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RADIAL CONSOLIDATION OF CLAY USING COMPRESSIBILITY INDICES AND 

VARYING HORIZONTAL PERMEABILITY  

 
Buddhima Indraratna, Cholachat Rujikiatkamjorn and Iyathurai Sathananthan  

 

 

Abstract 

A system of vertical drains with surcharge load to accelerate consolidation by 

shortening the drainage path is one of the most popular methods of soft ground 

improvement.  The conventional radial consolidation theory (including smear and well 

resistance) have been commonly employed to predict the behaviour of vertical drains in 

soft clay. Its mathematical formulation is based on the small strain theory, and for a 

given stress range, a constant volume compressibility (mv) and a constant coefficient of 

lateral permeability (kh) are assumed. However, the value of mv varies along the 

consolidation curve over a wide range of applied pressure (∆p). In the same manner, kh 

also changes with the void ratio (e). In this paper, the writers have replaced mv with the 

compressibility indices (Cc and Cr), which define the slopes of the e-logσ' relationship. 

Moreover, the variation of horizontal permeability coefficient (kh) with void ratio (e) 

during consolidation is represented by the e-logkh relationship that has a slope of Ck. In 

contrast to the conventional analysis , the current study highlights the influence of the 

Cc/Ck (or Cr/Ck) ratio and the preloading increment ratio (∆p/σ�i) on the consolidation 

process. The analytical predictions are compared with the experimental results using a 

large scale consolidation chamber, and these predictions show good agreement with the 

measured data. Finally, an embankment case history taken from Muar Plains, Malaysia 

is analysed based on the current solution, and compared with field measurements. 

Keywords: Compressibility; Embankments; Permeability; Soft soils; Soil consolidation; Vertical drains 
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Introduction 

Preloading of soft clay over vertical drains is one of the most commonly 

employed methods to increase the shear strength of soil and to reduce its post-

construction settlement.  Since most compressible soils are characterized by very low 

permeability and considerable thickness, time required to achieve the desired settlement 

or shear strength can sometimes be too long to support the need for rapid construction 

(Johnson 1970). Using vertical drains, the drainage length is considerably shortened 

from the thickness of the soft soil layer (e.g. 10-30 m in the vertical direction, 

depending the geology and thickness of the compressible layer as well as the extent of 

loaded area) to half of the drain spacing in the horizontal direction (typical drain spacing 

is 1.0-2.0 m, (Indraratna et al. 1997). It is important to note that, for most soft clay 

deposits, the horizontal permeability is higher than the vertical permeability, hence, the 

rapid radial drainage accelerates the consolidation process (Jamiolkowski et al. 1983). 

This system has been used successfully to improve foundation soils for embankments, 

airports and highways (Indraratna and Redana 2000; Li and Rowe 2002). 

Barron (1948) introduced an analytical solution for radial consolidation of soil 

without the smear effect. Subsequently, Hansbo (1981) incorporated smear effect and 

well resistance into Barron’s formulation. Since a small strain theory is employed in 

Hansbo’s theory, a constant coefficient of volume compressibility (mv) and a constant 

coefficient of horizontal permeability (kh) were assumed for a given stress range.  In 

contrast, for a relatively large applied stress range, it is known that both soil 

permeability and soil volume compressibility coefficients decrease as a result of 

physical reduction in void ratio during the consolidation process (Tavenas et al. 1983; 

Seah et al. 2004). The stress state in relation to the preloading (surcharge) and 
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preconsolidation pressure is essential to predict the actual settlement (Casagrande1932; 

Holtz and Kovacs 1981; Burland 1990; Indraratna and Balasubramaniam 1993). In this 

paper, the e-logσ’ relationship is used to determine the compressibility indices (Cc and 

Cr), and the e-logkh relationship is used to represent permeability variation. In contrast, 

in the conventional radial consolidation (Barron 1948), the parameters mv and kh were 

not changed as a function of the void ratio for a given stress range. The smear effect is 

considered, but the well resistance is neglected. It can be noted that, for most common 

length of drains (less than 20 m long), the well resistance is not significant (Holtz et al. 

1991; Indraratna et al. 1994; Hansbo 1997). The effects of the compressibility indices, 

the variation of soil permeability and the magnitude of preloading are examined through 

the consolidation process. Subsequently, the writers’ model is verified using laboratory 

testing. Finally, the predictions of settlements and excess pore pressures are compared 

with field measurements at the centerline of embankments obtained readily from 

settlement plates and piezometers.  

