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We develop the theory of conformal blocks in CFTd expressing them as power series with Gegenbauer

polynomial coefficients. Such series have a clear physical meaning when the conformal block is analyzed

in radial quantization: individual terms describe contributions of descendants of a given spin.

Convergence of these series can be optimized by a judicious choice of the radial quantization origin.

We argue that the best choice is to insert the operators symmetrically. We analyze in detail the resulting

‘‘�-series’’ and show that it converges much more rapidly than for the commonly used variable z. We

discuss how these conformal block representations can be used in the conformal bootstrap. In particular,

we use them to derive analytically some bootstrap bounds whose existence was previously found

numerically.
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I. INTRODUCTION

Recent years have seen a revival of the bootstrap ap-
proach to conformal field theory (CFT) in higher dimen-
sions [1–14]. Recall that conformal bootstrap aims to
control a CFT by imposing the associativity constraint on
the operator algebra. In practice this is done by taking a
correlation function of four primary operators,1 expanding
it into conformal partial waves, and demanding that the
different channels agree (see Fig. 1). A central role in this
program is played by conformal blocks—functions of the
cross ratios obtained by stripping the conformal partial
waves from the trivial x-dependent factors.

The theory of conformal blocks in dimension d � 3 was
started in the 1970s [15–18], with many recent valuable
contributions [10,19–24].2 Especially the explicit expres-
sions for even d found by Dolan and Osborn [19,20] were
instrumental for the first practical applications of the boot-
strap. In general d, an approach to evaluating the confor-
mal blocks and their derivatives was developed last year in
Ref. [10] and applied in the bootstrap analysis of the 3d
Ising model.

In spite of these advances, conformal blocks remain
rather mysterious special functions. The purpose of this
paper is to demystify them via a concrete and economical
approach. We will base our considerations on the fact that
the conformal blocks are, first and foremost, sums of
contributions of radial quantization states to a matrix

element computing a four point function. This point of
view is standard in the 2d CFT literature [26]. Recently
[27], it proved useful in general d to study the convergence
rate of the conformal block decomposition. Here we
develop it to its logical end.
The paper is organized as follows. In Sec. II we intro-

duce the radial quantization representation of conformal
blocks. Here we consider the four point function in the
frame where two points are fixed at 0 and 1. The expan-
sion parameter in this frame coincides with the Dolan-
Osborn variable z. The heart of the paper is Sec. III, where
we switch to a different coordinate �, which corresponds to
the frame with points inserted symmetrically with respect
to the origin. We demonstrate the advantages of this frame
for evaluating the conformal blocks: the expansion
parameter � is smaller than z; the �-series converges
everywhere the block is expected to be regular; its coef-
ficients are bounded independently of� and l. The last two
properties are not true for the z-series expansions.
We foresee that the �-series representations of confor-

mal blocks will find many applications in the conformal

FIG. 1 (color online). Any CFT is characterized by conformal
data—primary operator dimensions and spins ð�i; liÞ and the
OPE coefficients fijk. Using the OPE, the four point functions

can be expanded into conformal partial waves, fixed by confor-
mal symmetry in terms of the operator quantum numbers, times
the products of the OPE coefficients. That the different expan-
sions agree is a nontrivial constraint on the conformal data.

1These are called quasiprimaries in d ¼ 2 dimensional CFT.
2In d ¼ 2 dimensional CFT, one distinguishes the ‘‘small’’

conformal blocks defined by summing over the SLð2;CÞ
descendants and the ‘‘big’’ blocks defined by summing over
the Virasoro descendants. Although our focus is on higher
dimensions, the blocks considered here reduce to the small
blocks in d ¼ 2. They can also be viewed as the c ! 1 limits
of the big blocks [25].
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bootstrap program; we outline some in Sec. IV. An espe-
cially neat application is the ‘‘toy bootstrap equation’’
(Sec. IVB), by means of which it is possible at last to
get analytic understanding of why the methods of Ref. [1]
were successful in producing upper bounds on the operator
spectrum.

We conclude in Sec. V. The Appendix contains the proof
of boundedness of the �-series expansion coefficients.

II. CONFORMAL BLOCKS IN THE
DOLAN-OSBORN COORDINATES

A. General structure

For simplicity we will focus on the Euclidean-space
correlator of four identical scalar primaries.3 By conformal
invariance it has the form

h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi ¼ gðu; vÞ
ðx212Þ��ðx234Þ��

;

xij � xi � xj;
(2.1)

where gðu; vÞ is a function of the conformally invariant
cross ratios

u ¼ ðx212x234Þ=ðx213x224Þ; v ¼ ðx214x223Þ=ðx213x224Þ: (2.2)

The partial wave decomposition of this correlator takes the
form

gðu; vÞ ¼ X
O

f2OGOðu; vÞ; (2.3)

where the GOðu; vÞ are the conformal blocks of the pri-
mary operators appearing in the ��� operator product
expansion (OPE) and fO are their OPE coefficients. The
function gðu; vÞ computed from this expansion must sat-
isfy the crossing symmetry equation

v��gðu; vÞ ¼ u��gðv; uÞ; (2.4)

which imposes constraints on the dimensions, spins, and
OPE coefficients fO of the exchanged operators. However,
our main interest here is not in how to extract these con-
straints (this will be briefly discussed in Sec. IV), but in the
conformal blocks themselves.

