
© 2016 Ch. Sanjeev Kumar Dash et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
The article is published with open access at www.degruyter.com.

Open Comput. Sci. 2016; 6:33–63

Review Article Open Access

Ch. Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri*, and Sung-Bae Cho
Radial basis function neural networks: a topical state-of-the-art
survey
DOI 10.1515/comp-2016-0005

Received October 12, 2014; accepted August 24, 2015

Abstract: Radial basis function networks (RBFNs) have

gained widespread appeal amongst researchers and have

shown good performance in a variety of application do-

mains. They have potential for hybridization and demon-

strate some interesting emergent behaviors. This paper

aims to o�er a compendious and sensible survey on RBF

networks. The advantages they o�er, such as fast training

and global approximation capability with local responses,

are attracting many researchers to use them in diversi�ed

�elds. The overall algorithmic development of RBF net-

works by giving special focus on their learning methods,

novel kernels, and �ne tuning of kernel parameters have

been discussed. In addition, we have considered the re-

cent research work on optimization of multi-criterions in

RBF networks and a range of indicative application areas

along with some open source RBFN tools.

Keywords: neural network; radial basis function net-

works; multi-criterions optimization; learning; classi�ca-

tion; clustering; approximation

1 Introduction
Multi-layer perceptron (MLP) networkmodels are the pop-

ular network architectures used in most of the applica-

tion areas [1]. In an MLP, the weighted sum of the in-
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puts and bias term are passed to activation level through

a transfer function to produce the output (i.e., p(~x) =

fs
(
w
0
+

∑D
i=1 wixi

)
, where ~x is an input vector of dimen-

sion D, wi , i = 1, 2, . . . , D are weights, w
0
is the bias

weight, and fs(o) = 1

1+e−ao , a is the slope) and the units are

arranged in a layered feed-forward topology called Feed

Forward Neural Network [2]. The network is then trained

by back-propagation learning scheme. An MLP with back-

propagation learning is also known as Back-Propagation

Neural Networks (BPNNs). In BPNNs a common barrier is

the training speed (i.e., the training speed increases as the

number of layers, and number of neurons in a layer grow)

[3]. To circumvent this problem a new paradigm of sim-

pler neural network architectures with only one hidden

layer has been penetrated to many application areas with

a name of Radial Basis Function Neural Networks (RBFNs)

[4, 6–14]. RBFNs were �rst introduced by Powell [15–18]

to solve the interpolation problem in a multi-dimensional

space requiring as many centers as data points. Later

Broomhead and Lowe [19] removed the ‘strict’ restriction

andused less centers thandata samples, so allowingmany

practical RBFNs applications in which the number of sam-

ples is very high. An important feature of RBFNs is the ex-

istence of a fast, linear learning algorithm in a network

capable of representing complex non-linear mapping. At

the same time it is also important to improve the gener-

alization properties of RBFNs [20, 21]. Today RBFNs have

been a focus of study not only in numerical analysis but

also inmachine learning researchers. Being inherited from

the concept of biological receptive �eld [19] and followed,

Park and Sandberg prove, “RBFNs were capable to build

any non-linearmappings between stimulus and response”

[22]. The growth of RBFNs research have been steadily in-

creased andwidespread in di�erent application areas (c.f.,

Sections 5, 6, and 7 for more detailed discussion along

with a number of indicative cited works). The research in

RBFNs are grouped into three categories [23]: i) develop-

ment of learning mechanism (include heuristics and non-

heuristics), ii) design of new kernels, and iii) areas of ap-

plication.

Recently, Patrikar [24] has studied that RBFNs can be

approximated bymulti-layer perceptronwith quadratic in-

puts (MLPQ). Let the MLPQ with one hidden layer consist-
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ing of M units and the output unit with linear activation

function. Let w
0
(o) be the bias weight for the output unit

and let wi(o) be the weights associated with the connec-

tion between hidden unit i and output unit o. the output

of the MLPQ can be computed as:

Q(~x) = w
0
(o)+

M∑
i=1

wi(0)
1 + exp

(
−wi0 −

∑
Lij xj −

∑D
j=1 wQijx2j

) ,
(1)

where for each hidden unit i, wio is the bias weight, wLij
are the weights associated with linear terms xj, and wQij
are the weights associated with quadratic terms x2j . For an
RBFN with same hidden units, the output is given by:

R(~x) =
M∑
i=1

wi exp
(
−β
(
~x − ~µi

)T (
~x − ~µi

))
, (2)

where wi are the weights of unit i, µi is the center vector of

unit i, and β is the parameter. Using approximation, Equa-

tion (2) can be approximated as

R(~x)

=

M∑
i=1

wi
(
H/
(
1 + exp

(
−cβ

(
~x − ~µi

)T (
~x − ~µi

))
− d
))

,

(3)

where H, c, and d are constants.

This paper is set out as follows. Section 2 gives

overview RBFN architecture. Section 3 of this paper is de-

voted to the multi-criteria issues of RBFNs and discussed

some potential contributions. Di�erent RBFN tools are dis-

cussed in Section 4. Sections 5-7 discusses the various ap-

plication of RBFNs. Summary along with future research

direction are discussed in Section 8.

2 RBFNs architecture
The idea of RBFNs is derived from the theory of function

approximation. The Euclidean distance is computed from

thepoint being evaluated to the center of eachneuron, and

a radial basis function (RBF) (also called a kernel func-

tion) is applied to the distance to compute the weight (in-

�uence) for each neuron. The radial basis function is so

named because the radius distance is the argument to the

function. In other words, RBFs represent local receptors;

its output depends on the distance of the input from a

given stored vector. That means, if the distance from the

input vector~x to the center ~µi of each RBF φj i.e., ||~x−~µj|| is
equal to 0 then the contribution of this point is 1, whereas

the contribution tends to 0 if the distance ||~x − ~µj|| in-
creases.

RBF networks broadly consist of three layers (see Fig-

ure 1)[26] Input layer - The input layer can have more than

one predictor variable where each variable is associated

with one independent neuron. The output of the input

layer neurons, then feed the values to each of the neurons

in the hidden layer. 2) Hidden layer - The hidden layer can

have multiple numbers of neurons. The selection of neu-

rons in this layer is a challenging task. Mao and Huang

[25], have suggested a data structure preserving criterion

technique for selection of neurons in the hidden layer.

Each neuron in the hidden layer consists of an RBF

centered at a point, depending on the dimensionality of

the input/output predictor variables. The hidden unit acti-

vations are given by the basis functions φj
(
~x, ~µj , σj

)
(e.g.,

Gaussian basis functions), which depend on the parame-

ters {~µj , σj} and input activations {~x} in a non-standard

manner.

φj
(
~x
)
= exp

(
−

||~x − ~µj||2

2σ2j

)
. (4)

The spread (radius) of the RBF function may be di�erent

for each dimension. The centers and spreads are deter-

mined by the training process of the network.

3. Summation layer- Each neuron is associated with

weights (w
1
, w

2
, . . . , wN). The value coming out of a neu-

ron in the hidden layers is multiplied by the weight as-

sociated with the neuron and passed to the summation

which adds up the weighted values and presents this sum

as the output of the network. A bias value is multiplied by

a weight w
0
and fed into the summation layer.

It is interesting to note that RBFNs are closely related

to Gaussian Mixture Model (GMM) if Gaussian basis func-

tions are used [? ]. RBFNs with N hidden units with one

output neuron in the output layer can be represented as

(Equation (2)) with a simple replacement of M by N. A
Gaussianmixture density is a weighted sum of component

densities given by:

g(~x|λ) =
N∑
i=1

αibi(~x), where

N∑
i=1

αi = 1.

bi(~x) =
1

(2π)D/2|
∑

i |1/2
exp

(
−1/2

(
~x − ~µ

)T −1∑
i

(
~x − ~µ

))
(5)

with mean vector ~µi and covariance matrix

∑
i.
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Figure 1: Architecture of RBF network.

2.1 Learning in RBFNs

Learning or training a neural network is a process by

means of which the network adapts itself to a stimulus

by making proper parameter adjustment, resulting in the

production of desired response. Hence, in order to achieve

the similar approximation/classi�cation accuracy and in

addition to the required number of RBF units, the follow-

ing parameters are determined by the training process of

RBFNs [27]:

1. The number of neurons in the hidden layer. [Ideally

the number of neurons (M) in the hidden layer should

be much less than data points (N)];

2. The coordinates of the center of each hidden-layer

RBF, determined by the training algorithm;

3. The radius (spread) of each RBF in each dimension,

determined by the training algorithm; and

4. The weights applied to the RBF outputs as they are

passed to the summation layer.

2.2 Kernels in RBFN

The Gaussian kernel is a usual choice for kernel functions.

Equation (5) is the most generic form of Gaussian kernel.

The inverse of the covariance matrix is used to capture

the correlations between di�erent features, providing to

each kernel an n-dimensional ellipsoid shape. It is gener-

allymore versatile thanusing the simple distance to kernel

centroid that assumes strict variable independence. How-

ever, if the covariance matrix is singular or very ill condi-

tioned, the use of the inverse can produce meaningless re-

sults or strong numerical instability. Therefore, a spectral

decomposition suggested in [28] can be applied to covari-

ance matrix, producing the Eigen system

∑
= PΛPt in

which P is the matrix composed of the eigenvectors and

Λ the respective Eigen values in a diagonal matrix format

[125].