 

Vertical Drain Theory 

Barron (1948) presented a comprehensive solution to the problem of radial 

consolidation by drain wells. He studied two extreme cases, namely (a) free strain and 

(b) equal strain. The ‘free strain hypothesis’ assumes that the load is uniform over a 

circular zone of influence for each vertical drain, and that the differential settlements 

occurring over this zone have no effect on the redistribution of stresses by arching of the 

fill load. The ‘equal vertical strain hypothesis’ on the other hand, assumes that arching 

occurs in the upper layer during the consolidation process without any differential 

settlement in the clay layer. The arching effect implies a more or less rigid boundary at 
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the surface of the soil layer being consolidated with vertical drains, assuming that the 

vertical strain is uniform in the horizontal plane of the soil. Nevertheless for all practical 

purposes, the average consolidation obtained in both these cases is nearly the same, and 

the solution obtained from the second assumption is simpler than the first case (Barron 

1948). Therefore, it has been common to use the equal vertical strain in most radial 

drainage-consolidation analyses. 

The key assumptions for the conventional equal vertical strain solution (Hansbo 

1981) are also applicable to a unit cell defined by any two adjacent centerlines between 

drains, and they are:  

(1) Soil is fully saturated and homogeneous, and laminar flow thorough the soil 

(Darcy’s law) is adopted. At the outer boundary of the unit cell, flow is not 

allowed to occur (Fig. 1), and for relatively long vertical drains, only the radial 

(horizontal) flow is permitted to occur (i.e. no vertical flow).  

(2) Soil strain is uniform at the upper boundary of the unit cell the small strain 

theory is valid.  

In this paper, the discharge capacity (qw) of the drain is assumed to be high 

enough for well resistance to be neglected. Holtz et al. (1989) suggested that as long as 

the working discharge capacity of PVD exceeds say 150 m
3
/year after installation, the 

effect on consolidation due to well resistance (e.g. folding, increased lateral pressure, 

siltation, etc.) may not be significant.  Indraratna and Redana (2000) described that well 

resistance in long term becomes significant for PVD with  qw less than 40-60  m
3
/year.  

Hansbo (1981) considered the smear effect which occurs during the vertical drain 

installation. Average degree of consolidation for vertical drains can be given by: 
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[1a]  
8

1 h

r

T
U exp

µ

� �−
= − � �

� �
        

[1b] in which, 0 75h

s

kn
ln ln s .

s k
µ = + −   

where, Ur = average degree of consolidation due to radial drainage, µ = a group 

of parameters representing the geometry of the vertical drain system and smear effect, n 

= de/dw, s = ds/dw, de = equivalent diameter of cylinder of soil around drain, ds = 

diameter of smear zone and dw = diameter of drain well.  In Eq. (1b), kh = average 

horizontal permeability in the undistrubed zone (m/s), and ks = average horizontal 

permeability in the smear zone (m/s).  Th is the dimensionless time factor for 

consolidation due to radial drainage. 

Figure 1 shows the unit cell adopted for the analysis and the patterns of the 

vertical drain. The equivalent drain diameter (de) is a function of drain spacing (d) and 

its configuration. It is equal to 1.05d and 1.128d for triangular and square patterns, 

respectively (Fig. 1).  Rixner et al. (1986) indicated that the triangular spacing gives 

more uniform settlement than the square pattern, while the square pattern is more 

convienient to control in the field. The installed drain pattern also depends on how they 

are installed in the field, equipment used, etc. The symbol dw is the equivalent band 

drain diameter or the actual diameter of sand drain (m). In the case of prefabricated 

vertical drain (PVD), dw can be determined by 2(a+b)/π,  where a and b are the width 

and thickness of PVD, respectively (Hansbo 1979).  

 

Other assumptions for the proposed analytical solution 

 Apart from the two assumptions stated earlier for Hansbo (1981) theory, the 

additional assumptions made in the writers’ analysis are summarised below: 



 7 

- During the consolidation process, at a given depth, the relationship between 

the average void ratio and the logarithm of average effective stress in the 

normally consolidated range (Fig. 2a) can be expressed by: 

)'/'log(0 icCee σσ−= . If the current vertical effective stress (σ’) is smaller 

than p’c, the recompression index (Cr) is used instead of Cc for the 

overconsolidated range. 

- In radial drainage, the horizontal permeability of soil decreases with the 

average void ratio (Fig. 2b). The relationship between these two parameters 

can be commonly found by (Tavenas et al. 1983): )/log(0 hihk kkCee +=  

The permeability index (Ck) is generally considered to be independent of 

stress history (p’c) (e.g. Nagaraj et al. 1994). 

