letting w = ux , the Rosenau equa-

tion (3.1) is transformed into
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ut + α(x, t)wxxxt = wgu(u)

wt − uxt = 0

with boundary conditions u(±L , t) = f1(±L , t) and w(±L , t) = f2(±L , t). The advantage

of this method is that the Neumann conditions for u at the boundaries become Dirichlet

conditions for w. However, the system to solve becomes twice as large, as we need a total

of 2N degrees of freedom for u and w. Due to this reason, and especially for global RBFs

where differentiation matrices are dense, we are not pursuing this method. However, for

localized RBF methods, where differentiation matrices are sparse, this method may still be

worth trying.

3.2 Fictitious Point Method

Fictitious or ghost point methods have been commonly used as a way to enforce multiple

boundary conditions in finite difference methods. The implementation for global collocation

methods such as pseudospectral methods is due to Fornberg [13].

Let −L = x2 < x3 < · · · < xN−1 = L be distinct node points. The Dirichlet condi-

tions (1.2) can be imposed by fixing the values for u(x2) and u(xN−1), but for the Neumann

conditions (1.3) we use the fictitious point approach proposed by Fornberg [13], and introduce

two additional points at some arbitrary locations denoted by x1 and xN .

We introduce an RBF approximation s(x, t) as in (2.7), extended to include the fictitious

points, for the spatial approximation of the solution u(x, t),

s(x, t) =
N

∑

j=1

ψ j (x)u j (t). (3.4)

Loosely following the fictitious point approach, we will modify this ansatz so that the

boundary conditions are fulfilled. Conditions (1.2) are easily fulfilled by replacing u j (t)

with f1(x j , t) for j = 2, N − 1. For the conditions (1.3), we need to formally solve a linear

system. Define the vectors S f = [u1(t), uN (t)]T with values at the two fictitious points,

and Sd = [u3(t), . . . , uN−2(t)]T containing the approximate solution values at points in the

interior of the domain, then we have

(

ψ ′
1(x2) ψ ′

N (x2)

ψ ′
1(xN−1) ψ ′

N (xN−1)

)

︸ ︷︷ ︸

B f

S f +
(

ψ ′
3(x2) · · · ψ ′

N−2(x2)

ψ ′
3(xN−1) · · · ψ ′

N−2(xN−1)

)

︸ ︷︷ ︸

Bd

Sd

+
(

ψ ′
2(x2) ψ ′

N−1(x2)

ψ ′
2(xN−1) ψ ′

N−1(xN−1)

)

︸ ︷︷ ︸

Bb

F1(t) = F2(t), (3.5)

where F j (t) = [ f j (x2, t), f j (xN−1, t)]T . Inserting the boundary values F1(t) and the

expression we get for S f by solving (3.5) into (3.4) leads to

s(x, t) =
(

[ψ3(x), . . . , ψN−2(x)] − [ψ1(x), ψN (x)] B−1
f Bd

)

Sd

+
(

[ψ2(x), ψN−1(x)] − [ψ1(x), ψN (x)] B−1
f Bb

)

F1(t)

+ [ψ1(x), ψN (x)] B−1
f F2(t). (3.6)
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This expression is awkward to work with directly. We introduce the shorthand notation

s(x, t) =
N−2
∑

j=3

ψ̃ j (x)u j (t) + F(x, t), (3.7)

where ψ̃ j (x) and F(x, t) can be directly identified from (3.6). In this simple two point

boundary case, we can actually derive the explicit form of the modified basis for illustration.

This yields

ψ̃ j (x) = ψ j (x) −
ψ ′

N (xN−1)ψ
′
j (x2) − ψ ′

N (x2)ψ
′
j (xN−1)

ψ ′
N (xN−1)ψ

′
1(x2) − ψ ′

N (x2)ψ
′
1(xN−1)

ψ1(x)

+
ψ ′

1(xN−1)ψ
′
j (x2) − ψ ′

1(x2)ψ
′
j (xN−1)

ψ ′
N (xN−1)ψ

′
1(x2) − ψ ′

N (x2)ψ
′
1(xN−1)

ψN (x). (3.8)

In order to use the RBF approximation (3.7) for a PDE problem, we need to compute the

effect of applying a spatial differential operator L at the interior node points. That is, we

need a method to evaluate L ψ̃ j (xi ), i, j = 3, . . . , N −2, and L F(xi , t), i = 3, . . . , N −2.

This is done in two steps. First, we use (2.6) to compute ΨL for interior node points xi ,

i = 3, . . . , N − 2. Note however that we include all basis functions ψ j (x), j = 1, . . . , N .

Then we extract the columns pertaining to the fictitious points into ΨL , f , the columns

pertaining to the boundary points into ΨL ,b, and the remaining columns into ΨL ,d . Then the

modified differentiation matrix and the contribution in the forcing function can be computed

as

Ψ̃L = ΨL ,d − ΨL , f B−1
f Bd , (3.9)

[FL (x3, t), . . . , FL (xN−2, t)]T = (ΨL ,b − ΨL , f B−1
f Bb)F1(t) + ΨL , f B−1

f F2(t).

(3.10)

Note that from (2.6) and the definitions above, if no operator is applied, we have ΨI,d = I and

ΨI, f = ΨI,b = 0 leading to F(xi , t) = Ft (xi , t) = 0. We use this to simplify all subsequent

expressions where the RBF approximation (3.7) or its time derivative are evaluated at the

node points.

Collocating the modified RBF approximation (3.7) with the PDE (1.1) at the node points

leads to the system of ODEs

u′
i (t) +

N−2
∑

j=3

α(xi , t)
d4ψ̃ j

dx4
(xi )u

′
j (t) =

N−2
∑

j=3

gu(ui (t))
dψ̃ j

dx
(xi )u j (t)

− α(xi , t)Fxxxxt (xi , t) + gu(ui (t))Fx (xi , t), i = 3, . . . , N − 2. (3.11)

In matrix form, we get the method of lines formulation

(I + Aα(t)Ψ̃xxxx )
︸ ︷︷ ︸

Q(t)

S′
d = Gu(Sd)Ψ̃x

︸ ︷︷ ︸

D(Sd )

Sd + Gu(Sd)Fx (t) − Aα(t)F ′
xxxx (t)

︸ ︷︷ ︸

F(Sd ,t)

, (3.12)

where the diagonal coefficient matrices are

Aα(t) = diag(α(x3, t), . . . , α(xN−2, t)),

Gu(Sd) = diag(gu(u3(t)), . . . , gu(uN−2(t))),
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and the vectors in the right hand side are defined as FL (t) = [FL (x3, t), . . . , FL (xN−2, t)]T .

The problem (3.12) can be solved by employing a solution method for nonlinear ODE sys-

tems.

The mass matrix Q(t) is in general invertible but non-singularity cannot be guaranteed.

Kansa [20] argued that if the centers of the RBFs are distinct and the PDE problem is well-

posed, matrices discretizing spatial operators are generally found to be non-singular. Hon

and Schaback [18] showed that occurrences of singular matrices are very rare, but do exist.

When α(x, t) is constant, the mass matrix is constant over time. Then we can LU-factorize

the matrix once and use this factorization throughout the time stepping algorithm.