Starting from the work of Dolan and Osborn [19,20], it
has become customary to express conformal blocks by
changing coordinates from u, v to z and �z � z�:

u ¼ z�z; v ¼ ð1� zÞð1� �zÞ: (2.5)

The geometrical meaning of the new variables is made
clear by assigning three points to 0, 1, 1 as in Fig. 2. The
complex z is the usual coordinate used in d ¼ 2 dimen-
sional CFT, but its utility for general d is not a priori
obvious. References [19,20] discovered that conformal

blocks in d ¼ 4 and in all even dimensions take particu-
larly simple expressions in these coordinates. Here we will
work with any d, even or odd.4

To avoid possible misunderstanding, we should stress
that although we parametrize the conformal blocks by a
complex variable z, we never use complex analysis. Only
in the 2d case do the conformal blocks factorize as a
holomorphic times antiholomorphic function. For general
d considered here, we will treat conformal blocks as
smooth real functions in the z plane; see the end of this
section and Sec. III B for more details.
To exhibit the general structure of conformal blocks in

the z, �z variables, let us use radial quantization. It is
convenient, although not strictly necessary, to do a Weyl
transformation which maps the CFT from Rd to the cylin-
der R� Sd�1. In polar coordinates, the mapping is simply
ðr;nÞ ! ð�;nÞ, with the cylinder time � ¼ log r. The flat
space four point function with points assigned as in Fig. 3
then maps to the cylinder matrix element

h�j�ð�3;n3Þ�ð�2;n2Þj�i: (2.6)

The operators inserted at zero and infinity map to the radial
quantization in and out states j�i and h�j. The other two
insertions are at the cylinder times �2 ¼ log jzj and �3 ¼ 0.
We keep both unit vectors n2 and n3 explicit for future use,
but the only rotationally invariant parameter is their scalar
product

n2 � n3 ¼ cos �; � ¼ arg z: (2.7)

The next step is to express Eq. (2.6) by inserting a
complete basis of energy eigenstates on Sd�1. This gives5

FIG. 2 (color online). By conformal symmetry, three operators
can be put at x1 ¼ 0, x3 ¼ ð1; 0; . . . ; 0Þ, x4 ! 1, with the fourth
point x2 somewhere in the (12)-plane parametrized by the
complex coordinate z.

3The generalization to nonidentical scalars is straightforward,
and we will comment on the nonscalar case in Sec. V.

4In fact, as we will see below, conformal blocks depend
analytically on d. The conformal bootstrap equation with ana-
lytically continued blocks can be formally considered for any d.
It can be taken as a nonperturbative definition of CFT in frac-
tional dimensions [28].

5The extra factors in the rhs of this formula which follow from
the denominator of Eq. (2.1), from the Weyl transformation of
operators, and from acting with exp ð�H�Þ on the in and out
states when shifting the operator insertion times to zero, cancel
each other; see Ref. [27] for a more detailed derivation.
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gðu; vÞ ¼ X
E

jzjEh�j�ð0;n3ÞjEihEj�ð0;n2Þj�i; (2.8)

where we took into account that propagating a state of
energy6 E for the Euclidean time distance �3 � �2 will give
rise to the factor

e�Eð�3��2Þ ¼ jzjE: (2.9)

The exchanged states on the sphere are in one-to-one
correspondence with the local operators appearing in the
OPE ���. For the moment we do not distinguish be-
tween the primary and descendant states. Every state will
come in a multiplet of SOðdÞ. In fact, only symmetric
traceless tensor multiplets of spin j � 0 can couple for
the considered correlator.7 The right matrix element

hE; f�1; . . . ; �jgj�ð0;n2Þj�i (2.10)

must be a rank-j symmetric traceless tensor constructed
out of the vector n2, which is fixed up to a constant:

n �1

2 n�2

2 � � �n�j

2 � traces: (2.11)

Analogously, the left matrix element is fixed up to a
constant, and so a general term in Eq. (2.8) will be propor-
tional to8

ðn�1

2 n�2

2 � � �n�j

2 � tracesÞðn�1

3 n�2

3 � � �n�j

3 � tracesÞ
/ C�

j ðn2 � n3Þ; � � d=2� 1; (2.12)

where C�
j are the Gegenbauer polynomials. For the integer

dimensions of interest d ¼ 2, 3, 4, they take the form

lim
�!0

��1C�
j ðcos�Þ¼

2

j
cosðj�Þ ðj� 1Þ;

C1=2
j ðcos�Þ¼Pjðcos�Þ; C1

j ðcos�Þ¼
sin ½ðjþ1Þ��

sin�
:

(2.13)

In particular, for d ¼ 3 we get the Legendre polynomials.
We conclude that the function gðu; vÞ appearing in the

four point function (2.1) must have an expansion of the
form

gðu; vÞ ¼ 1þX
pE;jjzjEC�

j ðcos�Þ; pE;j � 0; (2.14)

where the sum is over all local operators of dimension E
and spin j appearing in the OPE ���. Although the
coefficients pE;j are left undetermined by this argument,

we do know that they must be non-negative. This is be-
cause for n2 ¼ n3 the configuration in Fig. 3 becomes
reflection-positive. The matrix elements in Eq. (2.8) are
then complex conjugates of each other.
The appearance of Gegenbauer polynomials in this re-

sult is not surprising, as they already arise in the theory of
angular momentum in quantum mechanics. When two
spinless particles scatter through a spin-j resonance, it is
well known that the amplitude is given by the Legendre
polynomial of the scattering angle (see Fig. 4).
Consider now a particular primary operatorO of dimen-

sion � and spin l occurring in the ��� OPE. If we
restrict the sum (2.14) to its conformal multiplet, it must
represent the conformal block of O. The conformal multi-
plet will have descendants of integer-spaced dimensions
�þ n with spins at level n taking values9

j¼ lþ n; lþ n� 2; . . . ;max ðl� n; lþ nmod2Þ: (2.15)

Moreover, the coefficients pE;j within one conformal mul-

tiplet are not independent, since the matrix elements for the

FIG. 3 (color online). Using a Weyl transformation, the con-
figuration in Fig. 2 is mapped onto a cylinder matrix element
with operators inserted as shown.