Proposed Analytical Solution  

Laboratory testing has shown that during the consolidation process, a variation 

of soil volume compressibility and soil permeability can be found, which imparts a 

direct influence on the shape of e-logσ' and e-logkh (Lekha et al. 2003). In addition, in 

the field, the nature of subsoil stress history (normally consolidated or lightly 

overconsolidated soil) gives different consolidation responses (Seah and Juirnarongrit 

2003). Therefore, in order to predict the behaviour of a vertical drain system more 

accurately, it is necessary to incorporate the relationships of e-logσ’ and e-logkh with 

radial consolidation, and then find a new solution for the radial consolidation.  

The flow rate in the unit cell can be expressed by Darcy’s law as: 
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[2] cs
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∂

∂
=

∂

∂

γ
         

where, Q is the flow in soil mass, Acs is the cross sectional area of the flow at distance r 

which is equal to 2π r(dz) for an element thickness of dz. 

The rate of changing volume of soil mass is given by: 

[3] ( )2 2

e

V
r r dz

t t

ε
π

∂ ∂
= −

∂ ∂
         

where, V is the volume of the soil mass, and ε is the volumetric strain.  

The flow rate in the unit cell is equal to the rate of volume change of soil mass, 

therefore, 

[4] ( )2 22h

e

w

k u
rdz r r dz

r t

ε
π π

γ

∂ ∂� �
= −	 


∂ ∂� �
      

where, kh = average coefficient of permeability in undisturbed zone. Rearranging Eq. (4) 

gives the following equation for the pore pressure gradient in the undisturbed soil 

domain outside the smear zone. 

[5] 
2 2

2

w e

e s

h

r ru
r r r

r k t r

γ ε −∂ ∂ � �
= ≥ ≥� �∂ ∂ � �

    

 

In the smear (disturbed) zone, the corresponding pore pressure gradient is then given 

by: 

[6] 
2 2

2

s w e

s w

s

u r r
; r r r

r k t r

γ ε∂ −∂ � �
= ≥ ≥� �∂ ∂ � �

     

where, us = excess pore pressure in smear zone, ks = average permeability in smear zone 

and γw = unit weight of water. 
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The excess pore pressure in the smear zone can now be obtained by integration 

of  Eq. (6) in the r direction and using the boundary condition, u = 0 at r = rw:  

[7] 
2 2

2

2 2

ww

s e s w

s w

r r r
u r ln ; r r r

k t r

γ ε � �∂ −
= − ≥ ≥� �

∂ � �      

Meanwhile, 
s

u

 

at 
s

r r=  can be determined from: 

[8] 
2 2

2

2 2s

ww s s

s ,r r e

s w

r r r
u r ln

k t r

γ ε
=

� �−∂
= −� �
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Integrating Eq. (5) in the r direction with the boundary condition u = 
sr r

u =
at r = rs 

yields: 

[9] 
2 2

2

2 2s

sw

r r e e s

h s

r r r
u u . r ln ; r r r

k t r

γ ε
=

� �∂ −
− = − ≥ ≥� �

∂ � �     

 

Assuming that the excess pore pressure at the outer boundary of the smear zone (
sr r

u =
) is 

equal to the excess pore pressure at the inner boundary of the undisturbed zone (
ss ,r r

u
=

), 

as shown in Fig. 1, then: 

[10] 
2 22 2

2 2

2 2 2 2

wsw w s s

e e e s

h s h ,s w

r r rr r r
u r ln r ln ;r r r

k t r k t r

γ γε ε� �� � � �−∂ − ∂
 

= − + − ≥ ≥	 
� � � �

∂ ∂
 
� � � �� �
    

Let t
u  be the average excess pore pressure of the smear and intact zones, at depth z and 

for a given time, t, hence: 

[11] 
( )

0 0

2 2

2 2
e s

s w

r rl l

s

r r

t

e w

u rdrdz u rdrdz

u
r r l

π π

π

+

=
−
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Substituting Eqs. (7) and (10) into Eq. (11) gives the following expression for 

the average excess pore pressure tu  at any time, knowing that de=2re and 

01/ ee +∂=∂ε . Therefore, 
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[12] 
( ) w
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e
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d

t
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µ
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=          

Substituting  puR tu ∆= /  in Eq. (12) and further modifying 

[13] 
( )

( ) w
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2

18'
  

The dimensionless parameter  uR  is useful when the role of applied surcharge on 

pore water pressure is considered, and also when comparisons are made between two or 

more embankments during construction.    