φj(~x) =
1(

1 +

||~x−~µj||
σ2j

) (6)

φj(~x) =
1(

1 +

||~x−~µj||
σ2j

)
1/2

. (7)

Equations (6) and (7) have larger tails than Equation (4)

i.e., their activations for patterns far from the centroid of

the RBF which is greater than the activation of the stan-

dard form (Equation (4)) for these patterns. For su�ciently

large distance norm, the decay of the Equations (6) and

(7) is very slow. In addition, Equations (4), (6), and (7) do

not fall asymptotically to zero. Authors have presented q-
Gaussian RBFs as an alternative to Gaussian RBF [29]. The

q-Gaussian RBF for the ith unit is de�ned as:

φj(~x) =


(
1 − (1 − q)

(
||~x−~µj||2

σ2j

))
1/1−q

,

if 1 − (1 − q))
(

||~x−~µj||2
σ2j

)
≥ 0

0 otherwise,

(8)

where q is a real valued parameter. The q-Gaussian RBF

allows di�erent RBFs to be represented by updating the

new parameter q. In [30] the di�erent properties of Gaus-

sian functions have been discussed. In addition to stan-

dardGaussiankernels, a range of other basis functions can

be used in RBFNs. The commonly used RBFs are expressed

in Table 1.

Inmulti-quadric function thematrix representation of

basis function has an important spectral property: it is al-

most negative de�nite. Franke [31] has found that this ra-

dial basis function provides the most accurate interpola-

tion surface in two dimensions. Also he found that the

inverse multi-quadric basis function can provide excel-

lent approximations, even when the number of centers is

small. However, author presents that sometimes a large

value of σ can be useful [32]. In contrast, there is no good

choice of σ known at present in the case of multi-quadric

basis function.

The thin plate spline basis function has more global

nature than the Gaussian function i.e., a small perturba-

tion of one of the control points always a�ect the coef-

�cients corresponding to all other points as well. Simi-

larly, the polynomial basis functions like cubic and lin-

ear has some degree of in�uence in certain applications.

An overview of RBFs and its corresponding models are de-

scribed in [4]. The use of above list of kernels along with
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Table 1: Other Kernels used in RBFN.

Name of the Kernel Mathematical Representation
Generalized Multi-Quadric Functions Φ(r) =

(
r2 + c2

)β
, c > 0, 1 > β > 0

Generalized Inverse Multi-Quadric Functions Φ(r) =
(
r2 + c2

)
−α
, c > α > 0

Thin Plate Spline Function Φ(r) = r2 ln(r)
Cubic Function Φ(r) = r3

Linear Function Φ(r) = r

Gaussian kernels can be obtained in [5, 33–36]. However,

we observe in most of the neural network literature that

the Gaussian RBFs is widely used in diversi�ed domain

like medical/biological science, computational �nance,

defense systems, engineering, etc.

2.3 Learning of kernel parameters and
weights

One major advantage of RBF networks of choosing suit-

able hidden unit/basis function parameters without hav-

ing to perform a full non-linear optimization of the whole

network. The coordinates of center of each hidden-layer in

RBF function can be calculated by using any of the follow-

ing unsupervised methods:

2.3.1 Fixed centers selected at random

This is a simple and fast approach for setting the RBF pa-

rameters, where the centers are kept �xed at M points se-

lected at random from the N data points. Speci�cally, we

can use normalized RBFs centered at {µj} de�ned by

ϕj(x) = exp

(
−

||x − µj||2

2σ2j

)
,

where {µj} ⊂ {Xp}, σj is spread. (9)

2.3.2 Clustering

Clustering techniques can be used to �nd a set of centers

which more accurately re�ect the distribution of the data

points. The K-means clustering algorithm [37] selects the

number K of centers in advance, and then follows a sim-

ple re-estimation procedure to divide the data points {Xp}

into K disjoint sub-sets Sj and Nj data points in order to

minimize the sum of squared clustering function.

J =
K∑
j=1

∑
p∈Sj

||Xp − µj||2, (10)

where, µj is the mean/centroid of the data points in set Sj
given by the Equation (11):

µj =
1

Nj

∑
p∈Sj

Xp . (11)

There are, however, two intrinsic disadvantages associ-

atedwith the use of K-means. The �rst is due to its iterative

nature, which can lead to long convergence times, and the

second originates from its inability to automatically deter-

mine the number of RBF centers, thus resulting in a time-

consuming trial-and-error procedure for establishing the

size of the hidden layer.

A multitude of alternative techniques have been pro-

posed to tackle these disadvantages. One way is to use

some improved unsupervised methods [38] such as: fuzzy

clustering [39–43], self organizing map (SOM) [44], parti-

cle swarm optimization (PSO)-based subtractive cluster-

ing [45, 46], dynamic K-means clustering algorithm [47],

improved K-means algorithm [48], K-harmonic clustering

[49], and self-additive clustering [50], have been used for

center selection in RBFNs.

The other way includes a signi�cant portion of these

methodologies use a constructive approach, building

the hidden layer incrementally until a criterion is met.

Within this context, the application of the orthogonal least

squares algorithm has been thoroughly explored [51–54].

2.3.3 Orthogonal Least Squares (OLS)

One of the �ne tuned approaches to selecting a sub-set

of data points as the basis function centers is based on

the technique of orthogonal least squares. OLS is a for-

ward stepwise regression procedure, where OLS sequen-

tially selects the center that results in the largest reduction
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of sum-of-square-error at the output. OLS constructs a set

of orthogonal vectors Q for the space spanned by the can-

didate centers. In this orthogonal subspace, computation

of pseudo-inverse is avoided since Q′Q becomes diagonal.

OLS construct a set of orthogonal vectors Q for the space

spanned by basis vectors ϕk such that Φ = QA where, A
is an upper triangular matrix. Using this orthogonal repre-

sentation, the RBF solution is expressed as:

T = ΦW = QG (12)

and the LS solution for the weight vector G in the orthogo-

nal space is given as:

G = (Q′Q)−1Q′T . (13)

The above discussions are restricted with center and

spread selection mechanism except the one in respect

to Gaussian kernel. However, there are abundant of pro-

posals developed with their own merits and demerits

such as constructive decay [29], resource allocating net-

works [55], and the minimum description length principle

[56]. Recently, Alexandridis et al., [57], introduced a non-

symmetric approach for partitioning the input space. Their

experimental outcomes have shown that the nonsymmet-

ric partition can lead to the development of more accurate

RBFmodels, with a smaller number of hidden layer nodes.

More elaborate methods have been suggested [58–61] for

optimizing the RBFwidths in order to improve approxima-

tion accuracy.

Taking advantage of the linear connection between

the hidden and output layer, most training algorithms cal-

culate the synaptic weights of RBF networks by applying

linear regression of the output of the hidden units on the

target values. Alternative approaches for calculating the

weights include gradient descentmethods [62], fuzzy logic

[63], and the expectation-maximization algorithm [64].

A few algorithms aspiring to determine all the RBF

training parameters in one step have also been proposed

in the literature. In [65], a hierarchical Bayesian model

is introduced for training RBFs. The model treats all the

training parameters as unknown random variables and

Bayesian calculation is performed through a reversible-

jump Markov chain Monte Carlo method, whereas the

networks are optimized using a simulated annealing al-

gorithm. In [66], RBF parameters are determined in a

one-step algorithm in interpolation problemswith equally

spaced nodes, after replacing the Euclidean norm associ-

ated to Gaussian RBF with a Mahalanobis norm. In [67],

all the RBF network parameters, including input weights

on the connections between input and hidden layers, are

adjusted by a second-order update rule.

It should be noted, however, that calculating optimal

values for all the RBF parameters is a rather cumbersome

task. Viewing the RBF network training procedure as an

optimization problem, one realizes that the objective func-

tion usually presents some rather unwelcome properties

including, multimodality, non-di�erentiability and high

levels of noise. As these characteristics make use of stan-

dard optimization methods ine�cient, it is no surprise

that a signi�cant number of studies have focused on opti-

mizing theRBF trainingprocedure through theuse of alter-

native approaches, such as evolutionary-based computa-

tion techniques [68]. The resulting methodologies include

a genetic algorithm for optimizing the number and coordi-

nates of RBF centers [69], a hybrid multi-logistic method-

ology applying evolutionary programming for producing

RBFs with simpler structures [29], a multi-objective evo-

lutionary algorithm to optimize RBF networks including

some new genetic operators in the evolutionary process

[71], and an evolutionary algorithm that performs feature

and model selection simultaneously for RBF classi�ers in

reduced computational times [72]. Similarly, PSO is a pow-

erful stochastic optimization algorithm that has been used

successfully in conjunction with other computational in-

telligence tools [73, 74]. A PSO-aided orthogonal forward

regression algorithm based on leave-one-out criteria is de-

veloped in [75] to construct parsimonious RBF networks

with tunable nodes. A recursive orthogonal least squares

algorithmhasbeen combinedwithPSO inanovel heuristic

structure optimization method for RBF probabilistic net-

works [76]. The architecture of k-means clustering-based

polynomial RBFNs has been introduced in [77], using PSO

and di�erential evolution (DE) [78].

In most practical applications, especially in medical

diagnosis, the complete trainingdata describing the input-

output relationship may not available a priori. For these

problems, classical batch-learning algorithms are rather

infeasible and instead sequential learning is employed. In

a sequential learning framework [79], the training sam-

ples arrive one-by-one and the samples are discarded af-

ter the learning process. Hence, it requires less memory

and computational time for the learning process. In addi-

tion, sequential learning algorithms automatically deter-

mine theminimal architecture that can accurately approx-

imate the true decision function described by stream of

the training samples [80]. Radial basis function (RBF) net-

works have been extensively used in a sequential learning

framework because of their universal approximation abil-

ity and simplicity of architecture [81–83]. Recently, there

has been renewed interest in single hidden-layered RBF

networks with least-square error training criterion, partly

due to their modeling ability and partly due to the ex-
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istence of e�cient learning algorithms such as extreme

learning machine (ELM) [84], and second-order training

methods [67]. In recent years, researchers have been fo-

cusingon sequential learningalgorithms forRBFnetworks

through streams of data.