FIG. 4. Elastic center-of-mass scattering of two scalar parti-
cles. When a spin-j resonance dominates the scattering process,
the amplitude is proportional to Pjðcos�Þ.

6The presence of the Casimir energy on the sphere, nonzero
for even d, can be ignored here. This is because we are discus-
sing correlation functions and not the partition function, and so
the relevant energy is the one defined subtracting the energy of
the ground state.

7One cannot construct an antisymmetric tensor out of a single
vector n, and so the corresponding matrix elements necessarily
vanish.

8This contraction formula follows from the theory of spherical
harmonics and harmonic polynomials; see Ref. [29], Sec. 11.2,
Lemma 1, and Ref. [30], Chapter 4.

9For the short representations some of these spins will not be
there.

RADIAL COORDINATES FOR CONFORMAL BLOCKS PHYSICAL REVIEW D 87, 106004 (2013)

106004-3



descendants will be all proportional to the basic OPE
coefficient fO. We conclude that the conformal block
must have the following expansion:

G�;lðu; vÞ ¼
X1
n¼0

jzj�þn
X
j

An;j

C�
j ðcos �Þ
C�
j ð1Þ

; An;j � 0;

(2.16)

where the positive coefficients An;j are some universal

functions of �, l, and d that are fixed by conformal
symmetry. We normalize the total conformal block by
the condition A0;l ¼ 1.10

The Gegenbauer normalization factors,

C�
j ð1Þ ¼ ð2�Þj=j!; (2.17)

are included in Eq. (2.16) for later convenience and also to
ensure a smooth � ! 0 limit for d ¼ 2. Here, ðxÞn ¼
�ðxþ nÞ=�ðxÞ are the Pochhammer symbols.

The formula (2.16) is the main result of this section. It
should be noted that Ref. [20] already used an expansion of
conformal blocks into Gegenbauer polynomials, because
they turn out to form a convenient basis for solving the
Casimir differential equation recursively (see the next
section). Reference [13], Eq. (78), observed that in any
number of dimensions conformal blocks can be expanded
in cos ðj�Þ with positive coefficients. For d ¼ 2 our result
says the same, although for general d our conclusion is
stronger. To obtain their result, one runs the above argu-
ment classifying states into multiplets with respect to the
SOð2Þ subgroup of SOðdÞ acting in the (12)-plane. In
particular, the Gegenbauer polynomials for any � � 0
have positive expansions in cos ðj0�Þ, j0 	 j.

The region of convergence of the expansion (2.16) will
be limited to jzj< 1, which is the condition for the opera-
tors �2 and �3 in Eq. (2.6) to be time-ordered on the
cylinder. However, the actual domain X of regularity of
the conformal block as a function of z is larger; it is given
by the complex plane minus the ð1;þ1Þ cut along the real
axis:

X ¼ Cnð1;þ1Þ: (2.18)

Everywhere in this region the blocks will be real analytic,
except at z ¼ 0 because of the jzj� factor. For every point
in X one can find a sphere which separates x1 and x2 from
x3 and x4. Choosing the center of this sphere as a radial
quantization origin, one can prove the regularity of the
conformal block for such z. The blocks will be singular
on the cut, because the separating sphere jumps when z
crosses it. In Sec. III below we will construct expansions
convergent in the full region X. But first we would like to
study the coefficients of the expansion (2.16).

B. Expansion coefficients from the Casimir equation

We would like to compute the coefficients An;j in

Eq. (2.16). In principle, this can be done following the
radial quantization method to its logical end: imposing the
constraints of conformal invariance in the OPE and evalu-
ating the norms of the descendants. The example of scalar
exchanged primaries and their first two descendant levels
was considered in Ref. [27]. However, it is far more
efficient to use a different method first proposed in
Ref. [20].
The idea is that the conformal block satisfies an eigen-

value equation of the form

DG�;lðu; vÞ ¼ C�;lG�;lðu; vÞ;
C�;l ¼ �ð�� dÞ þ lðlþ d� 2Þ;

(2.19)

where D is a second-order partial differential operator. To
get it, one acts on the four point function with the combi-
nation of conformal group generator [in the SOðdþ 1; 1Þ
notation]

1

2
ðLð1Þ

AB þ Lð2Þ
ABÞðLð1ÞAB þ Lð2ÞABÞ; (2.20)

where the generators LðiÞ act on the operator inserted at xi.
By conformal invariance of the OPE, this combination can
be pushed through to act as the quadratic Casimir on the
operators appearing in the OPE �ðx1Þ ��ðx2Þ. All terms
within a given conformal family will have the same
Casimir eigenvalue C�;l. This gives a differential equation

for the conformal partial wave.
In the z, �z coordinates the operatorD takes the form [20]