Since preloading pressure ( p∆ ) is assumed to be an instantaneous loading on the 

top of unit cell and total stress (σ ) is constant throughout consolidation process 

0/ =∂∂ tσ . Simplifying Eq. (13): 

[14] u
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h

v
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h

u R
k

k

m

m
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µ

8
−=

∂

∂
, and       
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e

hi
h

d

tc
T =   

where, ( ) )1/('/ 0eemv +∂∂= σ , ( ) )1/('/ 00 eem tvi +∂∂= =σ  and 
( )

0

0
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1
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e
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The void ratio-effective stress and the void ratio-permeability relations for normally 

consolidated clays can be express as (Tavenas et al. 1983): 

[16] ��
�

�
��
�

�
−=

i

cCee
'

'
log0

σ

σ
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�
��
�

�
+=
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h

k
k

k
Cee log0          

Differentiating Eq. (16) with respect to the effective stress (σ’) gives:  
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m
'/'/1 σσ ∆−∆+=        

Combining Eqs. (16) and (17) gives: 

 [19] 
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Therefore: 

[20] ( ) kc CC
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Substituting Eqs. (18) and (20) into (14) yields: 

[21] u
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u PR
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µ
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where, ( ) kc CC

iui pRpP
/1

'/'/1
−

∆−∆+= σσ  

It can be seen that Eq. (21) is a nonlinear partial differential equation for radial 

consolidation under instantaneous loading, incorporating the e-logσ’ and e-logkh 

relations. The nonlinear differential Eq. (21) with variable Ru does not have a general 

solution and P varies from 

kc CC

i

p
/1

'
1

−

��
�

�
��
�

� ∆
+

σ
 to 1. Hence, it can be assumed to have an 

average value given by: 
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Incorporating the above assumption for Pav, Eq. (21) can be written as: 

[23] u

h
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T

R

µ

8

*
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∂

∂
        

where, *hT  is the modified time factor, defined by: 
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Integrating the above equation (23) subject to the boundary condition that 
t

u p= ∆  at 

0* =hT , gives the following expression similar to the original equation (Eq. 1): 

[25] ��
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 Substituting *hT  in Eq. (25), the expression for excess pore pressure ratio for 

normally consolidated clay becomes: 

[26a] �
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�


�

�
	
� ∆

++−=

−

µσ
h

CC

i

u

Tp
R

kc /1

'
114exp   

For overconsolidated soil, cp''<σ  (e.g. topmost layer close to surface)  
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When the effective stress equals the preconsolidation pressure (
c

' p'σ = ), the 

corresponding time factor Th,pc can then be determined by: 
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When cp''>σ along the slope of the normally consolidation curve (Cc), the expression 

for excess pore pressure ratio when Th>Th,pc  is given by: 
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where, 
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By combining Eqns (9) and (12) the normalized excess pore pressure at any point 

within the smear zone can be found as: 

[27a]
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By combining Eqns (10) and (12) the normalized excess pore pressure at any point 

outside the smear zone is given by: 
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When the value of Cc/Ck approaches unity, the writers’ solution converges to that of 

Hansbo (1981) described earlier (see Eq. (1)), hence: 

[28] ��
�

�
��
�

� −
=

µ
h

u

T
R

8
exp  

Since the relationship between effective stress and strain is not linear, the average 

degree of consolidation can be defined either based on excess pore pressure (stress) (Up) 

or based on strain (settlement at the top surface) (Us). Up indicates the rate of dissipation 

of excess pore pressure whereas Up shows the rate of development of the surface 

settlement. Normally, sp UU ≠  except when the relationship between effective stress 

and strain is linear, which is Terzaghi’s one-dimensional theory. Therefore, the average 

degree of consolidation based on excess pore pressure can be obtained as follows: 

[29] up RU −= 1          
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The average degree of consolidation based on settlement (strain) can be given by: 

[30] 
∞

=
ρ

ρ
sU  

The associated settlements (ρ) are evaluated by the following equations:  
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ρ  for normally consolidated clay 

It is noted that ∞ρ can be obtained by substituting pi ∆+= '' σσ  into the above equations. 

where, ρ = settlement at a given time,
c

ρ = total primary consolidation settlement, Cc = 

compression index, Cr = recompression index and H = compressible soil thiskness.  

Depending on the location of the initial and final effective stresses with respect to the 

normally consolidated and overconsolidated domains,the following is a summary of the 

relavant computational steps.  

(i) If both the initial and final effective stresses are in the normally consolidated 

range, Equations (26a) and (29) are employed to calculate Up, whereas 

Equations (30) and (30c) are used to compute Us. 
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(ii) If both the initial and final effective stresses are in the overconsolidated range, 

Equations (26b) and (29) are employed to calculate Up, and Equations (30) and 

(30a) are used to determine Us. 

(iii)  If the initial effective stress falls on the overconsolidated domain and the final 

effective stress is on the normally consolidated domain; Equations (26b)-(26d) 

and (29) are employed to calculate Up, whereas Equations (30) (30a) and (30b) 

are employed to calculate Us.  