Taking into consideration of learning weights,

spreads, and centers, Table 2 summarizes few more pro-

posals for training RBFNs.

3 Multi-criteria optimization in
RBFNs

Generally, an RBFN has a problem of model complexity.

If a model is complex, then it can �t well to the input

data. Because, it has lowbias error andhighvariance error,

hence, the model generalization ability becomes worse.

Moreover, a complexmodel is not desirable as it is not very

easy to handle. On the other hand, if a model is simple

then variance error is less. Such a model can prevent over-

learning and then can be corrected easily. The automatic

optimization of an RBFN model from a given set of sam-

ples is a problem of recent studies- in which two identi�ed

competing objectives must be satis�ed [70]. The model’s

prediction error must be minimized in order to achieve a

well �tted model, while the number of RBFs should be as

low as possible to obtain a reliable interpolator/regressor

or a classi�er/approximator [71]. The problem of optimiza-

tion of these two objectives simultaneously is known as

multi-criteria optimization problem in RBFNs. They are

con�icting because improving one of themwill worsen the

other. Their solutions are usually sub-optimal for each ob-

jective in particular but acceptable taking all the objec-

tives into accounts, where acceptable is totally subjective

and problem dependent. In this connection Subsection 3.1

discusses de�nitions and some basic concepts of multi-

objective optimization problem (MOP). Subsection 3.2 dis-

cusses various approaches for solving MOP in RBFNs.

3.1 De�nitions and basic concepts of MOP

A multi-objective optimization problem can be stated in

the following general form:

Minimize/Maximize fm(x), m = 1, 2, . . . M;

subject to gj(x) ≥ 0, j = 1, 2, . . . J;
hk(x) = 0 k = 1, 2, . . . K;
x(L)i ≤ xi ≤ x(U)i i = 1, 2, . . . m.

A solution x is a vector of n decision variables: x =

(x
1
, x

2
, . . . , xn)T . The last set of constraints is called vari-

able bounds, restricting each decision variable xi to take a

value within a lower x(L)i and an upper x(U)i bounds. These

bounds constitute a decision variable space D, or simply

the decision space. Associated with the problem are J in-
equality andK equality constraints and the terms gj(x) and
hk(x) are called constraint functions.

In multi-objective optimization, the M objective func-

tions f (x) = (f
1
(x), f

2
(x), . . . , fM(x))T can be either min-

imized or maximized or both. Many optimization algo-

rithms in particular RBFNs are developed to solve only

one type of optimization problems, such as e.g., minimiza-

tion problems [85]. When an objective is required to be

maximized by using such an algorithm, the duality prin-

ciple can be used to transform the original objective for

maximization into an objective for minimization by mul-

tiplying objective function by -1. It is to be noted that for

each solution x in the decision variable space, there ex-

ists a point in the objective space, denoted by f (x) = z =

(z
1
, z

2
, . . . , zM)T . There are two goals in a multi-objective

optimization: �rstly, to �nd a set of solutions as close as

possible to the Pareto-optimal front; secondly, to �nd a

set of solutions as diverse as possible. Multi-objective opti-

mization involves two search spaces i.e. the decision vari-

able space and the objective space [86]. Although these

two spaces are related by a unique mapping between

them, often the mapping is non-linear and the properties

of the two search spaces are not similar. In any optimiza-

tion algorithm, the search is performed in the decision

variable space. However, the proceedings of an algorithm

in the decision variable space can be traced in the objec-

tive space. In some algorithms, the resulting proceedings

in the objective space are used to steer the search in the

decision variable space. When this happens, the proceed-

ings in both spacesmust be coordinated in such away that

the creationof newsolutions in thedecision variable space

is complementary to the diversity needed in the objective

space. Figure 2 illustrate a typical scenario of decision ver-

sus objective space.

Most multi-objective optimization algorithms use the

concept of domination [87]. In these algorithms, two so-

lutions are compared on the basis of whether one domi-

nates the other solution or not. The concept of domination

is described in the following de�nitions (assuming, with-

out loss of generality, the objective functions to be mini-

mized).

De�nition 1. Given two decision or solution vectors x and
y, we say that decision vector x weakly dominates (or simply
dominates) the decision vector y (denoted by x ≤ y) if and
only if fi(x) ≤ fi(y)∀i = 1, . . . ,M (i.e., the solution x is no
worse than y in all objectives) and fi(x) < fi(y) for at least
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Table 2:Methods used for Training Kernel Parameters and Weights of RBFNs (Gaussian Kernels is Assumed).

Authors Weights Optimization Procedure Spread and Center Optimization
Procedure

Wetterschereck et al., 1992 [188] Pseudo-Inverse Method Unsupervised learning (k-means)
Chun-Tao et al., 2009 [189] Particle Swarm Optimization Particle Swarm Optimization
Yang et al., 2009 [45] Particle Swarm Optimization Subtractive Clustering
Senapati et al., 2007 [190] Particle Swarm Optimization Particle Swarm Optimization and

Genetic Algorithms
Billings et al., 1995 [191] Genetic Algorithms Genetic Algorithms
Yuan et al., 2008 [192] Genetic algorithms Genetic Algorithms
Yu and He, 2006 [193] Di�erential Evolution Di�erential Evolution
Shen, et al., 2008 [194] Chaos Immune System Logistic equation
Yunna, et al., 2008 [195] Ant Colony Algorithm Orthogonal least square
Ziyang, et al., 2008 [43] Least Mean Square Method Fuzzy c-means
Zhao, et al., 2007 [196] GA with Hybrid Learning Algorithm Hybrid Learning Algorithm
Chen, et al., 1991, 1992 [197? ] Orthogonal least square methods Linear Regression
Fatemi, et al., 2005 [199] Mean pf Parameters Adaptive growing technique and

Sorting
Tan, et al., 1993 [200] Stable Updating Rule Stable Updating Rule
De Lacerda et al., 1994 [201] Genetic Algorithms Genetic Algorithms

Figure 2: Decision vs. Objective Space in a multi-objective optimiza-
tion problem.

one i ∈ {1, 2, . . . ,M} (i.e., the solution x is strictly better
than y in at least one objective).

De�nition 2. A solution x strongly dominates a solution y
(denoted by x < y ), if solution x is strictly better than solu-
tion y in all M objectives.

Figure 3 illustrates a particular case of the dominance re-

lation in the presence of two objective functions.

However, if a solution x strongly dominates a solution

y, the solution x also weakly dominates solution y, but not
vice versa.

De�nition 3. The decision vector x ∈ P (where P is the
set of solution or decision vectors) is non-dominated with

Figure 3: Dominance relation in two objective functions.

respect to set P, if there does not exit another xt ∈ P such
that f (xt) ≤ f (x).

De�nition 4. Among a set of solution or decision vectors
P, the non-dominated set of solution or decision vectors P′

are those that are not dominated by any member of the set
P.

De�nition 5. A decision variable vector x ∈ P where P
is the entire feasible region or simply the search space, is
Pareto-Optimal if it is non-dominated with respect to P.

De�nition 6. When the set P is the entire search space, the
resulting non-dominated set P′ is called the Pareto-Optimal
set. Mathematically, P′ = {x ∈ P|xisPareto − Optimal}.
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Figure 4: Pareto optimal front- the solution C is strictly better than B
and then B is strictly better than A (source: [85]).

The non-dominated set P’ of the entire feasible search space
P is the globally Pareto-Optimal set.

De�nition 7. All Pareto-Optimal solutions in a search
space can be joined with a curve (in two-objective space)
or with a surface (in more than two-objective space). This
curve or surface is termed as Pareto optimal front or simply
Pareto front. In other words, PF = {f (x)|x ∈ P′}.

Figure 4 illustrates a particular case (e.g., when the fea-

sible region is an uncountable set) of the Pareto front

in the presence of two objective functions and is a non-

increasing curve in R2 and some arbitrary function may

contain non-convex intervals and discontinuities.

It is to be noted that in practice, the complete Pareto

Optimal set is not normally desirable (e.g., it may not be

desirable to have di�erent solutions that map to the same

values in objective function space) or achievable. Thus a

preferred set of Pareto optimal solutions should be ob-

tained from practical point of view.

3.2 Multi-objective problem solving
approaches in RBFNs

A multi-objective problem can be handled as a single ob-

jective optimization problem by using various classical

methods such as weighted sum approach, ϵ-constraint
method, weightedmetricmethods, value functionmethod

and goal programmingmethods [88]. In the weighted sum

approach, multiple objectives are weighted and summed

together to create a composite objective function. Opti-

mization of this composite objective results in the opti-

mization of individual objective functions. Goal program-

mingmethods suggestminimizing aweighted sumof devi-

ations of objectives from user-speci�ed targets. These con-

version methods result in a single-objective optimization

problem, whichmust be solved by using a single-objective

optimization algorithm. These classical multi-objective

optimization algorithms are having some di�culties par-

ticularly if the user wants to �nd multiple Pareto-optimal

solutions [87]. First, only one Pareto-optimal solution can

be expected to be found in one simulation run of a clas-

sical algorithm. Second, not all Pareto-optimal solutions

can be found by some algorithms in non-convexMOPs. Al-

though only one solution is needed for implementation,

the knowledge of such multiple optimal solutions may

help a designer to compare and choose a compromised op-

timal solution. A multi-objective optimization is, in gen-

eral, more complex than a single-objective optimization,

but the avoidance of multiple simulations runs, no arti�-

cial �x-ups, availability of e�cient population-based opti-

mization algorithms, and above all, the concept of domi-

nance helps to overcome some of the di�culties and give

a user the practical means to handle multiple objectives.