An alternative to the derivation above is to use the original cardinal basis functions, and

include the boundary condition equations in the final system. Define rectangular identity

matrices Ik such that Ik(Sd , Sb, S f )
T = Sk , for k = d, b, f . Also, we order the columns in

the differentiation matrices in accordance with the order of the unknowns such that ΨL =
[ΨL ,d , ΨL ,b, ΨL , f ]. Then we can express (3.12) as

⎛

⎝

Id + AαΨxxxx

0

0

⎞

⎠

⎛

⎝

S′
d

S′
b

S′
f

⎞

⎠ =

⎛

⎝

Gu(Sd)Ψx

Ib

Bd Bb B f

⎞

⎠

⎛

⎝

Sd

Sb

S f

⎞

⎠ −

⎛

⎝

0

F1(t)

F2(t)

⎞

⎠ . (3.13)

In this case, the mass matrix is singular and then a differential algebraic solvers is required

to compute the solution of the resulting system of differential algebraic equations (DAE).

3.3 Resampling Method

In the resampling method, we do not add any points as for the fictitious point method of the

previous section. The four boundary conditions are still enforced at the boundary points as

algebraic equations, but the PDE is instead collocated at N − 4 auxiliary interior points. Let

the solution u(x, t) be approximated in Lagrange form by

s(x, t) =
N

∑

j=1

ψ j (x)u j (t), (3.14)

where x1 and xN are boundary points and x2, . . . , xN−1 are interior points. The four algebraic

equations arising from the boundary conditions are

u1(t) = f1(x1, t), uN (t) = f1(xN , t), (3.15)

N
∑

j=1

dψ j

dx
(x1)u j (t) = f2(x1, t),

N
∑

j=1

dψ j

dx
(xN )u j (t) = f2(xN , t). (3.16)

To write the equations on matrix form, we again divide the unknown functions into parts, Sd

for interior node points and Sb for boundary node points. Then the boundary conditions can

be expressed as
(

0 Ib

B̃d B̃b

) (

Sd

Sb

)

=
(

F1(t)

F2(t)

)

, (3.17)

where the boundary condition matrices B̃d and B̃b are analogous to those in the previous

section, but with slightly different basis functions as there are no fictitious points. We have

N unknown functions, and we have used four equations for the boundary conditions. This

means that we need N − 4 additional equations. The idea in the resampling method is to
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collocate the PDE at N −4 auxiliary interior points, instead of collocating at the node points.

We define the auxiliary points x̃i , i = 1, . . . , N −4 and collocate the PDE to get the equations

N
∑

j=1

[

ψ j (x̃i ) + α(x̃i , t)
d4ψ j

dx4
(x̃i )

]

u′
j (t) =

N
∑

j=1

[

gu

(
N

∑

k=1

ψk(x̃i )uk(t)

)

dψ j

dx
(x̃i )

]

u j (t),

(3.18)

Define the resampling matrices Ψ R
L

= {L ψ j (x̃i )}i=1,...,N−4, j=2,...,N−1,1,N (columns

ordered according to the unknowns). The resampled equations (3.18), together with the

algebraic equations (3.17), yield an N × N DAE of index 1,
⎛

⎝

Ψ R + ÃαΨ R
xxxx

0

0

⎞

⎠

(

S′
d

S′
b

)

=

⎛

⎝

Gu(S̃)Ψ R
x

0 Ib

B̃d B̃b

⎞

⎠

(

Sd

Sb

)

−

⎛

⎝

0

F1(t)

F2(t)

⎞

⎠ , (3.19)

where Ãα = diag(α(x̃1, t), . . . , α(x̃N−4, t)) and S̃ = Ψ R

(

Sd

Sb

)

.

The system of equations (3.19) can be solved using a differential algebraic solver. See

DASPK [3,29]. An example of how this can be implemented in MATLAB is given in Sect. 5.

3.4 Generalization to More Space Dimensions

The main differences when moving to more than one space dimensions is that we have a

boundary curve or a boundary surface that is discretized in the same way as the interior of

the domain instead of just two boundary points. The formulation of the two methods is in

all essential parts the same, and the formulations (3.13) and (3.19) are valid in the same

form, but when we before had two boundary points and two fictitious points, we instead have

Nb boundary points and Nb fictitious points. Similarly, for the resampling method, we have

2Nb boundary conditions, and therefore we collocate the PDE at N − 2Nb auxiliary points.

Experiments for problems in two space dimensions are presented in Sect. 6.

4 Error Estimates

We have derived semi-discrete error estimates for the one-dimensional Rosenau problem and

the FP–RBF approach. The details of the analysis are provided in Appendix A. Exponential

convergence estimates for the spatial part of the error are based on theory for global RBF

interpolants [30], and expressed in terms of the fill distance

h = sup
x∈Ω

min
x j ∈X

‖x − x j‖. (4.1)

The estimates for the error growth in time are more problematic. The global error estimate

is given by

‖E(t)‖∞ ≤ C(t)e
− γ√

h eC3(t) max
0≤τ≤t

‖u(τ )‖N (Ω), (4.2)

where the norm ‖ · ‖N (Ω) is the so called native space norm connected with the chosen type

of RBF. This estimate would be fine if the function C3(t) was small. This part of the estimate

is connected with the non-linear term and has the form

C3(t) = C̃q‖Q−1‖ max(‖Ψ̃x‖, ‖Bx‖)r(t), (4.3)
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Fig. 1 An example of a node

distribution for the fictitious point

method in the one-dimensional

case

↑↑ boundary points

↓↓
fictitious points

where the function r(t) represents a polynomial growth factor in time. The function C3(t)

becomes large due to the matrix norms. When estimated separately like this, the product

‖Q−1‖‖Ψ̃x‖ becomes large, growing as O(h−1) (cf. Sect. A.5). The way we have derived the

estimates does not easily allow for an estimate that takes the norm of the product ‖Q−1Ψ̃x‖
instead. However, this is in principle the way the matrices appear in the critical terms, and if

the product norm is investigated numerically, it turns out to be small.

Because of this overestimate of the time growth, the error estimates are not quantitatively

useful, but they provide a qualitative insight into how the different errors interact, and illustrate

the difficulties of bounding the non-linear terms in an effective way.

5 MATLAB Implementation

In this section, sample MATLAB implementations of the fictitious point and resampling RBF

methods for the one-dimensional Rosenau equation (3.1)–(3.3) are presented and discussed.

We use an example with a known solution. For g(u) = 10u3 − 12u5 − 3
2

u and α(x, t) = 0.5

it holds that u(x, t) = sech(x − t) is a solution [28]. For both methods, equally spaced nodes

are used, and the spatial domain is [−L , L].

5.1 Implementation of the Fictitious Point Method

Following the idea of the fictitious point method in Sect. 3.2, we complement the interior

and boundary RBF nodes with two (the number of boundary nodes) fictitious points outside

the computational domain, see Fig. 1 for an illustration.