 

Comparisons of Hansbo (1981) with proposed solutions 

In this section, the effects of the values of Cc/Ck and  load increment ratio 

(∆p/σ�i)  are examined in the post p’c region. Relevent parameters used in the analysis 

are given in Table 1. According to Berry and Wilkinson (1969), the typical values of 

Cc/Ck for soil in the range of  0.5-2.0 are used in the analysis. The load increment ratio 

is either 1or 2. Figure 3 shows the comparison of the degree of consolidation based on 

excess pore pressure (Fig.3a) and strain (Fig.3b) approaches both employing 

compression index and the variation of horizontal permeability (Eqns. 29 and 30). The 

maximum difference between Up and Us is around 10%. It is evident that the values of  

Cc/Ck and ∆p/σ�i with the same initial coefficient of consolidation for horizontal 

drainage (chi) control the rate of consolidation process. For a given ∆p/σ�i, when Cc/Ck < 

1 (i.e. the rate of decrease in void ratio with increase in effective stress is smaller than 

the decrease of void ratio with decrease in permeability), the actual consolidation 

process is faster than the corresponding result from Hansbo’s theory. In contrast, when  
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Cc/Ck > 1 for a given ∆p/σ�i, the actual consolidation process is slower than that 

predicted by Hansbo’s solution. For Cc/Ck < 1, when the load increment ratio increases, 

the rate of settlement increases (Fig. 3). However, for Cc/Ck > 1, the reverse is true as 

when the load increment ratio increases, the rate of settlement decreases. It is important 

to note that the degree of consolidation  based on strain (Us) is greater than that based 

on the excess pore pressure (Up). The magnitude of the difference between them 

depends on the soil properties and the applied stress levels. In order to correctly 

evaluate the actual consolidation, the variations in permeability and compressibility, 

stress history, and the magnitude of preloading pressure should all be considered.  More 

significantly, the roles of Cc/Ck  and ∆p/σ�i are found to be important as demonstrated 

here.  

 

Verification of the Proposed Model 

The proposed model was validated by comparing the settlement predictions with 

laboratory data. The laboratory testing was conducted using a large-scale 450 mm-

diameter large-scale consolidation apparatus having a height of 950 mm. Reconstituted 

alluvial clay from Moruya (New South Wales) was used in the apparatus. In order to 

reduce friction between the side wall of the cylinder and the soil, a Teflon sheet was laid 

around the inner periphery of the cell. Table 2 summarizes the properties of this 

reconstituted clay. The e-logσ' and e-logkh relationships are obtained by the four 

conventional oedometer tests (Fig.4). From e-logσ’ and e-logkh plots, the slope of the e-

logσ’ line (Cc) and the slope of e-logkh line (Ck) are found as 0.29 and 0.45, 

respectively. Therefore, the corresponding Cc/Ck can be calculated as 0.64. The detailed 

testing procedure is explained elsewhere by Indraratna and Redana (1998). Following 
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Burland (1990), the clay specimen was prepared with a water content slightly greater 

than the liquid limit. The clay was placed and compacted in layers in the apparatus. In 

two different tests, an initial preconsolidation pressure of 20 kPa and 50 kPa, 

respectively, was applied for 5 days before the installation of the vertical drain. The 100 

mm × 4 mm band drain was then installed vertically in the center of the cell using a 

steel mandrel. After drain installation, the mandrel was withdrawn by the hoist system, 

and subsequently, the preconsolidation pressures of 20 kPa and 50 kPa were maintained 

in the two tests. The two large clay samples were then further subjected to different 

loading sequences i.e., loading increments (∆p) of 30 kPa and 50 kPa, to give the final 

total pressures of 50 kPa and 100 kPa, respectively. Both samples were then loaded in 

the normally consolidated range. The corresponding settlement behaviour was recorded, 

as shown in Fig. 5.  

The initial coefficient of horizontal permeability in the undisturbed zone, khi was 

determined from e-logkh plots (Fig. 4) and the initial void ratio (e0). The diameter of the 

smear zone (ds) and the initial ratio of kh/ks were evaluated to be 200 mm and 1.5, 

respectively, based on previous testing (Indraratna and Redana 1998).  Table 3 shows 

the parameters used in the analytical model for settlement prediction.  

 Figures 5a and 5b illustrate the degree of consolidation based on strain from the 

writers’ model (Eq. 30) in comparison with the laboratory results and Hansbo’s 

solution. The initial coefficient of horizontal consolidation ( hic ), which is related to 

time factor (Th) can be calculated by: 

[31] 
viw

hi

hi
m

k
c

γ
=          
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where, hik = initial horizontal permeability coefficient, 0e = initial void ratio, vim = 

initial coefficient of volume compressibility.  