1

2
D ¼ ½z2ð1� zÞ@2z � z2@z� þ ½�z2ð1� �zÞ@2�z � �z2@�z�

þ 2�
z�z

z� �z
½ð1� zÞ@z � ð1� �zÞ@�z�: (2.21)

For our purposes it will be convenient to express it in the
coordinates

s ¼ jzj; � ¼ cos � ¼ ðzþ �zÞ=ð2jzjÞ: (2.22)

We find

D ¼ D0 þD1;

D0 ¼ s2@2s þ ð2�þ 1Þ½�@� � s@s� � ð1� �2Þ@2�;
D1 ¼ s½��s2@2s þ 2ð1� �2Þs@s@� � �s@s � ð2�þ �2Þ@�

þ �ð1� �2Þ@2��: (2.23)

The terms are grouped in such a way that D0 preserves
homogeneity in s while D1 increases it by 1.
We now apply this operator to Eq. (2.16), which we

write as

10This normalization relates to the one used by Dolan and
Osborn in Refs. [19,20] as Ghere

�;l ¼ ð�2Þlð�Þl=ð2�ÞlGthere
�;l .
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G�;l ¼
X1
n¼0

X
j

An;jP�þn;j; P E;jðs;�Þ � sE
j!

ð2�Þj C
�
j ð�Þ:

(2.24)

Using the properties of Gegenbauer polynomials, it is easy
to see that P E;j are eigenfunctions of D0. The eigenvalue

depends on the dimension and spin in the same way as the
Casimir:

D0P E;j ¼ CE;jP E;j: (2.25)

The D1 also acts simply in this basis:

D1P E;j ¼ ��þ
E;jP Eþ1;jþ1 � ��

E;jP Eþ1;j�1;

�þ
E;j ¼

ðEþ jÞ2ðjþ 2�Þ
2ðjþ �Þ ; ��

E;j ¼
ðE� j� 2�Þ2j

2ðjþ �Þ :

(2.26)

Applying these formulas, Eq. (2.19) can be solved order by
order in s. We find that the coefficients An;j must satisfy the

following recursion relation:

ðC�þn;j � C�;lÞAn;j ¼ �þ
�þn�1;j�1An�1;j�1

þ ��
�þn�1;jþ1An�1;jþ1: (2.27)

Starting from the initial conditions

A0;j ¼ 	jl (2.28)

this recursion determines all coefficients An;j. One can

check that

C�þn;j � C�;l > 0 (2.29)

if � satisfies unitarity bounds and j is in the range
(2.15). So the coefficients generated by the recursion are
manifestly positive, in agreement with the previous
section.
For illustration, here is what the solution at the first two

levels looks like:

A1;lþ1; A1;l�1 ¼ ð�þ lÞðlþ 2�Þ
4ðlþ �Þ ;

ð�� l� 2�Þl
4ðlþ �Þ ;

A2;lþ2; A2;l; A2;l�2 ¼ ð�þ lÞð�þ lþ 2Þ2ðlþ 2�Þðlþ 2�þ 1Þ
32ð�þ lþ 1Þðlþ �Þðlþ �þ 1Þ ;

ð�þ lÞð�� l� 2�Þ½ð�� �Þlðlþ 2�Þ þ ð�� 2�Þð�� 1Þ�
16ð�� �Þðlþ �þ 1Þðlþ �� 1Þ ;

ð�� l� 2�Þð�� l� 2�þ 2Þ2lðl� 1Þ
32ð�� l� 2�þ 1Þðlþ �Þðlþ �� 1Þ :

(2.30)

Notice that low spins do not require a separate treatment:
the coefficients which ‘‘do not exist,’’ like A1;l�1 for l ¼ 0
and A2;l�2 for l ¼ 0, 1, come out automatically zero. This
follows from the fact that ��

E;0 ¼ 0, and so Eq. (2.26)
makes sense also for j ¼ 0.

The recursion (2.27) has been found previously by Dolan
and Osborn [20], Eq. (3.12), who arrived at the ansatz (2.24)
as theway to diagonalize the homogeneous part ofD. They
were expanding in Jack polynomials symmetric functions
in two variables z, �z, which are identical to our P E;j. They

also give a closed-form solution of this recursion,
Eq. (3.19), which is, however, rather complicated (it in-
volves 4F3). In practice, it may be faster to evaluate the

coefficients directly from the recursion.

C. Decoupling of descendants for the leading twist
11One interesting special case where the recursion can be

solvedeasily is for the ‘‘leading twist’’ operatorsO ofdimension

� ¼ lþ d� 2; l ¼ 0; 1; 2 . . . (2.31)

In this casewe find that at each level, only themaximal allowed
spin j ¼ lþ n has a nonzero coefficient. At the first two levels,
this can be seen happening in Eq. (2.30). For general n, this
single nonzero coefficients takes the form12

An;lþn ¼ ðlþ �Þnðlþ 2�Þn
n!ð2lþ 2�Þn : (2.32)

The massive decoupling of descendants implied by this
result can be understood as follows. The descendants at
level n are obtained by acting with n derivatives

@�1
@�2

. . . @�n
O: (2.33)

If a�i is contracted with an index ofO, such a state simply
vanishes, because for l � 1 the dimension (2.31) is the
minimal value allowed by the unitarity bound and corre-
sponds to a conserved current. If some of the �i are

11This section is independent of the main line of reasoning and
can be skipped on the first reading.