We generate the differentiation matrices using the modified basis functions according to

Equation (3.9). Collocating the Rosenau equation by applying the modified differentiation

matrices leads to ODE system (3.12), which we here solve by using the built-in MATLAB

ODE solver ode15s. The two functions below constitute a complete MATLAB implementa-

tion of the problem.

function [S,x,t]=fictitious(N,L,T)

% N : The number of node points

% L : [-L,L] is the domain

% T : Final time

% Exact solution and derivatives for test case

u = @(x,t) sech(x-t);

ux = @(x,t) sech(t-x).*tanh(t-x);

ut = @(x,t) -sech(t-x).*tanh(t-x);

uxt = @(x,t) sech(t - x).ˆ3 - sech(t - x).*tanh(t - x).ˆ2;

% Generate nodes x. Map x to [-L,L] such that x(2) = -L, x(N-1) = L

% and x(1), x(N) are the left and right fictitious points respectively.

x = linspace(-L,L,N);

linmap = @(x,x1,x2,y1,y2) (y2-y1)*(x-x1)/(x2-x1) + y1;

x = linmap(x,x(2),x(N-1),-L,L); x = x(:);

% Differentiation matrices for inverse multiquadric RBF

phi = @(ep,r) 1./sqrt(1+(ep*r).ˆ2);

123



1564 J Sci Comput (2018) 75:1555–1580

ep = 0.08/min(abs(diff(x))); % Shape parameter

dx = bsxfun(@minus,x,x.’); A = phi(ep,dx);

Dx = (-epˆ2*dx.*A.ˆ3)/A; % 1st Derivative matrix

D4x = (3*epˆ4*(3-24*(ep*dx).ˆ2+8*(ep*dx).ˆ4).*A.ˆ9)/A; % 4th Derivative

Bf = Dx([2 N-1],[1 N]); Bd = Dx([2 N-1],3:N-2); Bb = Dx([2 N-1],[2,N-1]);

% Modify differentiation matrices

Dxd = Dx(3:N-2,3:N-2) - (Dx(3:N-2,[1 N])/Bf)*Bd;

Dxb = [Dx(3:N-2,[2 N-1]) - (Dx(3:N-2,[1 N])/Bf)*Bb Dx(3:N-2,[1 N])/Bf];

D4xd = D4x(3:N-2,3:N-2) - (D4x(3:N-2,[1 N])/Bf)*Bd;

D4xb = [D4x(3:N-2,[2 N-1]) - (D4x(3:N-2,[1 N])/Bf)*Bb D4x(3:N-2,[1 N])/Bf];

% Initial condition

S0 = u(x(3:N-2),0); opt = odeset(’RelTol’,1e-10);

% Solve the ODE for the approximate solution S

fun = @(t,S) odefun(t,S,x,N,Dxd,Dxb,D4xd,D4xb,u,ux,ut,uxt);

[t,S] = ode15s(fun,[0 T],S0,opt);

% Plot the solution for all times

figure(1),clf,plot(x(3:N-2),S)

% Plot the error at the final time

E = abs(S(end,:)-u(x(3:N-2),T)’);

figure(1),clf,plot(x(3:N-2),E)

function Sprime = odefun(t,S,x,N,Dxd,Dxb,D4xd,D4xb,u,ux,ut,uxt)

Fx = [u(x([2 N-1]),t); ux(x([2 N-1]),t)];

F4xt = [ut(x([2 N-1]),t); uxt(x([2 N-1]),t)];

Gu = diag(-1.5 - 60*S.ˆ4 + 30*S.ˆ2);

Sprime = (eye(N-4) + 0.5*D4xd)\(Gu*Dxd*S + Gu*Dxb*Fx - 0.5*D4xb*F4xt);

It can be noted that when we use the modified basis functions, we need to provide the

time derivatives of the boundary conditions as well as the boundary conditions themselves.

This is not needed with the alternative formulation (3.13), but instead the system is stated in

DAE form.

5.2 Implementation of the Resampling RBF Method

For the resampling method, we start directly from the DAE form derived in Sect. 3.3, where

the four boundary conditions enforced at the boundary points constitute the algebraic part.

The N −4 auxiliary points where the PDE is enforced are uniformly distributed in the interior

of the computational domain and do not in general coincide with the RBF node points where

the solution is sought. We organize the solution vector as S = [Sd Sb]T , where as before, Sd

contains solution values at the interior RBF nodes, and Sb contains the two boundary values.

Then the DAE discretization scheme can be schematically be displayed as

Ψ R + 1
2
Ψ R

xxxx

S′ =

Gu(S̃)Ψ R
x

S −

0

0
0 · · · 0 1 0

0 · · · 0 0 1
F1(t)

0 B̃ F2(t)

,

where Ψ R is an N − 4 × N resampling matrix that provides values at the auxiliary points

given values at the node points, S̃ = Ψ R S, Gu(S̃) is an (N − 4) × (N − 4) diagonal matrix,
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Ψ R
x and Ψ R

xxxx are N − 4 × N resampled first and fourth derivative matrices respectively.

The derivative boundary condition matrix B̃ = (B̃d B̃b) is a 2 × N matrix, see Eq. (3.17)

for details.

Both ODEs and DAEs of index 1 can be solved in MATLAB using ode15s, previously

employed for the fictitious point method. One may also use the syntactically similar open

source software OCTAVE and there use dasspk as DAE solver. The following two functions

show the MATLAB implementation of the resampling RBF method.

function [S,x,t]=resampling(N,L,T)

% N : The number of node points

% L : [-L,L] is the domain

% T : Final time

% Exact solution and derivatives for test case

u = @(x,t) sech(x-t);

ux = @(x,t) sech(t-x).*tanh(t-x);

% Generate N uniform RBF nodes with boundary pts last

x = linspace(-L,L,N).’;

x = [x(2:end-1); x([1 end])];

% Generate N-4 uniform auxiliary interior points

xt = linspace(-L,L,N-2).’; xt([1 end]) = [];

% Differentiation matrices for inverse multiquadric RBF

phi = @(ep,r) 1./sqrt(1+(ep*r).ˆ2);

ep = 0.08/(x(2)-x(1)); % Shape parameter

r = bsxfun(@minus,x,x.’); A = phi(ep,r);

% First derivative matrix at x = -L and x = L

r = bsxfun(@minus,x([N-1 N]),x.’);

Bt = (-epˆ2*r.*phi(ep,r).ˆ3)/A;

% Rectangular projection from x to xt

r = bsxfun(@minus,xt,x.’); R = phi(ep,r);

PRx = (-epˆ2*r.*R.ˆ3)/A; PR = R/A;

PR4x = (3*epˆ4*(3-24*(ep*r).ˆ2+8*(ep*r).ˆ4).*R.ˆ9)/A;

% Initial condition

S0 = u(x,0);

M = [(PR + 0.5*PR4x); zeros(4,N)];

opt = odeset(’mass’,M,’masssing’,’yes’,’RelTol’,1e-9);

[t,S] = ode15s(@(t,S) daefun(t,S,x,N,PR,PRx,Bt,u,ux),[0 T],S0,opt);

% Plot the solution for all times

ind = [N-1 1:N-2 N];

figure(1),clf,plot(x(ind),S(:,ind))

% Plot the error at the final time

E = abs(S(end,:)-u(x,T)’);

figure(2),clf,plot(x(ind),E(ind))

function Sprime = daefun(t,S,x,N,PR,PRx,Bt,u,ux)

F = [zeros(N-4,1); u(x([N-1 N]),t); ux(x([N-1 N]),t)];

Gu = diag(- 60*(PR*S).ˆ4 + 30*(PR*S).ˆ2 - 1.5);

Sprime = [Gu*PRx; [zeros(2,N-2) eye(2,2)]; Bt]*S - F;

6 Numerical Results

In this section, we perform numerical experiments to investigate the accuracy and conver-

gence of the proposed schemes. Both one-dimensional and two-dimensional test cases are
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Fig. 2 Exact and numerical solutions based on the FP–RBF method with L = 1 and N = 30 (left) and

L = 10 and N = 100 (right) with ε = 0.08
h

considered. In all tests, the inverse multiquadric RBF is used. The shape parameter values are

chosen using a parametric relation such that they fall within the region where the method is

stable, while making the solution as accurate as possible. For the one-dimensional test case,

we compare the results with those of a pseudo-spectral resampling (RS–PS) and a pseudo-

spectral fictitious point (FP–PS) method. We have not included the code here, but it can be

downloaded from the authors’ web pages.