As shown in Fig. 5, the settlement predictions from Hansbo’s solution slightly 

underestimate the laboratory results, whereas the predictions incorporating the 

compression indices and the variation of soil lateral permeability agree very well with 

the laboratory results. It is noted that the rate of consolidation from the modified 

solution is greater than the conventional analysis for Cc/Ck < 1 as explained earlier in 

the previous section. This verifies that apart from the permeability and drain 

configuration, the consolidation behavior depends on the magnitude of the loading 

increment ratio and the values of Cc/Ck. 

 

Application of the Model to Selected Case History 

The Malaysian Highway Authority was responsible for constructing a number of 

test embankments on the Muar Plain, with various forms of ground improvement 

techniques including vertical drains. Figure 6 shows the vertical cross section of one 

such embankment, together with the subsoil profile and PVDs installed in a triangular 

pattern at a spacing of 1.3 m.  The details of the test embankment are explained 

elsewhere by Indraratna et al. (1994). Table 4 gives the details of the drain geometry. 

The soil parameters, the in situ effective stress and the soil permeability for Muar clay 

subsoils are summarised in Table 5. The relevent soil properties including 

compressibility indices, soil unit weights, initial void ratios, preconsolidation pressures 

and permeability coeeficients were obtained from CKoU triaxial tests (Ratnayake 1991). 

As suggested by Tavenas et al. (1983), the slope of e-logkh (Ck) can be calcluated by: 
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[32] 05.0 eCk =           

In the analysis, each subsoil layer was divided into smaller sublayers to derive a 

more accurate effective stress distribution with depth.  In the analysis, the  value of  soil 

compressibility index (Cc or Cr) is associated with the actual stress state within a given 

region of the foundation, where the working stress range must be considered in relation 

to the preconsolidation pressure of soil at that particular depth (Indraratna et al., 1994). 

According to laboratory experiments conducted by Indraratna and Redana (1998), the 

ratio of kh/ks is approximately 1.5-2.0. However, this ratio in the field can vary from 1.5 

to 5 depending on the type of drain and installation procedures (Saye 2003). The value 

of kh/ks for this case study was taken to be 3.  

 The embankment load was applied in two stages. As shown in Fig. 7a, during 

Stage 1 construction, the embankment was raised to a height of 2.57 m in 14 days. 

Following a rest period of 105 days, an additional fill layer (with compacted unit weight 

of 20.5 kN/m
3
) was placed during Stage 2, until the embankment reached the height of 

4.74m in 24 days. The settlements at the centerline were monitored for about 400 days. 

  The embankment loading was simulated by assuming an instantaneous loading 

at the upper boundary. Settlement predictions were carried out at the embankment 

centerline using the writers’ analytical model (eg. Eqs. 26-30). At the beginning of 

Stage 2, the initial in-situ effective stess and initial coefficient of horizontal 

consolidation ( hic ) were calculated based on the Stage 1 final degree of consolidation.  

As the computation of consolidation settlement at the centerline (zero lateral 

displacements) is straightforward and follow the 1-D consolidation theory, the use of an 

EXCEL spreadsheet formulation for this purpose is most convenient. The value of  soil 
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compressibility (Cc or Cr)  in association with the correct working effective stress plays 

a very important role for predicting settlement. For Stage 1 loading, where the effective 

preconsolidation pressure (p’c) is not exceeded, the value of recompression index (Cr) 

may be used. In particular, the surface crust is heavily overconsolidated (upto about 3 m 

depth). Once p’c is exceeded, the value of compression index (Cc) follows the normally 

consolidated line as indicated by the values in Table 5. The measured initial horizontal 

permeability coefficients of undisturbed soil (khi) are also given in Table 5. The 

predicted settlement agrees well with the measured values at the embankment centerline 

(Fig. 7b). In contrast, Hansbo’s solution underpredicts before 170 days and overpredicts 

after 170 days. The analytically predicted and the measured excess pore pressures 

beneath the embankment at a depth of 11.2m below ground surface and at a location of 

0.65m away from the centerline are shown in Fig. 8c. acceptable agreement between the 

predictions and measurments is found. It is noted that the authors’ and Hansbo (1981) 

solutions are close to each other, because the ratio Cc/Ck  is almost unity at the 

measurement location.  
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Conclusions 