12For d ¼ 3, this result is agreement with the integral repre-
sentation in Ref. [21], Eq. (6.20).
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contracted with each other, we get a state involving @2

which has spin strictly less than lþ n. We should show that
such states decouple. Since they do not have zero norm,
this can only happen via vanishing of the matrix elements
in Eq. (2.8). Equivalently, this means that the following
limit of the three point function should vanish:

lim
x1!1jx1j

2��h�ðx1Þ�ðx2Þ@2yOðyÞi ¼ 0: (2.34)

Since the three point function h��Oi is known explicitly
(see, e.g., Ref. [19]), this is easy to check. Sending x1 !
1, x2 ! 0, the three point function becomes

h�j�ð0ÞO�1...�l
ðyÞi ¼ 
Oðy�1

� � � y�l
=jyjd�2þ2l � tracesÞ

/ @�1
� � �@�l

1

jyjd�2
: (2.35)

That the second line takes care of the trace subtractions in
the first line (up to a constant factor) is obvious: it gives a
tensor which has the right scaling in y and is also auto-
matically traceless (as well as conserved), due to the fact
that the function 1=jyjd�2 is harmonic in d dimensions. For
the same reason, this formula implies that @2-descendants
decouple.

We should stress that the decoupling of @2-descendants
at leading twist is peculiar to the kinematic configuration
of Fig. 2. In particular, it will not happen when the points
are inserted symmetrically with respect to the origin, as in
the next section. This is because Eq. (2.34) is only true in
the infinite x1-limit.

III. CONFORMAL BLOCKS IN
THE � COORDINATES

We now wish to analyze the four point function (2.1) in a
different, more symmetric, configuration of operator inser-
tions, shown in Fig. 5. Applying a conformal transforma-
tion, the configuration of Fig. 2 can be mapped to the new
one. There is a one-to-one correspondence between the
complex parameters z and �, fixed by demanding that the
cross ratios should agree. We find

� ¼ z

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p Þ2 , z ¼ 4�

ð1þ �Þ2 : (3.1)

The � coordinate was considered in Ref. [27], where it
was used to give an optimal estimate for the convergence
rate of the decomposition of a four point function as a sum
of conformal blocks, Eq. (2.3). Here we will use � to
analyze the blocks themselves. As discussed at the end of
Sec. II A, the blocks are expected to be regular in the region
X ¼ Cnð1;þ1Þ. The function �ðzÞ maps this region onto
the unit disk (see Fig. 6). This suggests that this coordinate
should be particularly suitable to analyze the blocks. To
begin with, conformal block representations as power se-
ries in � will converge for j�j< 1, which is the full region
of interest. Other advantages will be discussed below.
Figure 7 shows what the configuration of Fig. 5 looks

like after the Weyl transformation to the cylinder. This
picture is similar to Fig. 3 in that both the initial and final
state are characterized by just one unit vector. For this
reason the whole discussion of Sec. II A expressing the
exchanges of spin j states in terms of Gegenbauer poly-
nomials goes through unchanged. We can therefore state
the following analogue of Eqs. (2.16) and (2.24): confor-
mal block of a dimension �, spin l primary will have an
expansion

G�;l ¼
X1
n¼0

X
j

Bn;jP�þn;jðr; �Þ; Bn;j � 0; (3.2)

where

r � j�j; � ¼ cos arg�: (3.3)

The non-negative coefficients Bn;j in this new expansion

will of course be different from An;j. The spins j at level n

will still be subject to the constraint (2.15). However,
notice that only even spin states can be exchanged since
the initial state is symmetric with respect to � ! ��.13 We
conclude that only even levels n will have nonzero Bn;j.

14

This is unlike in Eq. (2.24) where all levels have An;j � 0.

FIG. 5 (color online). This more symmetric configuration of
operation insertions can be obtained from the one in Fig. 2 by a
global conformal transformation.

FIG. 6 (color online). The � coordinate maps the regularity
domain X onto the unit disk.

13In fact the exchange 1 $ 2 corresponds to z ! z=ðz� 1Þ,
which is equivalent to � ! ��.
14In an analogous expansion for a four point function of non-
identical primaries, states of all levels will be exchanged.
However, if �1 ¼ �2 and �3 ¼ �4, then again only even levels
will appear. This is even though the exchanged primary may
have both even and odd spin in this case.
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We now turn to the problem of determining the coeffi-
cients Bn;j. The first method is to convert from the old

expansion (2.24) whose coefficients An;j we already know

how to compute. From Eq. (3.1), the relevant variables are
related by

s ¼ 4r

1þ 2r�þ r2
; � ¼ �ð1þ r2Þ þ 2r

1þ 2r�þ r2
: (3.4)

Substituting into Eq. (2.24) and expanding the denomina-
tors, we will get a power series of the form

X1
n¼0

r�þnQnð�Þ; (3.5)

with Qnð�Þ certain polynomials in �. To extract Bn;j, we

have to reexpand Qnð�Þ into the basis of Gegenbauers.
This will give Bn;j at level n as a linear combination of

An0;j0 for n
0 	 n.

The second method is to set up an independent recursive
procedure for Bn;j based on the Casimir equation. The

operator D in r, � coordinates takes the form

D ¼ D0 þ ~D; (3.6)

where the homogeneity-preserving part D0 is the same as
in Eq. (2.23) with s ! r, � ! �. The homogeneity-
increasing part is given by

~D ¼ 4r2
��

1� 2�2 þ r2

1þ r4 � 2r2ð2�2 � 1Þ �
�

1� r2

�
r@r

þ 2�ð1� �2Þ
1þ r4 � 2r2ð2�2 � 1Þ@�

�
: (3.7)

Its action in the P E;j basis will look like

~DP E;j ¼ � X
n¼2;4;...