Nevertheless, evolutionary algorithms (EAs) [87, 88] and

swarm intelligence (SI) [89] approachesmaintain a pool of

potential solutions for the problem, thus making it easier

to adapt them to solve MOPs.

The authors in [71, 90] have presented a multi-

objective evolutionary algorithm for function approxima-

tion by optimizing the size, shape, and position parame-

ters of RBFNs. While minimizing the bi-objectives such as

model’s prediction error and number of RBFs, a set of new

mutation operators specially designed to evolve RBFNs.

These new operators are based on two well-known ma-

trix transformations: singular value decomposition (SVD)

and orthogonal least squares (OLS), which have been used

to de�ne new mutation operators that produce local or

global modi�cations in the radial basis functions (RBFs)

of the networks (the individuals in the population in the

evolutionary procedure). The authors in [91] have pro-

posed amulti-objective structure selectionmethod for RBF

networks based on multi-objective genetic algorithm. The

structure of RBF networks is encoded to the chromosomes

in GA then evolves towards Pareto optimum for multi-

objective functions concerned with model accuracy and

complexity.
Methods aimed at e�ciently controlling the green-

house climate environment and optimizing the crop must

take into account the in�uences of the outside weather,

the actuators and the crop, which is achieved by the use

ofmodels. Improving prediction performancewhile reduc-

ing model complexity easily becomes con�icting, and giv-

ing rise to amulti-objective optimization problem. Ferreira

et al. [92], have used amulti-objective genetic algorithm for

the identi�cation of RBFNs coupled models of humidity

and temperature in a greenhouse.

Yen [93] has developed a model of hierarchical rank

density genetic algorithm to evolve topology and parame-
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ters of RBFN and then optimize two criteria like prediction

error andRBFs in thehidden layer for e�ectively prediction

of chaotic time series.

Guillen, et al. [94], have presented a parallel multi-

objective GA that designs RBFNs to approximate functions

by simultaneously minimizing network with the smallest

number of neurons along with smallest error. The results

con�rm that the specialization on the di�erent aspects of

the design of RBFNs through the parallel approach could

lead to obtain better results.

Ensemble learning has been an area of active research

in machine learning community for improving the perfor-

mance of classi�er. In this context, Kondo et al. [95] have
presented a method in which RBFNs ensemble has been

constructed from Pareto-optimal set obtained by multi-

objective evolutionary computation. Further, they have ex-

tended this idea [96] and applied to solve nonlinear dy-

namic system identi�cation problem.

Despite of high capabilities of evolutionary multi-

objective optimization certain multi-objective problems

can be e�ectively solved in a deterministic way, taking

advantages of non-linear programming. Two such works

of Kokshenev and Braga [85, 97] are indeed e�ective ap-

proaches for the problem of inductive supervised learning

within the context ofmulti-objective optimization. Twoob-

jectives such as empirical risk and model complexity have

been optimized to get a harmonious RBFN. In particular,

the work proposed in [97] is the idea of decomposition of

the multi-objective problem into a set of convex sub prob-

lems led to a development of themulti-objective algorithm

for �nding Pareto-optimal solutions within a small class

of hypotheses of RBF networks. Such an approach allows

to approximate Pareto sets arbitrary well with the num-

bers of exact solutions of convex subproblems. However

in [85], a deeper study of the previous results [97] has been

presented and extends their application to larger classes

of hypotheses. However, the computational complexity of

these algorithms is high in comparisonwith other state-of-

the-art machine learning methods.

Although there are few studies on the implementation

of multi-objective RBF network training, but research on

training of RBF network with multi-objective swarm in-

telligence is still new. In this direction, the work by [98]

presents an adaptive evolutionary radial basis function

(RBF) network algorithm to evolve accuracy and connec-

tions (centers and weights) of RBF networks simultane-

ously. The problem of hybrid learning of RBF network

is discussed with the multi-objective optimization meth-

ods to improve classi�cation accuracy for medical dis-

ease diagnosis. Here authors have used time variantmulti-

objective PSO to optimize objectives such as: i) accuracy:

mean square error on training set f
1
=

1

N
∑N

j=1(tj − oj)
2

,

where N is the number of training samples, tj is the actual

output, and oj is the desired output; and ii) complexity:

(f
2
= 1/2

∑M
j=1 w

2

j , where M is the number of hidden neu-

rons). Further, a few hybrid (mixture of local and global)

learning strategy has been developed by [99], speci�cally

memetic Pareto particle swarm optimization, memetic eli-

tist Pareto non-dominated sorting genetic algorithm, and

memetic elitist Pareto non-dominated sorting di�erential

evolution to achieve compact RBFNmodel with both good

prediction accuracy and prominent structure simultane-

ously.

Table 3 summarizes an attempt of RBFNs from the

multi-objective perspective. To obtain Pareto set the ap-

proaches they have adapted vary from deterministic to

non-deterministic. However, the criteria they are optimiz-

ing are same in number (i.e., two)with aminor variation in

terminology. The application domain considered to evalu-

ate their methods is also catering to the demand of present

scenario.

4 RBFNs tools
In this Section, we have highlighted some state-of-the-art

tools for implementing RBFNs. Except MATLAB, all other

tools discussed here are open source.

KEEL¹: Knowledge Extraction based on Evolution-

ary Learning (KEEL) is an open source (GPLv3) Java soft-

ware tool which empowers the user to assess the behavior

of evolutionary learning and soft computing based tech-

niques for di�erent kinds of DM problems: regression,

classi�cation, clustering, pattern mining, and so on [100].

Table 4 illustrates the di�erent versions of RBFNs imple-

mentations along with their reference.

WEKA²: In this open source software a normalized

Gaussian radial basis function network has been imple-

mented in Java. It uses the k-means clustering algorithm to

provide the basis functions and learns either a logistic re-

gression (discrete class problems) or linear regression (nu-

meric class problems). Symmetric multivariate Gaussians

are �t to the data fromeach cluster. If the class is nominal it

uses the given number of clusters per class. It standardizes

all numeric attributes to zero mean and unit variance.

1 KEEL, (2013). http://sci2s.ugr.es/keel/algorithms.php#neural-

networksforclassi�cation

2 WEKA, (2013): http://weka.sourceforge.net/doc/weka/classi�ers/

functions/package-summary.html)
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Table 3: Summary of RBFNs based on multi-objective approaches.

Sl. No. Authors, Years Approach Benchmark Problems
1 Gonzalez et al., 2001 [90] Multi-objective Evolutionary Algo-

rithm
Time Series Forecasting

2 Gonzalez et al., 2003 [71] Multi-objective Evolutionary Algo-
rithm with New Genetic Operators

Function Approximation and Time
Series Forecasting

3 Hatanaka et al., 2003 [91] Multi-objective Genetic Algorithms Function Approximation
4 Ferreira et al., 2005 [92] Multi-objective Genetic Algorithms Greenhouse Environmental Con-

trol
5 Yen, 2006 [93] Hierarchical Rank Density Genetic

Algorithm
Mackey-Glan Chaotic Time Series

6 Guillen et al., 2006 [94] Parallel Multi-objective Genetic Al-
gorithm

Function Approximation

7 Kondo et al., 2006 [202] Multi-objective Evolutionary Algo-
rithms

Classi�cation

8 Kondo et al., 2007 [203] Multi-objective Evolutionary Algo-
rithms

Non-linear Dynamic System Identi-
�cation

9 Kokshenev and Braga, 2008 [97] Inductive Supervised Learning
(Non-linear Programming)

"Sinc function (Approximation)
Wisconsin Breast Cancer Dataset
(Classi�cation)"

10 Kokshenev and Braga, 2010 [85] Non-linear Programming Twin Spiral, Noised Sinc Regres-
sion (arti�cial data) Wisconsin
Breast Cancer Dataset, Abalone
Dataset (Real Life data)

11 Qasem and Shamsuddin, 2011
[98]

Time Variant Multi-objective Parti-
cle Swarm Optimization

UCI Machine Learning Medical Re-
lated Dataset

12 Qasem and Shamsuddin, 2012
[99]

Multi-objective Hybrid Evolution-
ary Algorithms

UCI Machine Learning Dataset

Table 4: RBFNs Implementations in KEEL.

Acronyms Name Reference
RBFN-C Radial Basis Function Neural Network for Classi�cation Problems [19]
Incr-RBFN-C Incremental Radial Basis Function Neural Network for Classi�cation Problems [204]
Decr-RBFN-C Decremental Radial Basis Function Neural Network for Classi�cation Problems [19]
EvRBFN-C Evolutionary Radial Basis Function Neural Networks [100]
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MATLAB³: Two functions have been implemented in

MATLAB for radial basis networks. The function newrb
adds neurons to the hidden layer of a radial basis network

until it meets the speci�ed mean squared error goal. The

syntax and meaning each argument has been described

below.

net = newrb(P,T,goal,spread,MN,DF).

The larger spread is, the smoother the function ap-

proximation. Too large a spreadmeans a lot of neurons are

required to �t a fast-changing function. Too small a spread

meansmany neurons are required to �t a smooth function,

and the networkmight not generalizewell. Call newrbwith

di�erent spreads to �nd the best value for a given problem.

Similarly newrbe function of MATLAB very quickly de-

signs a radial basis network with zero error on the de-

sign vectors. The syntax andmeaning of arguments are de-

scribed below.

net = newrbe(P,T,spread)

The larger the spread is, the smoother the function ap-

proximation will be. Too large a spread can cause numeri-

cal problems.