6.1 The One-Dimensional Case

We consider the same test problem as in the sample implementations in Sect. 5, with g(u) =
10u3 − 12u5 − 3

2
u and known exact solution u(x, t) = sech(x − t). Equispaced node

distributions over the interval [−L , L] are used for the RBF methods. The total number

of points N includes the fictitious points in the FP–RBF case. The initial and boundary

conditions are taken from the exact solution.

The exact solution over the interval [−L , L] for L = 1 and L = 10 is shown at different

times t together with the numerical solution using the FP–RBF method in Fig. 2. The solution

is a pulse that travels to the right with time.

In Fig. 2, a shape parameter ε = 0.08
h

is used. This relation is experimentally determined

to ensure stable computations and high solution accuracy. Figure 3 shows how the errors of

the two RBF methods vary with ε . Using the formula leads to ε = 1.16 and ε = 0.4 for

the two cases, which is within the best region for each method. It can be noted that the good

range of ε is narrower for the resampling method and that both methods rapidly become

ill-conditioned when ε is too small.

To illustrate the capability of the proposed methods, we start with comparing the approxi-

mation accuracy with that of the corresponding pseudo-spectral methods. The pseudo-spectral

methods employ the same number of Chebyshev nodes as the number of uniform nodes used

by the RBF methods. For a description of the implementations, see [9,13]. The absolute

errors for two different values of L are plotted in Fig. 4. As shown in the figure, the errors

of both the RBF based methods and the pseudo-spectral methods are similar in magnitude.

For the shorter interval, the RS–PS method has smaller errors near the boundaries, which

is consistent with the clustering of the Chebyshev nodes. However, for the larger interval,

where the solution is small at the boundary, this effect is not visible.
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Fig. 3 The L∞ error at time t = 1 as a function of the shape parameter ε for L = 1 and N = 30 (left) and

L = 10 and N = 100 (right)
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Fig. 4 Absolute error of the FP–RBF method, the RS–RBF method, the FP–PS and the RS–PS method at

time t = 1 for L = 1 and N = 30 (left) and for L = 10, N = 100 (right). For the RBF methods ε = 0.08
h

was used

The L∞ errors over time for the approximated solutions are illustrated in Fig. 5. If we

consider the global error estimate (A.41), and insert q = 4 (for this test case), the exponential

time-dependent growth factor becomes exp(C3((1 + t)1.12 − 1)/1.12). We do not know the

precise value of C3, but based on our experiments a value larger than one should be expected,

in which case the predicted growth would be at least two orders of magnitudes larger than

what is observed. However, as discussed in Sect. 4, this is expected to be an overestimate of

the true error growth. Both the accuracy and the growth rate of the errors of the four different

solutions are similar. For the shorter interval L = 1, the RS–RBF method is slightly worse

than the other three methods, while for the longer interval L = 10, both RBF methods are

slightly more accurate than the pseudo-spectral methods for longer times.

Figure 6 displays the convergence behavior as a function of N for the two RBF methods

compared with the PS methods. For all four methods, the highest attainable accuracy is almost

the same. When εh is constant, as in this experiment, we would expect the error to reach a

saturation level, but accuracy is also limited by conditioning, and this may be the effect that

we see here. In both cases, the FP–RBF method reaches the highest accuracy faster than the

RS–RBF method. The PS methods performs best for the short interval, and performs worse

than the RBF methods for the longer interval. One explanation for this can be that the node
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L = 10 and ε = 0.5 (right). Both RBF methods use uniform node distributions, while the PS method employs
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density for the Chebyshev nodes compared with the uniform nodes is lower in the interesting

region (middle of the domain) in this case.

6.2 Two-Dimensional Square Domain

In this section, we demonstrate how the flexibility of the RBF approximations allows us to

implement the FP–RBF method and RS–RBF method in a two-dimensional domain with

a similar effort as for the one-dimensional problem. Here, we do not compare with the

PS method, which is less straightforward to implement. We consider the square domain

Ω = [−L , L] × [−L , L] and the Rosenau equation (1.1) with α = 1, g(u) = u3 + u2 and

initial condition f0(x, y) = sech(x + y) and boundary conditions

f1(x, y, t) = sech(x + y − t), (6.1)

f2(x, y, t) = −sech(x + y − t)tanh(x + y − t), (6.2)
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Fig. 7 Resampling RBF approximate solution in the square domain Ω = [−2, 2]2 at time t = 1 (left) and

t = 3 (right) with n = 27 points and shape parameter ε = 0.9
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Fig. 8 A node distribution for the FP–RBF method, where the fictitious points are uniformly distributed

outside the domain (left) and a node distribution for the RS–RBF method with auxiliary points displayed in

black as ∗ (right) for a square computational domain

where the derivative in the second condition is taken as either ux or u y depending on which

part of the boundary is involved. For the two-dimensional test cases, we do not have any

analytical solutions. The approximate solution at two different times is displayed in Fig. 7.

We start from a uniform discretization of the domain Ω with n2 points. We denote the

number of interior points by Nd and the number of boundary points by Nb. For FP–RBF

we need to add Nb fictitious points outside the domain to enforce the Neumann boundary

conditions. Note that if we simply choose an extension of the uniform grid, the resulting

number of fictitious points is too large. The total number of points becomes N = Nd +2Nb =
(n−2)2 +2(4n−4) = (n+2)2 −8. For the RS–RBF method we generate N −2Nb auxiliary

points inside of the domain. Note that here the number of boundary points is modified (and

these are therefore not on the uniform grid) to make the total and auxiliary node numbers

compatible. If we choose Nb = 4(n −2)−4, then the number of auxiliary points is (n −4)2.

The total number of node points is N = Nd + Nb = (n − 2)2 + 4n − 12 = n2 − 8. Sample

node distributions for the two methods are displayed in Fig. 8.

According to the error estimate (A.41) for the FP–RBF method, we expect exponential

convergence in 1/
√

h for fixed ε . In practice, we often observe exponential convergence in

1/h. In Fig. 9, to make a fair comparison, we plot the error as a function of
√

N ∝ 1/h.

For this range of N -values, the conditioning is low enough to not influence the error, and

exponential convergence can be observed for both RBF methods. We see that the estimated
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Fig. 9 The error at time t = 1 against the square root of the number of points
√

N for L = 1 and ε = 1.6

(left) and L = 2 and ε = 0.9 (right). In both cases, errors are computed against a reference solution computed

with the FP–RBF method for n = 30, (N = 1016) (left), n = 32, (N = 1148) (right), the error is evaluated

at 25 × 25 interior points

slopes in the right subfigure are precisely double those in the left subfigures. If we take into

account that h is also twice as large for the case L = 2, we can conclude that the rate of

convergence in terms of 1/h is the same in both cases.