X
j0
�Eþn;j0
E;j P Eþn;j0 : (3.8)

The series is over positive even n, since only such powers

of r occur in the expansion of ~D.

The dependence of the � coefficients on j0 is found with
the help of the following identities involving the
Gegenbauer polynomials (the radial dependence of P E;j

is not important here):

ð2�2 � 1ÞP E;j ¼ a�j P E;j�2 þ a0jP E;j þ aþj P E;jþ2;

2�ð1� �2Þ@�P E;j ¼ b�j P E;j�2 þ b0jP E;j þ bþj P E;jþ2;

(3.9)

where

a�j ¼ jðj�1Þ
2ðjþ�Þðjþ��1Þ; a0j ¼

�ð1��Þ
ðjþ�þ1Þðjþ��1Þ;

aþj ¼ðjþ2�þ1Þðjþ2�Þ
2ðjþ�þ1Þðjþ�Þ ; b�j ¼ jðj�1Þðjþ2�Þ

2ðjþ�Þðjþ��1Þ;

b0j ¼
jðjþ2�Þ�

ðjþ�þ1Þðjþ��1Þ; bþj ¼�ðjþ2�þ1Þðjþ2�Þj
2ðjþ�þ1Þðjþ�Þ :

(3.10)

For example, for n ¼ 2 we get

�Eþ2;j�2
E;j ¼ 4ðEa�j � b�j Þ; �Eþ2;j

E;j ¼ 4½Eða0j þ �Þ � b0j �;
�Eþ2;jþ2
E;j ¼ 4ðEaþj � bþj Þ: (3.11)

The recursion relation for the Bn;j takes the form

ðC�þn;j � C�;lÞBn;j ¼
X

n0¼0;2;...n�2

X
j0
��þn;j
�þn0;j0Bn0;j0 : (3.12)

At level 0 we have the initial condition

B0;j ¼ k	jl: (3.13)

We will set k ¼ 1, keeping in mind that the normalization
of Sec. II would correspond to k ¼ 4�.
To find the Bn;j up to level N, one needs first to compute

the coefficients �Eþn;j0
E;j for n 	 N. For example, Eq. (3.11)

is sufficient to find the solution for level 2:

B2;l�2 ¼ lðl� 1Þð�� l� 2�Þ
2ðlþ �� 1Þðlþ �Þð�� l� 2�þ 1Þ ;

B2;l ¼ �
��ð�� 1Þ þ ð�� 1Þlðlþ 2�Þ
ð�� �Þðlþ �þ 1Þðlþ �� 1Þ ;

B2;lþ2 ¼ ð�þ lÞðlþ 2�Þðlþ 2�þ 1Þ
2ð�þ lþ 1Þðlþ �Þðlþ �þ 1Þ :

(3.14)

A. Comparison between the z and � expansions

We have presented two ways to expand the conformal
blocks: the ‘‘z-series’’ (2.24) and the ‘‘�-series’’ (3.2). We
will now argue that the second expansion is more efficient,
in the sense that it converges more rapidly and fewer terms
need to be evaluated in order to get a good approximation.
This happens because of the better choice of the expansion
parameter and the better asymptotic behavior of the series
coefficients.

FIG. 7 (color online). The analogue of Fig. 3 for the new
configuration.
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Let us start with the expansion parameters. The interest-
ing range for the � coordinate is the unit disk j�j< 1. The
�-series will converge absolutely, everywhere in this disk.
For any � > 0 the convergence will be uniform for j�j<
1� �. To prove this statement, consider first � ¼ 1� �
real. For such � all terms in the series are positive, and so
the series must converge; a divergence here would mean a
physical singularity for the conformal block, while as we
discussed all such singularities are confined to j�j ¼ 1.
Convergence everywhere else in the disk will be only
better. Physically, this follows by the Cauchy inequality:
every term in the series is the product of two matrix
elements, which for real � become Hermitian conjugates
of each other. Formally, this is because the Gegenbauer
polynomials with our normalization are less than one in the
absolute value on the interval ½�1; 1�.

The same argument can be used to show that the z-series
will converge absolutely in the disk jzj< 1. As we dis-
cussed, this does not even cover the full regularity region of
the conformal blocks. Moreover, from the second Eq. (3.1)
we have

jzð�Þ=�j> 1 ðj�j< 1Þ: (3.15)

So even in the region where both series converge, the
�-series will always have a strictly smaller expansion
parameter.

An additional bonus appears when considering confor-
mal blocks for equal external dimensions. As we have seen,
in this case the �-series involves only even levels. So, the
effective expansion parameter becomes �2. In conformal
bootstrap applications, one usually uses conformal blocks

evaluated near z ¼ 1=2, which would correspond to � ¼
3� 2

ffiffiffi
2

p 
 0:17 and �2 
 0:03.
Let us now examine the expansion coefficients. We are

interested in their asymptotic behavior when� or l become
large. In the large � limit the coefficients An;j at level n

grow as

An;j ¼ Oð�nÞ: (3.16)

For n ¼ 1, 2 this can be seen in Eqs. (2.30). The reason for
this growth is that the operator D1 is second order in @s.
Because of this the coefficients ��

E;j in Eq. (2.26) are

OðE2Þ. On the other hand the factor in the rhs of the
recursion relation,

C�þn;j � C�;l ¼ 2n�þ nðn� dÞ þ jðjþ d� 2Þ
� lðlþ d� 2Þ; (3.17)

increases only linearly in�. So, going up one level in n, the
coefficients An;j gain one power in �.