A system of vertical drains is an effective method for accelerating soil 

consolidation. A revised analytical model for soft clay stabilised by vertical drains 

incorporating the compressibility indices (Cc and Cr) was proposed, and the variation of 

horizontal permeability coefficient (kh) was represented by the e-logkh relationship. The 

parameters such as the slopes of the e-logσ’ relationship (Cc and Cr), the slope of e-

logkh relationship (Ck) and the loading increment ratio (∆p/σ�i) were explicitly included 

in the analytical model to predict the consolidation behaviour. The writers’ analysis 

particularly elaborates on the important role of Cc/Ck and ∆p/σ�i ratios, which are found 

to govern the rate of consolidation. When Cc/Ck is less than 1, the actual rate of 

consolidation is higher than the conventional solution of Hansbo (1981). Also, the rate 

of consolidation decreases with the reduction of the load increment ratio  (∆p/σ�i). When 

Cc/Ck exceeds 1, the consolidation process takes place at a slower rate compared to the 

conventional solution. In these circumstances (Cc/Ck>1), the rate of consolidation 

increases with the decrease with ∆p/σ�i. It also shows that the settlement development 

occurs faster the excess pore pressure dissipation.                                 

The predictions from the writers’ analytical model agree well with the laboratory 

results based on large-scale consolidation testing. The proposed solution gives a greater 

accuracy of the settlement prediction, when applied to a selected case history (Muar 

clay, Malaysia).  In this analysis,  the smear effect (due to mandrel driven prefabricated 

drains) was included but the well resistance was ignored (drain length less than 20 m). 

For a given drain pattern, the findings of this study confirm that the soil compressibility 

indices based on the e-logσ’ relationship as well as the load increment ratio  (∆p/σ�i) are 
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major factors influencing the embankment settlement, apart from the change in the 

lateral soil permeability (kh) with the void ratio. 
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Appendix A. Complete details of Equation 18 derivation 

Differentiating Eq. (16) with respect to the effective stress (σ’) gives: 

(A1)   
'303.2' σσ

cCe
−=

∂

∂
  

and  

(A2)  ( ) )1/('/ 0eemv +∂∂= σ  

(A3)  ( ) )1/('/ 00 eem tvi +∂∂= =σ  

therefore, 

(A4)  '/'/ 0 σσ ∂∂∂∂= = ee
m

m
t

v

vi  

Substituting Equation (A1) into (A4) gives: 

(A5)  
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but 

(A6)  ='σ
t

upi −∆+'σ  

Substituting Equation (A6) into (A5) gives: 

(A7)   iui

v

vi pRp
m

m
'/'/1 σσ ∆−∆+=  

where,  puR tu ∆= /  
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NOTATION 

The following symbols are used in this paper: 

Acs = cross-sectional area corresponding to flow (m
2
) 

a = width of the prefabricated vertical drain (m) 

bw  = half width of drain (m) 

Cc =  comprssion index 

Ck = permeability index 

Cr = recompression index  

chi  = initial coefficient of consolidation for horizontal drainage (m
2
/s) 

ch,pc      = coefficient of consolidation for horizontal drainage at effective 

preconsolidation pressure(m
2
/s) 

d = drain spacing (m) 

de = diameter of influenced zone (m) 

ds = diameter of smear zone (m) 

dw = diameter of drain well (m) 

e0 = average void ratio at initial in-situ effective stress 

H  =  compressible soil thiskness 

h = hydraulic head (m) 

k  = average permeability coefficient of soil (m/s) 

khi  = initial horizontal permeability coefficient of undisturb zone (m/s) 

ks  = average horizontal permeability coefficient of smear zone (m/s) 
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mv = coefficient of volume compressibility 

mvi = initial coefficient of volume compressibility 

n    = ratio re/rw or de/dw 

P = modification factor for pore pressure 

Pav = average modification factor for pore pressure 

p'c = preconsolidation pressure (kPa) 

Q  = flow in unit cell (m
3
) 

Ru = average excess pore water pressure ratio ( pu t ∆/ ) 

r  = distance from center of the drain in axisymmetry unit cell (m) 

re  = radius of influenced zone (m) 

rs  = radius of smear zone (m) 

rw = radius of drain well (m) 

s = ratio rs/rw or ds/dw 

Th  = dimensionless time factor for horizontal drainage, 2/ ehih dtcT =  

Th*  = modified dimensionless time factor  

Th,pc  = dimensionless time factor at 'σ = p'c 

Up = average degree of radial consolidation based on excess pore pressure 

Us = average degree of radial consolidation based on strain 

u   = excess pore water pressure (kN/m
2
) 

us   = excess pore water pressure in smear zone (kN/m
2
) 

t
u    = average excess pore water pressure at a given time t (kN/m

2
) 
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V = volume of soil mass (m
3
) 

vr  = velocity of flow (at radious r) (m/s) 