6.3 Two-Dimensional Irregular Domain with Smooth Boundary

We now take a step further in demonstrating the flexibility of the RBF based methods by

considering an irregular two-dimensional domain. As a test problem, we consider the domain

with boundary defined by the parametric equation

r(θ) = 1 + 0.06(sin(6θ) + sin(3θ)), θ ∈ [0, 2π). (6.3)

We also need the derivative of the boundary equation in order to compute the outward normal

direction n = (nx , ny), which is needed for the boundary conditions. We have

(nx , ny) =
r ′(θ)(sin(θ),− cos(θ)) + r(θ)(cos(θ), sin(θ))

√

r ′(θ)2 + r(θ)2
. (6.4)

We use a similar test problem as for the square domain with boundary Dirichlet data

f1(x, y, t) = sech(x + y − t). (6.5)

For the normal derivative condition, we impose

f2(x, y, t) = ∇u · n = −sech(x + y − t)tanh(x + y − t)(nx + ny). (6.6)

The approximate solution at three different times is shown in Fig. 10.

Sample node distributions for the FP–RBF and RS–RBF methods are illustrated in Fig. 11.

Just as for the square domain, N is the total number of points, where the number of fictitious

points outside the domain is Nb, i.e., N = Nd + 2Nb, and the number of auxiliary points

inside the domain in the resampling method is Nd − 2Nb.

The max error as function of
√

N for a fixed shape parameter value is illustrated in Fig. 12.

The reference solution is computed using the FP–RBF method with Nd = 547, and Nb = 84

nodes. The max error is estimated from evaluation at 540 radially uniformly distributed points

in the domain. The RS–RBF method is less accurate in this case even if it converges with
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Fig. 10 Resampling RBF approximate solution in the irregular domain with Nd = 386 interior points,

Nb = 70 boundary points using ε = 1.3 for t = 0.5 (left), t = 1 (middle), and t = 2 (right)
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Fig. 11 Sample node distributions with Nd = 386 and Nb = 70 for the irregular domain for the FP–RBF

method (left) and the RS–RBF method (right) with auxiliary points in black marked with ∗

Fig. 12 Error at time t = 1 as a

function of the square root of the

number of points
√

N where

ε = 1.3 for RS–RBF and ε = 1.5

for FP–RBF. The reference

solution is produced using the

fictitious point method with

N = 715 ≈ 26.742
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a similar rate. It has also been observed in other experiments in this section that it is more

sensitive to parameter values and method parameters.

Overall, the error trends are similar to those for the square domain, showing that the RBF

methods provide a well functioning generalization of both the fictitious point method and

the resampling method to general domains.
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7 Conclusion

The Rosenau equation, which is used as an application throughout this paper, is an example of

a non-linear PDE with multiple boundary conditions as well as mixed space-time derivatives.

Multiple boundary conditions provides an extra challenge when solving PDE problems. The

standard form of a typical collocation method assumes that one condition is imposed at

each node point/grid point. Hence, the additional conditions at the boundary nodes lead to a

mismatch between the number of conditions and the number of unknowns.

Two approaches to manage multiple boundary conditions that have been introduced for

spectral methods are fictitious point methods and resampling methods. In this paper we have

shown how to implement these approaches in the context of RBF collocation methods. From

numerical experiments for a one-dimensional test problem, we could see that the behavior

of the method with respect to accuracy in space and time is very similar to that of the

corresponding pseudo-spectral method.

For two-dimensional problems, already in a regular geometry such as the square, the

application of spectral methods becomes more complicated. Approximations are typically

based on tensor product grids, but if we use the one-dimensional extension techniques for

each grid line, again the number of extra conditions and extra points do not naturally match.

The problem can for example be resolved by choosing one of the directions for the corner

points, but then the approximations in the other direction needs to be of lower order.

We show that with the two RBF methods, due to the freedom of node placement, we

can distribute the fictitious points or the resampled nodes uniformly and symmetrically with

respect to the domain. Furthermore, we show that the concept can be transferred also to

irregularly shaped domains.

We have also analyzed the theoretical properties of the fictitious point RBF approximation

for the one-dimensional Rosenau equation. We could show that the spectral convergence of

the spatial approximation carries over to the PDE solution, while the growth of the error in

time in our estimate strongly depends on the bounds on the non-linear term.

To conclude, both the implemented approaches are promising for problems with multiple

boundary conditions, especially for geometries where spectral methods cannot easily be

applied. Global RBF approximations as the ones used here are competitive for problems in

one or two space dimensions, but the computational cost can become prohibitive for higher-

dimensional problems due to the need to solve dense linear systems. Therefore, an interesting

future direction is to see how resampling and fictitious point methods can be combined with

localized (stencil or partition based) RBF methods.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

A Details of Error Estimation

In this appendix, we drive the error bound of approximaion for the FP–RBF method of

Sect. 3.2. For the analysis, We assume that α > 0 is constant and that the function g is a

polynomial of degree q + 1 with q ≥ 1.
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A.1 ODE System for the Semi-discrete Approximation Error

We work with spatially discrete solution and approximation values evaluated at the interior

node points xi , i = 3, . . . , N − 2. We denote the exact solution vector and its derivatives by

UL (t) = (L u(x3, t), . . . , L u(xN−2, t))T . From the Rosenau equation (3.1), we have

U ′ + αU ′
xxxx = Gu(U )Ux , (A.1)

For the RBF approximation, we use (3.12), but to simplify notation we replace Sd with S

and the matrix Aα with the constant α.

(I + αΨ̃xxxx )S′ + αF ′
xxxx = Gu(S)Ψ̃x S + Gu(S)Fx . (A.2)

We introduce the auxiliary function z(x, t), which interpolates the exact solution at each time

and also satisfies the boundary conditions (1.2) and (1.3),

z(x, t) =
N−2
∑

j=3

ψ̃ j (x)u(x j , t) + F(x, t). (A.3)

We denote the auxiliary function vector by Z(t) and note that

ZL = Ψ̃L U + FL (A.4)

Furthermore, Z(t) = U (t), Z ′(t) = U ′(t), and Z(0) = S(0) = U (0), while ZL 
= UL .

We define the discrete interpolation error vector ε(t) = U (t) − Z(t). The interpolation

error itself is zero at the node points, but its derivatives εL are non-zero. By noting that

U (t) = ε(t) + Z(t) and by using (A.4) for the derivatives of Z(t), we can rewrite (A.1) as

U ′ + α(ε′
xxxx + Ψ̃xxxxU ′ + F ′

xxxx ) = Gu(U )(εx + Ψ̃xU + Fx ). (A.5)

Finally, we introduce the discrete error E(t) = U (t) − S(t), and subtract (A.2) from (A.5)

to get

(I + αΨ̃xxxx )
︸ ︷︷ ︸

Q

E ′ +αε′
xxxx = Gu(U )εx +Gu(U )Ψ̃xU −Gu(S)Ψ̃x S+(Gu(U )−Gu(S))Fx .

(A.6)

This equation can be seen as an ODE-system for the error E(t) by writing it as

QE ′(t) = H(t), (A.7)

where H(t) = −αε′
xxxx (t) + Gu(U )Ψ̃xU − Gu(S)Ψ̃x S + Gu(U )εx (t) + (Gu(U ) −

Gu(S))Fx (t). In the following, we will consider H(t) as a forcing function. For a discus-

sion of the non-singularity of Q, see Sect. 3.2. The system of ODEs (A.7) can be formally

integrated to yield

E(t) =
∫ t

0

Q−1 H(τ )dτ. (A.8)

In the following subsections, we will look into each part of the forcing function.