Turning to the second expansion, we encounter a crucial

difference. Unlike D1, the operator
~D in Eq. (3.6) is only

first order in @r. So the coefficients � entering the Bn;j

recursion grow only linearly in E, and this growth cancels
when dividing by Eq. (3.17). Contrary to the previous case,

going one level up in the recursion relation does not
increase the leading power of �. We conclude that the
coefficients Bn;j remain bounded in the large � limit. For

n ¼ 2 this is illustrated by Eqs. (3.14).
Keeping more careful track of the size of the relevant

factors, one can show the following sharper statement (see
the Appendix). Each coefficient Bn;j is uniformly bounded

in the full range of� and l allowed by the unitarity bounds,
with the bound depending only on the level n and on d:

max
�;l

ðmax
j

Bn;jÞ 	 bðn; dÞ: (3.18)

The region close to the free scalar limit l ¼ 0, � ! � is
understood as excluded when taking the maximum. As is
well known, the scalar conformal block becomes singular
in this limit. Physically this is due to the fact that the free
scalar must be decoupled from everything else. In our
representation, the singularity first shows up in the coeffi-
cient B2;0 � ð�� �Þ�1, see Eq. (3.14), and then feeds into

higher levels.
Let us discuss a bit how the coefficients Bn;j grow with

n. This growth is related with the behavior of the confor-
mal block for real � ! 1. It can be shown using the results
of Ref. [10]15 that in this limit the conformal block has a
powerlike singularity of the form

G�;lðreal�! 1Þ � 1

ð1��Þd�2

�
log

1

1��
for d¼ 2

�
:

(3.19)

On the other hand, the �-series representation for real � >
0 takes the form

G�;lðreal�> 0Þ ¼ X1
n¼0

n�
�þn; n ¼

X
j

Bn;j: (3.20)

From compatibility with the � ! 1 asymptotics, we con-
clude that for any � and l the sum of the coefficients at
level n behaves asymptotically as

n � nd�3 ðn ! 1Þ: (3.21)

It would be interesting to know how the ratio n=n
d�3

behaves for small and intermediate n. The simplest possi-
bility which accommodates both Eqs. (3.18) and (3.21) is
that n 	 cðdÞnd�3 for all n, �, and l. However, further
study is needed to check this hypothesis.
To finish this section, we would like to demonstrate how

the highlighted differences between the z- and �-series can
be seen in the explicit expressions for the conformal blocks
available for even d. These expressions [17,19–21] are
written in terms of the functions

15This follows for l ¼ 0 from the explicit 3F2 representation on
the real line, Eq. (4.10) of Ref. [10], and remains valid for l � 1
by the recursions in Appendix A of Ref. [10].
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kaðzÞ ¼ za=22F1ða=2; a=2; a; zÞ; (3.22)

with a ¼ �þ l and �� l� 2�. For large �, the zn coef-
ficient in the expansion of the 2F1 grows as a

n � �n. This
is the same growth as in Eq. (3.16). However, when the �
variable is used, the function ka can be transformed using a
hypergeometric identity

ka½4�=ð1þ �Þ2� ¼ ð4�Þa=22F1ð1=2; a=2; ðaþ 1Þ=2;�2Þ:
(3.23)

As advertised, this is a function of �2, and the expansion
coefficients do not grow with a.

B. Relation to Zamolodchikov’s uniformizing variable
16We would like to briefly mention a similarity between

the change of variables from z to � advocated here and the
one proposed long ago by Zamolodchikov [31] in the study
of 2d big conformal blocks. His variable is given by

q ¼ ei��; � ¼ iKð1� zÞ=KðzÞ; (3.24)

where KðzÞ is a complete elliptic integral of the first kind

KðzÞ ¼ 1

2

Z 1

0

dt

½tð1� tÞð1� ztÞ�1=2 : (3.25)

The variable � takes values of the upper half plane,
parametrizing the universal covering of the Riemann
sphere with three punctures 0, 1, and 1. The point is that
in the 2d case, conformal blocks factorize as F ðzÞF ð�zÞ
where F ðzÞ is holomorphic in the complex plane with
branch points at the punctures. So it is natural to view it
as an analytic function on the universal covering space.
The conformal blocks are then given as power series in q.
Since jqj< 1 in the upper half plane, these series converge
everywhere where F ðzÞ is analytic, while power series
representations in z converge only for jzj< 1.

In the 2d case, the variable q is a more efficient expan-
sion parameter than our variable �. For example, the

conformal block regularity domain X ¼ Cnð1;þ1Þ is
mapped on a subset of the complex plane located strictly
inside the unit disk; see Fig. 8. For general d, when
holomorphic structure is absent, the variable � is probably
the best possible.