DTREG⁴: Software for Predictive Modeling and Fore-

casting implements the most powerful predictive model-

ing methods that have been developed including, Tree-

Boost and Decision Tree Forests as well as Neural Net-

works, Support Vector Machine, Gene Expression Pro-

gramming and Symbolic Regression, K-Means Clustering,

Linear Discriminant Analysis, Linear Regression models

and Logistic Regression models. Benchmarks have shown

these methods to be highly e�ective for analyzing and

modeling many types of data.

NeuralMachine⁵: NeuralMachine is a general pur-

pose neural network modeling tool with the executable

code generator. There are two versions of NeuralMachine

- for MS-Windows and a Web-based version (runs in Inter-

net Explorer across the Web). NeuralMachine allows cre-

ation of arti�cial neural networks (ANNs) with one hidden

layer. Two types of networks, namely Multilayer percep-

tron and Radial Basis Function networks are supported in

this version. In the case of Radial Basis Network the map-

ping function is of Gaussian type for the hidden layer and

linear for the output layer.

NeuroXL⁶: The NeuroXL software is easy-to-use and

intuitive, does not require any prior knowledge of neural

3 MATLAB, (2013): http://www.mathworks.co.kr/products/matlab/

4 DTREG, (2013). http://www.dtreg.com/index.htm

5 NeuralMachine, (2013). http://www.data-

machine.nl/neuralmachine.htm

6 Neuroxl, (2013). http://www.neuroxl.com/

networks, and is integrated seamlessly with Microsoft Ex-

cel. NeuroXL brings increased precision and accuracy to

a wide variety of tasks, including: cluster analysis, stock

price prediction, sales forecasting, sports prediction, and

much more.

Netlab⁷: The Netlab toolbox is designed to provide the

central tools necessary for the simulation of theoretically

well founded neural network algorithms and related mod-

els for use in teaching, research, and applications devel-

opment. It consists of a toolbox of MATLAB functions and

scripts based on the approach and techniques described

in [1], but also including more recent developments in the

�eld. The Netlab library includes software implementa-

tions of a wide range of data analysis techniques, many

of which are not yet available in standard neural network

simulation packages. Netlab works with MATLAB version

5.0 and higher but only needs core MATLAB (i.e., no other

toolboxes are required). It is not compatible with earlier

versions of MATLAB.

5 RBFNs in approximation and
interpolation

Approximations and interpolation is inevitable in science,

engineering, and medical; indeed all around us in day-to-

day life [101]. As we can see, the applications of general

purpose methods for function approximations are mani-

fold and important. The Weierstrass approximation theo-

rem states that a continuous function f (x) over a closed

interval [a, b] can be approximated by a polynomial φn(x)
of degree n, such that:

|f (x) − φn(x)| ≤ ε, x ∈ [a, b], (14)

where, ε > 0 is a small quantity and n is su�ciently large

[102].

However, RBFNs are particularly interesting when

functions to be approximated: i) depend on many vari-

ables or parameters, ii) are de�ned by possibly very many

data points, and iii) the data are scattered in their domain.

Interpolation of a given set of points is an important

problem especially in higher-dimensional domains. Al-

though polynomials are very powerful tool for interpolat-

ing a given set of points in one dimension, the use of these

functions leads to di�culties in higher-dimensional do-

mains.Whenwe employ these functions, the arrangement

7 Netlab, (2013). http://www1.aston.ac.uk/eas/research/groups/

ncrg/resources/netlab/
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Table 5: Description of the Arguments.

Name Description
P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
Goal Mean squared error goal (default = 0.0)
Spread Spread of radial basis functions (default = 1.0)
MN Maximum number of neurons (default is Q)
DF Number of neurons to add between displays (default = 25)

of the points in the domain of the problem should have a

certain form. However, this limits us when interpolation of

a scattered set of points is needed. Radial basis functions

are very e�cient instruments for interpolating a scattered

set of points which have been used in the last 20 years

[103–105]. The interpolation problem is the construction

of a curve y(x) which passes through a given set of data

points (xi , yi), for i = 0, 1, . . . , n where the data points are

such that a = x
0
< x

1
< . . . < xn = b. The constructed

curve y(x) can then be used to estimate the values of y at

positions x which are between the end points a and b (in-

terpolation) or to estimate the value of y for x exterior to

the end points (extrapolation).

Let us discuss some of the contributions under these

two categories. In [106], RBFNs for polynomial approx-

imation in term of 1-D and 2-D function approximation

have been used and done a comparative study among

Beta wavelet, classical wavelet, and polynomial network.

Their simulation result shows a good generalization abil-

ity. In [107], authors have studied the properties of RBF

approximation near the ends of an interval in 1-D and to-

wards edges of 2-D. Lendasse et al. [108], have proposed a

method of function approximation by RBFN. The improve-

ment theyhavemade consists ofweighting of inputs by the

coe�cients obtained through a linear model. These meth-

ods have then been tested for the determination of the

price of a call option. The weighted RBFN gives 97%where

as the classical RBFN gives 93% accuracy. Chen et al. [109]
have explored representation capability of RBFNs. The ca-

pability of approximation to nonlinear functional and op-

erators by RBFNs is revealed using sample data either in

frequency domain or in time domain. Dyn and Ron [110]

have provided a general tool for extending approximation

schemes that use integer translates of a basis function to

the non-uniform case. They introduce a single, relatively

simple, conversion method that preserves the approxima-

tion orders provided by a large number of schemes. Ron

[111] devoted his work towards L
2
approximation orders

with principal spaces generated by an RBF with a thor-

ough analysis of least-squares approximation orders. He

has applied the results in di�erent functions like polyhar-

monic splines, multiquadric, Gaussian kernel, and other

functions. He has shown that Sobolev space can be ap-

proximated to a better rate.

Fasshauer [112] has proposed the use of smoothing

operation at each step of multilevel approximation algo-

rithm to improve the convergence rate of algorithm. In his

work he suggested a di�erent approach to smoothing, i.e.,

the use of a pre-computed hierarchy of smooth function

by which the cost of smoothing reduces to zero. Li and

Micchelli [113], have studied approximation by radial ba-

sis functions including Gaussian, multiquadric, and thin

plate spline functions, and derive order of approximation

under certain conditions.

Golberg et al. [114] have given information on the use

of RBFs in dual respiratory method (DRM), particularly in

thin plates splines. They have pointed out that the omis-

sion of the linear terms could have biased the numerical

results. They also showed that a full understanding of con-

vergence behavior of the DRM requires one to consider

both interpolation and BEM errors [115], since the later can

o�set the e�ect of data approximation [116]. Karur et al.
[117] have used DRM in their work. The DRM is a class of

boundary element techniques where the domain integral

resulting from thenonhomogeneous terms inPoisson type

equations is transferred to equivalent boundary integral

by suitable approximation function. They have used RBF

as approximating functions for interpolation techniques.

In their work they examined convergence property of RBF

for two dimensional problems. Then they have used RBF

for approximation in DRM to solve non-linear Poisson type

equations.

Hua et al. [118] have presented a newno-reference per-

ceptual blur metric by using the RBFN which is based on

orthogonal least squares learning algorithm. In their work

they transform theproblemof quality estimation to a prob-

lem of function approximation and then solve the problem

by using OLS-RBF network. OLS-RBF network uses an or-

thogonal least squares learning algorithm to select suit-

able centers for the RBF, which makes the training pro-
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Table 6: Description of Arguments.

Name Description
P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
Spread Spread of radial basis functions (default = 1.0)

cedure simpler. The performance obtained from experi-

ment is consistent with subjective evaluation. Iske [119]

in his work provides a new approximation scheme which

achieves to combine well known features from RBF inter-

polation with developments concerning scattered data �l-

tering. He has provided an e�cient algorithm for the pur-

pose of selecting a suitable basis of approximation space

automatically. The methodology of calibration based on

the use of cubic B-splines for total least-squares approx-

imation of forward static characteristics of measurements

channels and on the use of RBFNs for approximation of the

inverse static characteristics is developed and examined

by Kluk et al. [120]. Li andMicchelli [113], have studied ap-

proximation by RBFs including Gaussian, multi-quadric,

and thin plate spline functions. Schaback [121], in hiswork

compares RBF interpolants ondi�erent spaces. The spaces

are generated by other RBFs. The result gives new idea for

further research. Zhou et al. [122] have investigated an ap-

proximation method based on a class of RBFNs for solv-

ing the regulator equations. They have shown that the RBF

neural networks can solve the regulator equations up to a

prescribed arbitrarily small error, and this small error can

be translated into a guaranteed steady-state tracking error

for the closed-loop system.

Some of the pioneering works in the context of inter-

polation is summarized as follows. For solving interpola-

tion equations an iterative procedure can be used [123].

In this work kth iteration calculates the element in a k-

dimensional linear subspace of radial functions that is

closest to the required interpolant, the subspace being

generated by a Krylov construction that employs a self-

adjoint operator A. Foley, et al. [124] presented a local-

ized approach by decomposing the domain into an ar-

bitrary triangulation that forms overlapping regions. For

each region, a radial basis method is applied to a much

smaller number of points and the local interpolants are

blended using C′ rational hybrid cubic Bezier triangle

functions. [126] gave a theoretical justi�cation for com-

bining the compactly supported RBF with numerical tech-

nique in space decomposition, which is based on Schwarz

domain decomposition. The method overcomes the ill-

conditioning problem resulted from using RBF as a global

interpolant.

Wu et al. [127] have introduced a suitable variation for-

mulation for the local error of scattered data interpolation

by RBFNs, the error can be bounded by a term depend-

ing on the Fourier transform of the interpolated function

f and a certain "Kriging function", which allows a formu-

lation as an integral involving the Fourier transform of OE.