A.2 Estimates for the Non-linear Term

In order to determine the influence of the non-linear term on convergence and stability, we

consider the particular form g(u) = uq+1, q ≥ 1. This matches the functions typically used
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in the literature. Furthermore, we will use an estimate by Park from [28] showing that with

this form of g(u),

|u(x, t)| ≤ C(1 + t)1− q
5 , t > 0, x ∈ R. (A.9)

We can then form the following estimate

gu(u) = (q + 1)uq ≤ C̃(1 + t)q(1− q
5
), t > 0. (A.10)

Note that the exponent can never become larger than 1.25, which occurs at q = 2.5. For the

second derivative, we have

dgu

du
(u) = q(q + 1)uq−1 ≤ ˜̃

C(1 + t)(q−1)(1− q
5
), t > 0. (A.11)

If we instead consider a point s, close to u we have

dgu

du
(s) = q(q + 1)sq−1 = q(q + 1)(u + (s − u))q−1

= q(q + 1)

q−1
∑

p=0

(

q − 1

p

)

uq−1−p(s − u)p (A.12)

≤
q!

⌊ q−1
2

⌋!2

{

C(1 + t)(q−1)(1− q
5
)
∑q−1

p=0|u − s|p, q ≤ 5,

C(1 + t)(1− q
5
)
∑q−1

p=0|u − s|p, q > 5.
, t > 0, (A.13)

which allows the following estimate

|gu(u) − gu(s)| ≤ Cq(1 + t)q̃

q
∑

p=1

|u − s|p, (A.14)

where q̃ = max((q − 1)(1 − q
5
), (1 − q

5
)).

A.3 Term by Term Estimates for the Error Contributions

In this section, we are going to derive an estimate for the discrete approximation error. We

first note that H(t) is a sum over number of terms H j (t) and split the integral in (A.8) to get

‖E(t)‖∞ =
∥
∥
∥
∥

∫ t

0

Q−1 H(τ )dτ

∥
∥
∥
∥

∞
≤

∑

j

∥
∥
∥
∥

∫ t

0

Q−1 H j (τ )dτ

∥
∥
∥
∥

∞
.

For the first error term, we have H1(t) = −αε′
xxxx (t). Integration leads to

E1(t) = −α

∫ t

0

Q−1ε′
xxxx (τ )dτ = −αQ−1 (εxxxx (t) − εxxxx (0)) , (A.15)

then we can get the following estimate

‖E1(t)‖∞ ≤ |α|‖Q−1‖∞ max
0≤τ≤t

‖εxxxx (τ )‖∞. (A.16)
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The second error term that we consider is generated by H2(t) = Gu(U )εx (t), leading to

‖E2(t)‖∞ =
∥
∥
∥
∥

∫ t

0

Q−1Gu(U )εx (τ )dτ

∥
∥
∥
∥

∞

≤ ‖Q−1‖∞C̃ max
0≤τ≤t

‖εx (τ )‖∞

∫ t

0

(1 + τ)q(1− q
5
)dτ

= ‖Q−1‖∞C̃ max
0≤τ≤t

‖εx (τ )‖∞

(

(1 + t)q(1− q
5
)+1 − 1

q(1 − q
5
) + 1

)

(A.17)

where we used (A.10) for the term involving Gu(U ).

The final part focuses on the non-linear term and is the most complicated. We start by

rewriting the generating term

H3(t) = Gu(U )Ψ̃xU − Gu(S)Ψ̃x S + (Gu(U ) − Gu(S))Fx (t)

= Gu(U )Ψ̃x (U − S) + (Gu(U ) − Gu(S))(Fx (t) + Ψ̃x (U + (S − U ))). (A.18)

If we rewrite equation (3.10) in matrix form, the function Fx (t) can be expressed as

Fx (t) = Bx F(t) =
(

Ψx,b − Ψx, f B−1
f Bb Ψx, f B−1

f

)
(

F1(t)

F2(t)

)

. (A.19)

Using this, we can provide the first estimate for contribution to the error from the term H3(t)

given by (A.18)

‖E3(t)‖∞

=
∥
∥
∥
∥

∫ t

0

Q−1
(

Gu(U )Ψ̃x (U −S)+(Gu(U )−Gu(S))(Bx F(τ )+Ψ̃x (U +(S−U )))

)

dτ

∥
∥
∥
∥

∞

≤ ‖Q−1‖‖Ψ̃x‖
∫ t

0

‖Gu(U )‖‖U − S‖dτ

+ ‖Q−1‖‖Bx‖
∫ t

0

‖Gu(U ) − Gu(S)‖‖F(τ )‖dτ

+ ‖Q−1‖‖Ψ̃x‖
∫ t

0

‖Gu(U ) − Gu(S)‖‖U + (S − U )‖dτ. (A.20)

Using equations (A.9), (A.11), and (A.14) together with the inequality |U + (S − U )| ≤
|U | + |S − U | yields

‖E3(t)‖∞ ≤ ‖Q−1‖‖Ψ̃x‖
∫ t

0

C̃(1 + τ)q(1− q
5
)‖U − S‖dτ

+ ‖Q−1‖‖Bx‖
∫ t

0

Cq(1 + τ)q̃‖F(τ )‖
q

∑

p=1

‖U − S‖pdτ

+ ‖Q−1‖‖Ψ̃x‖
∫ t

0

Cq(1 + τ)q̃

q
∑

p=1

‖U − S‖p
(

C(1 + τ)(1− q
5
) + ‖U − S‖

)

dτ.

(A.21)
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Table 1 Values of the different

powers involved in the error

estimates

q (1 − q/5) q(1 − q/5) q̃ q̃(1 − q/5)

1 0.8 0.8 0.8 0.64

2 0.6 1.2 0.6 0.36

3 0.4 1.2 0.8 0.32

4 0.2 0.8 0.6 0.12

5 0 0 0 0

6 −0.2 −1.2 −0.2 0.04

7 −0.4 −2.8 −0.4 0.16

8 −0.6 −4.8 −0.6 0.36

9 −0.8 −7.2 −0.8 0.64

10 −1 −10 −1 1

Because this term contains the error in the right hand side, it is the most difficult one to

include in the error estimate. We simplify it as far as possible. First we write

‖E3(t)‖∞ ≤ ‖Q−1‖ max(‖Ψ̃x‖, ‖Bx‖)
∫ t

0

q+1
∑

p=1

bp(τ )‖E(τ )‖p dτ, (A.22)

where

b1(τ ) = C̃(1 + τ)q(1− q
5
) + Cq(1 + τ)q̃

(

‖F(τ )‖ + C(1 + τ)(1− q
5
)
)

(A.23)

bp(τ ) = Cq(1 + τ)q̃
(

‖F(τ )‖ + C(1 + τ)(1− q
5
) + 1

)

(A.24)

bq+1(τ ) = Cq(1 + τ)q̃ (A.25)

Then we make the observation that either the error is small and ‖E(τ )‖ ≥ ‖E(τ )‖p for

p > 1 or the error is larger than one, in which case ‖E(τ )‖q+1 ≥ ‖E(τ )‖p for p ≤ q . We

let ν = 1 or ν = q + 1, sum up the coefficients and pick the highest power of (1 + τ) to get

‖E3(t)‖∞ ≤ C̃q‖Q−1‖ max(‖Ψ̃x‖, ‖Bx‖)
∫ t

0

(1 + τ)q̃(1− q
5
)‖E(τ )‖ν dτ, (A.26)

where

C̃q = (q + 1)

(

2 + max
0≤τ≤t

‖F(τ )‖
)

max(C̃, Cq , CqC). (A.27)

Table 1 shows the different powers that are involved as a function of q . The final power in

the estimate grows with q .