 

 

Greek letters 

γw  = unit weight of water (kN/m
3
) 

∆p           = preloading pressure(kN/m
2
) 

µ = a function of n, s, kh, ks  

ρ  = settlement at a given time 

c
ρ  =  total primary consolidation settlement 

σ  = vertical total stress (kN/m
2
) 

'σ  = vertical effective stress (kN/m
2
) 

σ'ι = in-situ vertical effective stress or initial vertical effective stress (kN/m
2
) 
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Table 1. Parameters used to compare the effects of loading increment ratio, and 

Cc/Ck  

Parameters Value 

n = de/dw           15 

s = ds/dw             4 

Horizontal permeability, kh (×10
-9

 m/s)             1.0 

kh/ks             1.5 

Initial void ratio, e0             2 

In-situ effective stress, σ�i (kPa)           20 

Cc             0.25 

 

 

Table 2. Soil properties of reconstituted clay sample 

Soil properties Reconstituted clay 

Water content (%) 45 

Plastic limit, wp (%) 17 

Plasticity Index, PI (%) 25 

Unit weight, tγ , (kN/m
3
) 17 

Cc                                   0.29 

Ck                                   0.45 
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Table 3. Parameters used in the analysis 

Parameters Test 1 

(Final total pressure 

= 50 kPa) 

Test 2  

(Final total pressure 

= 100 kPa) 

Diameter of influence zone, de (m)   0.45   0.45 

Equivalent diameter of drain, dw (m)     0.066     0.066 

Diameter of smear zone, ds (m) 0.2 0.2 

n = de/dw   6.79   6.79 

s = ds/dw   3.02   3.02 

Initial horizontal permeability, khi  

(×10
-10

 m/s) 

4.6 4.0 

kh/ks 1.5 1.5 

Initial void ratio, e0               1.0   0.95 

chi (×10
-3

 m
2
/day)  1.58   3.02 

Initial height, m     0.925    0.87 

Preconsolidation pressure, p′′′′c (kPa)             20            50 

∆p (kPa)             30            50 

 

 

Table 4. Geometric parameters of the vertical drain system for Muar clay 

embankment 

Geometric parameters Value 

Installation pattern Triangular 

drain spacing, d (m)  1.3 

Diameter of influence zone, de (m)      1.365 

Equivalent drain diameter,  dw (m)    0.07 

s = ds/dw 4 
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Table 5. Soil parameters for Muar clay Embankments (data source from 

Ratnayake, 1991) 

Depth 

(m) 

Cr Cc γt 

(kN/m
3
) 

e0 

 
σ� at the 

middle of layer 

(kPa) 

p′c 
(kPa) 

kh  

(In-situ value) 

(× 10
-9 

m/s) 

0.0-1.75 0.35 0.71 16.5 3.10 4.88  60   6.4 

1.50-2.50 0.37 0.71 15.0 3.10 12.25   55   5.2 

2.50-5.5  1.38 15.0 3.00 22.25   50   5.2 

5.5-6.5  1.38 15.5 3.00 32.50   44   3.1 

6.5-8.0  0.71 15.5 1.95 39.38   51   3.1 

8.0-10.0  0.71 16.0 1.82 49.50   60   1.3 

10.0-12.0  0.83 16.0 1.86 61.50   73   0.6 

12.0-14.0  0.83 16.0 1.89 73.50   86   0.6 

14.0-16.0  0.83 16.0 1.86 85.50   97   0.6 

16.0-18.0  0.83 16.0 1.86 97.50 110   0.6 
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Fig. 1. Vertical drain and its layout: (a) unit cell, (b) triangular grid pattern and (c) 

square grid pattern 
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Fig. 2. (a) Compression during preloading and (b) Semi-log permeability-void ratio 

relationship 
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Fig. 3. Average degree of radial consolidation U plotted against time factor Th for 

varying compressibility and permeability relationships (a) based on excess pore 

pressure, (b) based on strain 
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Fig. 4. Typical e-logσ’ and e-logkh plots for Moruya clay 
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(b) 

Fig. 5. Comparison between measured and predicted results from proposed model and 

Hansbo’s solution, (a) p′′′′c = 20 kPa, ∆p = 30 kPa. and (b) p′′′′c = 50 kPa, ∆p = 50 

kPa 
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Fig. 6. Cross section of embankments with soil profile, Muar clay, Malaysia  
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Fig. 7. Muar clay embankment in Malaysia; (a) stages of loading, (b) surface 

settlements under the embankment centreline and (c) excess pore pressures at a depth of 

11.2m below ground surface, 0.65m away from the centerline 