Jackson [128] proved that maximum di�erence between a

su�ciently smooth function and its quasi-interpolant is

bounded by a constant multiple of (hn+1). This is shown

that such a quasi-interpolation formula can reproduce

polynomials of degree n.

Wendland [129] has combined the theory of RBF inter-

polation with a partition of unity method to solve large-

scale, scattered data problems. Further, Wendland [130]

has given an overview on numerical aspects of multivari-

ate interpolation and approximation by RBFNs. It is well

known that for some basic functions Φ, hierarchical and

fast multipole-like methods can greatly reduce the storage

and operation counts for �tting and evaluating RBFs. Beat-

son et al. [131], have developed the mathematics required

by methods of these types for polyharmonic splines. For

faster evaluation of RBFNmany authors like Beatson, et al.
[132], have used domain decomposition methods for solv-

ing the RBF interpolation equations. In their work they

have discussed di�erent problems in three sections. First

section provides e�cient ways of setting up and solving

small-to-medium sized RBF interpolation problems. The

second section describes a natural domain decomposition

method for the interpolation equation. And�nally last sec-

tion describes some algorithmic details and numerical re-

sults of a domain decomposition interpolatory code for

polyharmonic splines in 2 and 3 dimensions. Oliveira, et
al. [133] and Rippa [134] have discussed about the accu-

racy of interpolating scattered data with RBFs. The accu-

racy depends on a shape parameter c of the RBF. They have

shown numerically that, the optimal value of c (the value

of c thatminimizes the interpolation error) depends on the

number and distribution of data points, on the data vector,

and on the precision of the computation. They present an

algorithm for selecting a good value for c.
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6 RBFNs in classi�cation and
prediction

Classi�cationandpredictionare twomethodsof data anal-

ysis that can be used to extract models describing classes

or to predict future trends of underlying data. Such anal-

ysis can help provide us with a better understanding of

the data at large. Broadly, classi�cation predicts categor-

ical (discrete, unordered) labels (that uses training data

to generate a single complex rule or mathematical equa-

tion that assigns data items to one of several distinct cat-

egories), prediction models continuous-valued functions.

For example, we can build a classi�cation model to cate-

gorize bank loan applications as either safe or risky, a pa-

tient has cancer (yes, no) based on various medical data,

whereas a prediction model to predict the expenditures

in dollars of potential customers on computer equipment

given their income and occupation. Furthermore, classi-

�cation and prediction have numerous applications, in-

cluding fraud detection, target marketing, performance

prediction, manufacturing, and medical diagnosis. Many

classi�cation and predictionmethods [137] have been pro-

posed by researchers in neural networks community [135,

136]. However, RBFNshas attracted a lot of attention in last

couple of years [138, 139]. Some of the proposals in this di-

rection are discussed below.

For monitoring the drinking water quality Bouamar

[140] has used RBFNs and support vector machine (SVM)

and then evaluated their performance on real data, cor-

responding to the criterions recognition rate, the training

time, and robustness. Geuzouri, et al. [141], have presented
an extended form of RBFN called temporal-radial basis

function, which can be used for decision rules and clas-

si�cation in spatio-temporal domain e.g., speech recog-

nition, robotic applications, economic �uctuations, etc.

Wang et al. [142], have presented a modular neural classi-

�er for protein sequences with improved classi�cation cri-

teria. The architecture of the proposed model is a modular

RBF neural network with a compensational combination

at the transition of output layer. The connection weights

between the �nal output layer and the transition output

layer are optimized by delta rule, which serve as an inte-

grator of the local neural classi�ers. To enhance the classi-

�cation reliability, they have presented two heuristic rules

to apply to decision making. Experimental results with

performance comparisons are carried out between single

neural classi�ers and the proposedmodular neural classi-

�er.

Bruzzone et al. [143] have proposed a supervised tech-

nique for training RBFNs classi�ers. Their experimental

results con�rm that the overall classi�cation error made

by the classi�er is reduced and have shown a more sta-

ble behavior of the classi�cation error versus variations in

both the number of hidden units and the initial parame-

ters of the training process. Krzyzak et al. [144] have con-

sidered two approaches: the selection of the RBF classi�er

via nonlinear function estimation and the direct method

of minimizing the empirical error probability. Oliveira et
al. [133], have suggested a dynamic decay adjustment al-

gorithm for training RBFNs and probabilistic neural net-

works (PNNs). They have argued that parameters of their

algorithms will not heavily in�uence classi�cation perfor-

mance. Chang et al., [145] have proposed a Self-Organizing

Map (SOM) neural network to select more appropriate cen-

ters for RBFN and he has also proposed a Modular radial

basis function (MRBF) neural network to improve the clas-

si�cation rate and speed up of the training time. Daqi et
al., [146] have proposed a cascade RBF-LBF networks for

classi�cation problems which is able to optimally deter-

mine the structures and parameters of the RBF-LBF net-

works with the characteristic of sample distributions. It

has higher convergence rate and classi�cation precision

compared to feed-forward two-layered LBF and RBF net-

works. Dybowxi [147],has described the use of RBFNs with

Gaussian basis functions to classify incomplete feature

vectors. The method lies on the basis that any marginal

distribution of a Gaussian distribution can be determined

from the mean vector and covariance matrix of the joint

distribution. A novel paradigm has been proposed by El-

Zooghby et al. [148] where data information is encapsu-

lated in determining the structure and initial parameters

of the RBFN classi�er before learning takes place. A hybrid

learning algorithm [149, 150] is used to train the RBFNs so

that the dimension of the search space is drastically re-

duced in the gradient paradigm. Fu et al. [151], have pro-

posed amodi�cation to the training algorithm for the con-

struction and training of the RBFN on unbalanced data

[152] by increasing bias towards the minority classes. The

weights inversely proportional to the number of patterns

of classes are given to each class in the mean square er-

ror function. Their experimental results show that the pro-

posed method is e�ective in improving the classi�cation

accuracy of minority classes while maintaining the over-

all classi�cation performance.

Training technique can be formulated as an optimiza-

tion problem that is used to minimize prediction error

[153]. An evolutionary algorithm such as DE has been used

for optimizing the parameters of RBFN as discussed in

[154]. They have used di�erent kernels of RBFN for classi-

fying UCI data sets. They have shown that DE-RBF gives

better result than GA-RBFN and simple RBFNs. Further,
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Dash et al. [155] have used DE-RBFN for classifying we-

blog dataset. In their work they have shown that DE-RBFN

gives better result than simple RBFN. Furthermore, Dash et
al. [156] have developed a novel DE+RBFNs classi�er with

a special attention to removal of irrelevant features and

data inconsistency [157] during the process of building the

model.

Nagabhushan et al. [158] have presented two simple

novel approaches for the classi�cation of symbolic data. In

their �rst step, they show the representation of symbolic

data in binary form and then use a simple hamming dis-

tance measure to obtain the clusters from binaries sym-

bolic data. This gives the class label and the number of

samples in each cluster. In the second part they pick a spe-

ci�c percentage of signi�cant data samples in each cluster

and use them to train the adaptive auto-con�guring neu-

ral network. Pulido et al. [159] have described how to ap-

ply a neural network based on RBFNs to classify multi-

variate data. The classi�cation strategy was automatically

implemented in a sequential injection analytical system.

RBFNs have some advantages over Counter Propagation

Neural Networks (CPNNs). In their work they have reduced

the classi�cation error from 20% to 13%. Qin et al. [160]
have presented a PSO learning algorithm to automate the

design of RBFNs, to solve pattern classi�cation problems.

Baragada et al. [161] have contributed a work based on the

combination of polynomial vector with Fisher’s discrimi-

nant functionusing the informationof bit-plane and radial

basis function. Each set of pixel is preprocessed to obtain

interpolated pixels using PVD. This is further trained by

Fisher’s discriminant method that transforms once again

into 2-D vector. A processing of training the RBF is adopted

to obtain set of �nal weights. During implementation, the

�nal weights are used to classify the presence of hidden

information. Kurban and Besdok [162], have made a com-

parison of training algorithms of RBFNs for classi�cation

purposes. For training they have usedArti�cial Bee Colony

(ABC) algorithm, Genetic algorithm, Kalman �ltering algo-

rithm, and gradient descent algorithm. Their experimental

results show that the use of ABC algorithm results in better

learning than those of others. Li and Tufts [170] have pre-

sented the concept of structures and algorithms of princi-

pal feature classi�cation (PFC) based on RBFNs. PFC is in-

tended to solve complex classi�cation problemswith large

data sets.

For Tibetan speech recognition, Pan et al. [163] have
designed classi�er based on RBFN with the property of

supervised learning based on gradient descent. Niranjan

et al. [164] have compared three non-linear pattern clas-

si�ers in the recognition of static speech patterns. Two of

these classi�ers are neural networks (MLP and the modi-

�edKanervamodel). The third one is themethodofRBFNs.

The class boundaries generated by the di�erent methods

are compared on simple two-dimensional examples.

Shan [165] has presented a new method based on the

vehicle license location. The segment method of vertical

projection information with prior knowledge is used to

split characters, and extract the statistical features. Then

the RBFN is used to recognize characters with the fea-

ture vector as input. The results show that this method

can recognize characters and improve the ability of li-

cense plate character recognition e�ectively. Sitamahalak-

shmi et al. [166], have proposed two classi�cation meth-

ods, RBFN and probabilistic neural network to recognize

hand written Telugu characters. They have shown that

RBFN is better technique than PNN. Lee [167] has demon-

strated RBFNs, BPNNs and k-nearest-neighbor (KNN) clas-

si�ers for large handwritten digit database. All provide

similar low error rates. BPN is overall superior in mem-

ory usage. The RBF classi�er requires more memory and

more classi�cation time, but less training time. The simple

KNN classi�er can also perform handwritten digit recog-

nition, but requires a prohibitively large amount of mem-

ory and is much slower at classi�cation. Hwang et al. [168]
described amethod to construct RBFN classi�er e�ciently

and e�ectively. Themethod determines neurons of middle

layer by a fast clustering algorithm and computes the op-

timal weights between middle and output layers. The au-

thors applied the proposed method to construct an RBFN

classi�er for unconstrained handwritten digit recognition.