A.4 Global Error Bound

By combining the error terms (A.16), (A.17) and (A.26), we get the following relation for

the error due to the spatial discretization

‖E(t)‖∞ ≤ C1 max
0≤τ≤t

‖εxxxx (τ )‖∞ + C2(t) max
0≤τ≤t

‖εx (τ )‖∞

+ C3

∫ t

0

(1 + τ)q̃(1− q
5
)‖E(τ )‖ν dτ, (A.28)
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where

C1 = |α|‖Q−1‖∞, (A.29)

C2(t) = C̃‖Q−1‖∞

(

(1 + t)q(1− q
5
)+1 − 1

q(1 − q
5
) + 1

)

, (A.30)

C3 = C̃q‖Q−1‖ max(‖Ψ̃x‖, ‖Bx‖). (A.31)

To convert this into an error estimate, we need the following Gronwall inequality [8]:

Lemma 1 (Gronwall inequality) Let the functions E(t), a(t) and k(t) ≥ 0 be continuous

functions defined for t ∈ [0, b]. We assume that for t ∈ [0, b] we have the inequality

E(t) ≤ a(t) +
∫ t

0

k(τ )En(τ ) dτ. (A.32)

Then for the case n = 1 it holds

E(t) ≤ a(t) +
∫ t

0

k(τ )a(τ )e
∫ t
τ k(u)du dτ. (A.33)

If the function a(t) is also non-decreasing, then

E(t) ≤ a(t)e
∫ t

0 k(τ ) dτ . (A.34)

For the case n ≥ 2

E(t) ≤ a(t)

[

1 − (n − 1)

∫ t

0

k(τ )an−1(τ ) dτ

] 1
n−1

, t ≤ βn, (A.35)

where βn = sup{t : (n − 1)
∫ t

0 k(τ )an−1(τ ) dτ < 1}.

In our case, it can easily be verified that the function

a(t) = C1 max
0≤τ≤t

‖εxxxx (τ )‖∞ + C2(t) max
0≤τ≤t

‖εx (τ )‖∞ (A.36)

is non-decreasing in time. For the case of small errors, n = ν = 1, and

∫ t

0

k(τ ) dτ = C3

∫ t

0

(1 + τ)q̃(1− q
5
) dτ = C3

(1 + t)q̃(1− q
5
)+1 − 1

q̃(1 − q
5
) + 1

, (A.37)

the Gronwall inequality leads to

‖E(t)‖∞ ≤
[

C1 max
0≤τ≤t

‖εxxxx (τ )‖∞ + C2(t) max
0≤τ≤t

‖εx (τ )‖∞

]

e
C3

(1+t)
q̃(1− q

5
)+1−1

q̃(1− q
5

)+1 . (A.38)

For the case of errors larger than one, we do not carry out the full derivation, but note that

the limit on the time interval becomes less severe when a(t) is small enough, which is the

case when the spatial resolution is high enough.

It remains to insert estimates for the derivatives of the RBF interpolation errors. These are

typically measured in terms of the fill distance h, which in one space dimension with uniform

nodes becomes h = 1
2
|x j+1 − x j |, and more generally for a domain Ω in d dimensions and

a node set X is defined as

h = sup
x∈Ω

min
x j ∈X

‖x − x j‖. (A.39)
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Fig. 13 The norm ‖Q−1‖∞ (top), the norm ‖Bx ‖∞ (bottom left), and the norm ‖Ψ̃x ‖∞ (bottom right) as a

function of h for εh = 0.4 (◦), εh = 0.5 (⋄), εh = 1 (�) and L = 10 (solid lines) and L = 5 (dashed lines)

Exponential estimates for inverse multiquadric interpolants are given in [30] provided that

Ω is a bounded domain with Lipschitz boundary that satisfies an interior cone condition.

‖εL ‖∞ ≤ ce−γ /
√

h‖u‖N (Ω), (A.40)

where the constant γ depends on the order of the differential operator L , the dimension d ,

and the shape parameter of the RBF ε , and c is a positive constant. The norm in the right

hand side denoted by ‖ · ‖N (·) is the native space norm. For more details about this norm

see [10,30].

Now, by inserting the interpolation error estimate (A.40) into the global error esti-

mate (A.38) we get

‖E(t)‖∞ ≤ C(t)e
− γ√

h e
C3

(1+t)
q̃(1− q

5
)+1−1

q̃(1− q
5

)+1 max
0≤τ≤t

‖u(τ )‖N (Ω). (A.41)

where C(t) = c(C1 + C2(t)). The final estimate tells us that the spatial RBF discretization

does allow for exponential convergence in h, but we should expect the error to grow in time.

For any finite interval t ∈ [0, T ] the growth in time is however bounded.

A.5 Numerical Investigation of the Matrix Norms in the Estimates

There are three different matrix norms that appear in equations (A.29)–(A.31) of the error

estimates. We do not have theoretical bounds for these, and therefore we perform a numerical

investigation of their behaviors. Based on previous experience of RBF approximation, we

have selected the following representation of the method parameters, the fill distance h, the

relative shape parameter value εh, and the (half) domain size L . In Fig. 13, the norms are

plotted as a function of h for different combinations of the parameters. The chosen values
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are such that they are reasonable for approximation. By choosing extreme values, different

behaviors can be observed. We see that the norm ‖Q−1‖ does not change much with h or

εh, but slightly with L . Both of the norms ‖Bx‖ and ‖Ψ̃x‖ grow as h−1, and we can observe

a little bit of instability in the value for small ε . This rate is what would be expected for a

first derivative such as is represented by these matrices. Changing L has a very small effect

also in this case.

References

1. Atouani, N., Omrani, K.: A new conservative high-order accurate difference scheme for the Rosenau

equation. Appl. Anal. 94(12), 2435–2455 (2015). https://doi.org/10.1080/00036811.2014.987134

2. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A.: On the role of polynomials in RBF-FD approximations:

II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017). https://doi.org/10.1016/

j.jcp.2016.12.008

3. Brown, P.N., Hindmarsh, A.C., Petzold, L.R.: Consistent initial condition calculation for differential-

algebraic systems. SIAM J. Sci. Comput. 19(5), 1495–1512 (1998). https://doi.org/10.1137/

S1064827595289996. (electronic)

4. Chung, S.K.: Finite difference approximate solutions for the Rosenau equation. Appl. Anal. 69(1–2),

149–156 (1998). https://doi.org/10.1080/00036819808840652

5. Chung, S.K., Ha, S.N.: Finite element Galerkin solutions for the Rosenau equation. Appl. Anal. 54(1–2),

39–56 (1994). https://doi.org/10.1080/00036819408840267

6. Chung, S.K., Pani, A.K.: Numerical methods for the Rosenau equation. Appl. Anal. 77(3–4), 351–369

(2001). https://doi.org/10.1080/00036810108840914

7. Cipra, B.: What’s Happening in the Mathematical Sciences, vol. 2. American Mathematical Society, East

Providence, Rhode Island (1994)

8. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Pub Incorporated,

Hauppauge, NY (2003)

9. Driscoll, T.A., Hale, N.: Rectangular spectral collocation. IMA J. Numer. Anal. (2015). https://doi.org/

10.1093/imanum/dru062.