Baboo et al. [169] have reported the results of recognition

of handwritten Tamil characters. They have experimented

with two di�erent approaches. One is SOM based method

wherein the interactionsbetween the features in the classi-

�cation are done using unsupervised learning. In the sec-

ond approach, a combination of RBFN and SOM has been

taken to investigate its dynamic training principles in their

classi�cation network. The classi�cation ability of RBFN-

SOM is compared to SOM network.

Li and Tufts [170], have presented the concept of struc-

tures and algorithms of principal feature classi�cation

(PFC) based on RBFNs. PFC is intended to solve complex

classi�cation problems with large data sets. Subashini et
al. [171] have compared the use of polynomial kernel of

SVM and RBFNs in ascertaining the diagnostic accuracy of

cytological data obtained from the Wisconsin breast can-

cer database. Their research demonstrates that RBFNs out-

performed the polynomial kernel of SVM for correctly clas-

sifying the tumors. Chu [172] has applied a novel RBFNs for

cancer classi�cation. He has taken three data sets and the

results shows that RBFN is able to achieve 100% accuracy

with much fewer genes.
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Kumar et al. [173] have extended their work on the ap-

plication of RBFNs for the unsupervised classi�cation of

images. An RBF like a spherical Gaussian, is a function

that is symmetrical about a given spread or center point

in a multidimensional space. The RBFN has been imple-

mented on IRS 1C LISS-3 image of Kanpur and adjoining

regions of India. Thakur et al. [174] have presented an ef-

�cient method for face recognition using principal com-

ponent analysis (PCA) and RBFNs. PCA reduces the di-

mensionality of the image, and also retains some of the

variations in the image data. After performing PCA, the

hidden layer neurons of the RBFNs have been modeled

by considering intra-class discriminating characteristics

of the training images. Dhanalaksmi et al. Dhanalaksmi

et al. [175], have used SVM and RBFNs algorithms to au-

tomatically classify audio clips into one of the six classes:

news, sports, music, movies, advertisement, and cartoon.

For these categories a number of acoustic features such

as linear predictive coe�cient, mel-frequency cepstral co-

e�cients are extracted to characterize the audio content.

Rosenblum et al. [176] have developed an RBF architec-

ture that learns the correlation of facial featuremotion pat-

terns and human expressions. Each expression network

was trained by viewing a set of sequences of one expres-

sion for many subjects. The trained neural network is then

tested for retention, extrapolation, and rejection ability.

Success rates are 88% for retention, 88% for extrapola-

tion, and 83% for rejection. Using only 2-D face images

and a small number of anchor points, Arad et al. [177]
have shown that themethod of RBFNs provides a powerful

mechanism for processing facial expressions.

The performance of RBFNs with its variants on UCI

data sets is listed in Table 7.

Tables 8 and 9 present a summary of algorithmswhich

are performing better and worst with respect to di�erent

datasets.

As a summary note we provide the simple statisti-

cal analysis of the performance of classi�ers. The moti-

vation behind the statistical analysis is to provide a kind

of road map by which one can compare the performance

of his or her own proposed classi�er with the algorithms

so far been developed. Classi�cation results are summa-

rized in terms of the classi�cation accuracywith respective

datasets. We provide the range of the classi�cation accu-

racy (i.e., maximum andminimum classi�cation accuracy

so far reported) with respect to di�erent UCI datasets. Also

we compare each classi�er based on mean and standard

deviation which is listed in Table 10.

Fanhui et al. [178] have presented a prediction model

based on RBFNs for a time sequence data, then RBFN

model and BP model is applied to the prediction of con-

tainer handling capacity at Sanghai port. The result shows

that prediction through RBFNmodel is faster andmore ac-

curate than BP model. Leonard et al., have presented a

novel network called the validity index network (VI net)

[179]. The VI net, derived from RBFNs, �ts functions and

calculates con�dence intervals for its predictions, indicat-

ing local regions of poor �t and extrapolation.

7 RBFN in di�erential equations

Many problems of science and engineering can bemapped

to a set of di�erential equations (DEs) through a process

of mathematical modeling. It is not easy to obtain their

exact solutions, so numerical methods must be resorted

to. Usually, in practice, only lower order approximations

are employed resulting in a continuous approximation of

the function across the mesh but not its partial deriva-

tives. The discontinuity of the approximation of the deriva-

tive can adversely a�ect the stability of the solution.While

higher-order schemes are necessary for more accurate ap-

proximations of the spatial derivatives, they usually in-

volve additional computational cost. To increase the accu-

racy of the low-order scheme, it is required that the com-

putational mesh be re�ned with a higher density of ele-

ments in the regions near the contours. This, however, is

also achieved at the expense of increased computational

cost. Alternativemethod to �nd an approximate particular

solution is achieved by using radial basis function (RBF)

[180].

Since [181], derived a modi�ed RBFs method suitable

for solving parabolic, hyperbolic, and elliptic partial dif-

ferential equations (PDE), the method has been success-

fully applied for solving PDEs of various types. Later,

Franke and Schaback [31], Wendland [130], Wu (1998) and

Wu and Schaback [182], contributed some theories on the

solvability and error bounds in applying the RBFs to solve

the PDEs. The advantage of RSFs is that they involve a sin-

gle independent variable regardless of the dimension of

the problem. They prove particularly attractive when the

domain cannot be expressed as product domains of lower

dimensions. In all the interpolation methods for scattered

data sets, RBFs outperforms all the other methods regard-

ing accuracy, stability, e�ciency, memory requirement,

and simplicity of the implementation. In a similar study,

Stead (1984) examined the accuracy of partial derivative

approximations over scattered data sets, also concluding

that RBFs performed more accurately compared to other

considered methods.
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Table 7: The Classi�cation Accuracy of Classi�ers Based on RBFNs.

Sl. No. Authors /Reference Dataset Accuracy in Percentage
1 Huang and Du, 2008 [76] Glass 65.14

Satellite Image 89.37
2 Lampariello and Sciandrone, 2001

[205]
Breast cancer 99.43

3 Wang et al., 2002 [142] Protein Sequences 87
4 Sing et al., 2003 [48] Iris 92.5

New thyroid 95.17
Ionosphere 96.03

5 Barra et al., 2006 [206] Iris 95.58
Wine 95.84
Bupa 64.02
Spiral 99.14

6 Yu and He, 2006 [193] Iris 97.33
Wine 96.31

New-thyroid 94.44
Glass 86.2

7 Falcao et al., 2006 [28] Satellite image 90.35
8 Nagabhushan and Padma, 2007

[263]
Soybean 98.5

Zoo 98
9 Nagabhushan and Padma, 2007

(Platt, 1991 (RAN)) [158]
Soybean 100

Zoo 100
10 Chen et al., 2008 (SC) [46] Wine 97.71

WBCD 95.26
New thyroid 93.9
Ionosphere 91.45

Iris 96
11 Chen et al., 2008 (PSOSC) [46] Wine 97.22

WBCD 95.37
New thyroid 94.39
Ionosphere 91.68

Iris 96.67
12 Subashini et al., 2009 [171] Breast cancer 96.57

Iris 93.9
Wine 96.7
Glass 90.7

13 Kurban andBesdok, 2009GD [162] Iris 91.8
Wine 94.4
Glass 91.5

14 Kurban and Besdok, 2009 (Genetic
Algorithm) [162]

Iris 96.1

Wine 97.3
Glass 91.9

15 Kurban and Besdok, 2009 (Arti�-
cial Bee Colony) [162]

Iris 96.3

Wine 97.9
Glass 92.7



50 | Ch. Sanjeev Kumar Dash et al.

Table 7: Contd.

Sl. No. Authors /Reference Dataset Accuracy in Percentage
16 Zainuddin and Lye, 2010 [49] Iris 95.19

Diabetes 65.91
Breast Cancer 92.36

Hepatitis 79.31
Lung cancer 49.03

17 Gutierrez et al., 2011 [29] Hepatitis 85.38
Glass 70.02
Sonar 80.9

Ionosphere 93.95
Iris 96.8

New thyroid 96.59
Balance 94.24

19 Kokshenev et al., 2010 [85] Breast Cancer 98.3
20 Qasem et al., 2010 [98] Breast Cancer 96.53

Diabetes 78.02
Hepatitis 82.26

21 Oh et al., 2011 [77] Iris 99.36
22 Qasem et al., 2012 [99] Breast cancer 97.66

Diabetes 77.34
Heart 82.2

Hepatitis 85.79
Liver 74.26
Iris 89.11
Wine 75.67

Lung cancer 67.78
23 Qasem et al., 2012 [99] Iris 83.78

Breast cancer 96.78
Diabetes 72.78
Wine 72.18
Heart 79.07

Hepatitis 80.04
Liver 62.63

Lung cancer 66.67
24 Qasem et al., 2012 [99] Breast cancer 96.93

Diabetes 77.07
Heart 87.54

Hepatitis 90.33
Liver 67.87
Wine 77.11
Iris 86

Lung cancer 71.39
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Table 8: Algorithms with Best Accuracy.