10. Fasshauer, G.E.: Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sci-

ences, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007). With 1 CD-ROM

(Windows, Macintosh and UNIX)

11. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations:

I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016). https://doi.org/10.1016/j.jcp.2016.05.

026

12. Fornberg, B.: A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and

Computational Mathematics, vol. 1. Cambridge University Press, Cambridge (1996). https://doi.org/10.

1017/CBO9780511626357

13. Fornberg, B.: A pseudospectral fictitious point method for high order initial-boundary value problems.

SIAM J. Sci. Comput. 28(5), 1716–1729 (2006). https://doi.org/10.1137/040611252. (electronic)

14. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015).

https://doi.org/10.1017/S0962492914000130

15. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena.

Philos. Trans. R. Soc. Lond. Ser. A 289(1361), 373–404 (1978). https://doi.org/10.1098/rsta.1978.0064

16. Hesthaven, J.S.: Spectral penalty methods. In: Proceedings of the Fourth International Conference on

Spectral and High Order Methods (ICOSAHOM 1998) (Herzliya), vol. 33, pp. 23–41 (2000). https://doi.

org/10.1016/S0168-9274(99)00068-9

17. Hesthaven, J.S., Gottlieb, D.: A stable penalty method for the compressible Navier–Stokes equations.

I. Open boundary conditions. SIAM J. Sci. Comput. 17(3), 579–612 (1996). https://doi.org/10.1137/

S1064827594268488

18. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput.

119(2–3), 177–186 (2001). https://doi.org/10.1016/S0096-3003(99)00255-6

19. Hu, J., Zheng, K.: Two conservative difference schemes for the generalized Rosenau equation. Bound.

Value Probl. 2010, 543503 (2010). https://doi.org/10.1155/2010/543503

20. Kansa, E.J.: Motivation for using radial basis functions to solve PDEs. Tech. rep. (1999). Available at

http://www.rbf-pde.org/kansaweb.pdf

123

https://doi.org/10.1080/00036811.2014.987134
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1137/S1064827595289996
https://doi.org/10.1137/S1064827595289996
https://doi.org/10.1080/00036819808840652
https://doi.org/10.1080/00036819408840267
https://doi.org/10.1080/00036810108840914
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1016/j.jcp.2016.05.026
https://doi.org/10.1016/j.jcp.2016.05.026
https://doi.org/10.1017/CBO9780511626357
https://doi.org/10.1017/CBO9780511626357
https://doi.org/10.1137/040611252
https://doi.org/10.1017/S0962492914000130
https://doi.org/10.1098/rsta.1978.0064
https://doi.org/10.1016/S0168-9274(99)00068-9
https://doi.org/10.1016/S0168-9274(99)00068-9
https://doi.org/10.1137/S1064827594268488
https://doi.org/10.1137/S1064827594268488
https://doi.org/10.1016/S0096-3003(99)00255-6
https://doi.org/10.1155/2010/543503
http://www.rbf-pde.org/kansaweb.pdf


1580 J Sci Comput (2018) 75:1555–1580

21. Kim, Y.D., Lee, H.Y.: The convergence of finite element Galerkin solution for the Roseneau equation.

Korean J. Comput. Appl. Math. 5(1), 171–180 (1998)

22. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution meth-

ods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003). https://doi.org/10.1016/S0898-

1221(03)90151-9

23. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity

method for solving PDEs. SIAM J. Sci. Comput. (2017) (to appear)

24. Lee, H.Y., Ahn, M.J.: The convergence of the fully discrete solution for the Roseneau equation. Comput.

Math. Appl. 32(3), 15–22 (1996). https://doi.org/10.1016/0898-1221(96)00110-1

25. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite

functions. Constr. Approx. 2(1), 11–22 (1986). https://doi.org/10.1007/BF01893414

26. Omrani, K., Abidi, F., Achouri, T., Khiari, N.: A new conservative finite difference scheme for the rosenau

equation. Appl. Math. Comput. 201(1–2), 35–43 (2008). https://doi.org/10.1016/j.amc.2007.11.039

27. Park, M.A.: Model equations in fluid dynamics. Ph.D. thesis, Tulane University (1990)

28. Park, M.A.: Pointwise decay estimates of solutions of the generalized Rosenau equation. J. Korean Math.

Soc. 29(2), 261–280 (1992)

29. Petzold, L.R.: Numerical solution of differential-algebraic equations. In: Theory and numerics of ordinary

and partial differential equations (Leicester, 1994), Adv. Numer. Anal., IV, pp. 123–142. Oxford University

Press, New York (1995). https://doi.org/10.1137/1.9781611971224

30. Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to

interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010). https://doi.org/10.1007/

s10444-008-9089-0

31. Rosenau, P.: Dynamics of dense discrete systems: high order effects. Prog. Theor. Phys. 79(5), 1028–1042

(1988)

32. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation

method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 64(2), 341–

367 (2015). https://doi.org/10.1007/s10915-014-9935-9

33. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. of Math. (2) 39(4), 811–841

(1938). https://doi.org/10.2307/1968466

34. Singer, M.F.: Solving homogeneous linear differential equations in terms of second order linear differential

equations. Am. J. Math. 107(3), 663–696 (1985). https://doi.org/10.2307/2374373

35. Trefethen, L.N.: Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). https://doi.org/10.1137/1.

9780898719598

123

https://doi.org/10.1016/S0898-1221(03)90151-9
https://doi.org/10.1016/S0898-1221(03)90151-9
https://doi.org/10.1016/0898-1221(96)00110-1
https://doi.org/10.1007/BF01893414
https://doi.org/10.1016/j.amc.2007.11.039
https://doi.org/10.1137/1.9781611971224
https://doi.org/10.1007/s10444-008-9089-0
https://doi.org/10.1007/s10444-008-9089-0
https://doi.org/10.1007/s10915-014-9935-9
https://doi.org/10.2307/1968466
https://doi.org/10.2307/2374373
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9780898719598

	Radial Basis Function Methods for the Rosenau Equation and Other Higher Order PDEs
	Abstract
	1 Introduction
	2 The Basic RBF Collocation Scheme
	3 Dealing with Multiple Boundary Conditions
	3.1 Transforming to Lower Order System
	3.2 Fictitious Point Method
	3.3 Resampling Method
	3.4 Generalization to More Space Dimensions

	4 Error Estimates
	5 MATLAB Implementation
	5.1 Implementation of the Fictitious Point Method
	5.2  Implementation of the Resampling RBF Method

	6 Numerical Results
	6.1 The One-Dimensional Case
	6.2 Two-Dimensional Square Domain
	6.3 Two-Dimensional Irregular Domain with Smooth Boundary


	7 Conclusion
	A Details of Error Estimation
	A.1 ODE System for the Semi-discrete Approximation Error
	A.2 Estimates for the Non-linear Term
	A.3 Term by Term Estimates for the Error Contributions
	A.4 Global Error Bound
	A.5 Numerical Investigation of the Matrix Norms in the Estimates

	References