Serial Number Data Set Name of the Algorithm Accuracy
1 Iris PSO 99.36
2 Wine ABC 97.9
3 Glass ABC 92.7
4 New thyroid RBF 96.59
5 Diabetes PSO 78.02
6 Hepatitis MPPSON 90.33
7 Heart MPPSON 87.54
8 Liver MPPSON 74.26
9 Breast cancer RBF 99.43
10 Lung cancer MPPSON 67.78
11 Soybean RBF 100
12 Zoo RBF 100
13 Satellite Image RBF 90.35
14 WBCD PSO 95.37

Table 9: Algorithm with Worst Accuracy.

Serial No. Data Set Name of Algorithm Accuracy
1 Iris MPPSON 83.78
2 Wine MPPSON 72.18
3 Glass RBPNNs 65.14
4 New Thyroid SOM 93.9
5 Diabetes K-Harmonic Means 65.91
6 Hepatitis K-Harmonic Means 79.31
7 Heart MPPSON 79.07
8 Liver MPPSON 62.63
9 Breast Cancer K-Harmonic Means 92.36
10 Lung Cancer K-Harmonic Means 49.03
11 Ionosphere SOM 91.45
12 Soybean ACRBFNN 98.5
13 Zoo ACRBFNN 98.02
14 Satellite Image RBPNN 89.37
15 WBCD SOM 95.26
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Table 10: Statistical Analysis.

Sl.No. Dataset Minimum Maximum Average Standard Deviations
1 Iris 83.78 99.36 91.57 4.3997
2 Wine 72.18 97.9 85.04 10.238
3 Glass 65.14 92.7 78.92 11.5135
4 New thyroid 93.9 96.59 95.24 1.0489
5 Diabetes 65.91 78.02 71.96 5.0849
6 Hepatitis 79.31 90.33 84.82 4.1413
7 Heart 79.07 87.54 83.3 4.2828
8 Liver 62.63 74.26 68.44 5.8245
9 Breast cancer 92.13 99.43 95.78 2.4087
10 Lung cancer 49.03 67.78 57.85 10.5195
11 Ionosphere 91.45 97.46 94.45 2.6411
12 Soybean 98.5 100 99.25 1.0607
13 Zoo 98.02 100 99.01 1.4001
14 Satellite image 89.368 90.35 89.86 0.6944
15 WBCD 95.26 95.37 95.31 0.0778

Fasshauer [112] discussed the di�erence between globally

and locally supported methods for numerical solution of

partial di�erential equations. Basically for locally sup-

ported methods the important role of smoothing within

a multilevel framework is demonstrated. A possible con-

nection between multigrid �nite elements and multilevel

RBF methods with smoothing has been explored. Further,

Fasshauer [183, 184] dealt with the numerical solution

of di�erential equations by RBFs by two di�erent exper-

iments, namely 1) the solution of a two-point boundary

value problem, 2) the solution of a two-dimensional Pois-

son equation. In the second method a multilevel colloca-

tion algorithm based on locally supported basis function

is applied.

Frank et al. [31] studied meshless collocation meth-

ods using RBFs to approximate regular solution of sys-

tem of equations with linear di�erential equations or in-

tegral operators. Power et al. [185] have presented a thor-

ough numerical comparison between unsymmetric and

symmetric RBF collocation methods for the numerical so-

lution of boundary value problems for partial di�erential

equations. Schaback et al. [186] have used RBF for solving

partial di�erential equation and also they have generated

sparse and well conditioned matrices.

Wendland [129, 130] has combined the theory of RBF

network with the �eld of Galerkin methods to solve partial

di�erential equations. Galerkin method helps to solve el-

liptic partial di�erential equations. This approach can be

seen as mesh-less method. He restricted his work to sec-

ond order partial di�erential equations. Jianyu et al. [187]
used neural network for solving di�erential equations. In

their work a new growing RBF-node insertion strategy is

used in order to improve thenet performance. The learning

strategy is able to save computational time and memory

space, resulting improved approximation results. A recent

survey of the application of RBFNs in di�erential equa-

tions is presented in (Kumar and Yadav). In [16] authors

have presented a novel method i.e., known as DE-FLANN.

In addition to the aforementioned tasks, RBFNs have

been applied in diversi�ed domain, which are enlisted in

Table 11.

8 Discussion and future research
directions

This paper presents a focused survey on the attempt of de-

signing RBFNs over decades by researchers along with its

numerous usage in interdisciplinary �elds. First we pre-

sented the architecture of RBFNs, where the central prob-

lem is based on the selection of an appropriate kernel (or

basis function), number of hidden neurons (or RBFs), and

the optimization of weights associated between hidden

and output layer neurons. As far as the selection of ker-

nels is concerned, Gaussian kernel has been used widely

for solving problems from approximation to classi�cation.

However, RBFNs using Gaussian kernel is highly sensitive

to center and spread. Hence, many proposals under the

umbrella of unsupervised learning have been developed

to select the parameters appropriately. Similarly, there are

lots of independent proposals have been discussed for �x-
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Table 11: RBFNs in Domain Speci�c Applications.

Sl. Number Application Areas References
1 Power Transmission [207, 208]
2 Facial Expressions [177]
3 Steganlysis [161]
4 Handwritten Tamil Character Recognition [169]
5 Ship Course Changing Control [209]
6 Digital Communication Systems [210]
7 Fractals [211]
8 Inverse Filter [212]
9 Optimal Equalization Solution [197]
10 Channel Equalization [213]
11 Tracking, Time Variant Environments [213]
12 Audio Signal Analysis [214]
13 Gaseous Fuel Engine [215]
14 Neural Spike Sorting [216]
15 Power System [217]
16 Plants [218]
17 Surface Recovery [219, 264]
18 Fault Detection [220]
19 Direction of Arrival Estimation Computations in Antenna Arrays [148]
20 Telegraph Equation [221]
21 Non-linear Filtering Problem [222]
22 Irregular Terrain [223]
23 Arti�cial Intelligence [224]
24 Channel Equalization [267]
25 Multi-focus Image [225]
26 Knowledge Enhancement [226]
27 Dipole Localization [227]
28 Traditional Proportional Navigation Guidance Laws [220]
29 Non-linear System Identi�cation [228, 229]
30 Permanent Magnet Synchronous Motor [40]
31 Automatic Covariate Selection [29]
32 Gas Sensor [230]
33 Options Pricing Modeling [231]
34 Hydrologic System [232]
35 Health Monitoring [233]
36 Real-Time Operations [44]
37 GSM [228, 268]
38 Knowledge Extraction [234]
39 DC Motor [235]
40 Non-linear Function Estimation [236]
41 Sensor [162]
42 Maxwell’s equations [237]
43 Three-dimensional scalar Helmholtz equation [226]
44 Rainfall-o� Model [238]
45 Hydrodynamics [239]
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Table 11: Contd.

Sl. Number Application Areas References
46 Water Quality Simulation [240]
47 Mobile Robot [241]
48 Particleboard Glue Mixing & Dosing System [239, 269]
49 Dynamic Decay Adjustment Algorithm [133]
50 Rainfall Forecasting [242]
51 Knowledge Extraction [234]
52 Regulation Network [243]
53 Mechanism Analysis [244]
54 Turbo Equalization (TEQ) Scheme [245]
55 Human Expressions [176]
56 Forecasting of Monthly Sardines Catches [246]
57 ECG Signal Reduction [247]
58 Digital Communication Channels [248, 249]
59 Toeplitz operators [32]
60 Interpolation matrix [250]
61 Defect datasets of NASA [251]
62 Computational Vision [252]
63 Signal Estimation [212]
64 Signal Processing [253]
65 Blind Equalization [254, 270]
66 Mackey-Glass Chaotic Time Series [255]

67 Thin and Thick Sandwich Plates [256]
68 Logistics Service Providers [41]
69 NP-complete Problem [257]
70 Laser Sintering Process [42]
71 Tank Reactor [258]
72 Power System Restoration [259]
73 Kernel Regression Estimator [260]
74 Flapping Wings, Aerospace Engineering [261]
75 Bioinformatics [29]
76 Pattern Recognition [262, 265, 266]
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ing the problemof selection of hidden layer neurons. Since

RBF expansions are linearly dependents on the weights,

therefore, a globally optimum least squares interpolation

of non-linear maps can be achieved. However, singular

value decomposition (SVD) is widely used to optimize the

weights.

Secondly, we have exhaustively discussed the multi-

criteria problem of RBFNs. In contrast to single objec-

tive optimization of RBFNs, the multi-objective formula-

tion provides �exibility to user for choosing a solution of

his/her interest from a pool of Pareto optimal set in one

execution. In other words, when the algorithm completes,

it returns a complete set of solution with di�erent com-

promises between the two objectives (empirical risk and

number of RBFs), while other approaches, which obtain

only one solution per execution have to be executed sev-

eral times with di�erent con�gurations to obtain separate

solution.

Thirdly we have highlighted many open source soft-

ware tools for testing RBFNs. However, we found that

no tools have been addressed the multi-criteria issues of

RBFNs. To the best of our knowledge, there is no such re-

port/document has been reported for a fair comparison of

tools in connection to the successful application of RBFNs.

Finally we have discussed the potential use of RBFNs

in classi�cation, prediction, interpolation, approxima-

tion, and for solving partial di�erential equations. Ad-

ditionally some domain speci�c usage of RBFNs is pre-

sented. In speci�c, RBFNs demonstrated to be competi-

tive alternative for many approximation and classi�cation

problems. However, RBF networks still open avenues for

new kernels along many issues still remain unsolved. In

addition RBF networks need to be systematically evalu-

ated and compared with other new and traditional tools.

We believe that the multidisciplinary nature of RBF net-

works will generate more research activities and bring

about more fruitful outcomes in the future.
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