IV. POTENTIAL APPLICATIONS TO
THE CONFORMAL BOOTSTRAP

In the previous section, we introduced a new way to
represent the conformal blocks, by expanding them in the
polar coordinates associated with the complex variable �.
Our interest in the blocks stems from the role they play in
the conformal bootstrap program. We believe that our new
representation will turn out quite useful in this context.
Here we will list several ideas, leaving their complete
development for the future.
Most existing applications of the conformal bootstrap to

CFT in d � 3 dimensions followed the following scheme
proposed in Ref. [1]. Because of the complexities of deal-
ing with the full bootstrap system, one focuses on just one
equation out of the infinitely many pictured in Fig. 1: the
one in which all four external states are one and the same,
scalar primary �.17 This equation is obtained by substitut-
ing the conformal block expansion (2.3) into the crossing
symmetry constraint (2.4) and takes the form

ðv�� � u��Þ þX
i

f2i ½v��G�i;liðu; vÞ � ðu $ vÞ� ¼ 0:

(4.1)

The sum is over all primary operators Oi appearing in the
OPE ���, with �i, li, fi their dimensions, spins, and
OPE coefficients. The unit operator contribution is sepa-
rated explicitly.
In the approach of Ref. [1], one views Eq. (4.1) as an

equation for infinitely many unknowns f2i � 0. For any
given spectrum ofOi’s one can ask if a solution exists, and
if not, then a CFT with such a spectrum is impossible. It
turns out that even mild assumptions, like the absence of a
scalar primary below a certain dimension, can lead to an
inconsistent spectrum. Making one OPE coefficient too
large can also produce an inconsistency. It would take
too much time to review in detail the results of these
studies (see Refs. [1,2,4–10,12]), but we would like to
highlight here two basic issues which were important in
all of them.
First, the functional equation (4.1) looks still rather

complicated, and in practice one has to replace it by a
finite-dimensional constraint, which will of course be
weaker but hopefully more tractable. One simple way to
do it would be to choose a large finite number of points in
the ðu; vÞ plane and impose Eq. (4.1) at each of these

1.0 0.5 0.5 1.0

0.6

0.4

0.2

0.2

0.4

0.6

FIG. 8 (color online). The regularity domain X is mapped in
the q plane onto this unidentified flying object-shaped region
inside the unit disk. For example, the point z ¼ 1=2 is mapped to
q 
 0:043.

16This section is independent of the main line of reasoning and
can be skipped on the first reading.

17The case when the external states are different components of
a scalar global symmetry multiplet has also been considered
[5,7–9].
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points. Reference [1] followed another way, which became
standard: to impose Eq. (4.1) in Taylor expansion up to a
fixed large order around just one, well-chosen point. The
obvious choice for such a point is z ¼ �z ¼ 1=2, i.e., u ¼
v ¼ 1=4, which is invariant under the crossing symmetry
transformation z ! 1� z.

The second issue is that the conformal blocks appearing
in Eq. (4.1) are complicated functions, even for d ¼ 4
where explicit expressions in terms of hypergeometrics
are known. Some simplifications occur for specific values
of �, but this does not help, since the dimensions ofOi are
unknown and should be allowed to vary freely between the
unitarity bound and infinity. For generic �, conformal
block derivatives at z ¼ �z ¼ 1=2 must be evaluated
numerically.18 For this reason all the studies cited above
used numerical analysis.19 Moreover, this evaluation is an
expensive operation and often presents a computational
bottleneck.

We will now describe new ways of approaching these
issues, made possible by the �-series representation.

A. Inexpensive derivative evaluation for all � and l

Let us briefly review the existing ways of evaluating
conformal blocks and their derivatives at the point z ¼ �z ¼
1=2. For even d, one uses the explicit representations of
Dolan and Osborn [19,20]. For d ¼ 4 they take the form

G�;lðz; �zÞ ¼ z�z

z� �z
½k�þlðzÞk��l�2ð�zÞ � ðz $ �zÞ�: (4.2)

By this formula, partial derivatives of G�;lðz; �zÞ can be

represented as quadratic forms in the derivatives of the
function kaðzÞ, defined in Eq. (3.22). One can now create an
interpolated lookup table of kaðzÞ’s derivatives at z ¼ 1=2
for a range of a. This is a time-consuming operation,
because the hypergeometric function in Eq. (3.22) is ex-
pensive to evaluate. However, one needs to do this only
once. Once the table is created and stored, partial deriva-
tives of Eq. (4.2) can be computed quickly for any � and l.
Such a strategy was used in Refs. [2,4,6–8] and a similar
one in Ref. [5]. More recently, Ref. [9] found a way to
dispense with the lookup table altogether, computing the
derivatives of kaðzÞ at z ¼ 1=2 via a very rapidly conver-
gent infinite product representation.

Turning to general d, a method to evaluate conformal
block derivatives was developed last year in Ref. [10],
where it was used to study the 3d Ising model. This method
combines a variety of ideas. One begins by evaluating

partial derivatives along the z ¼ �z line, first for l ¼ 0 and
l ¼ 1 using explicit 3F2 expressions found by Ref. [10],

then for higher l using the recursion relations from
Ref. [21] reducing those blocks to the lower-spin ones.
Then, partial derivatives in the orthogonal direction are
computed à la Cauchy-Kovalevskaya, using the fact that
the conformal blocks satisfy a second-order partial differ-
ential equation.
The �-series gives a new way to evaluate conformal

blocks and their derivatives, which works for general d
and around any z. To achieve the necessary precision, one
needs to evaluate the coefficients Bn;j as a function of �

and l up to a sufficiently high order, using the recursion
relation (3.12). It is important that the necessary number of
terms will be independent of � and l, because of the bound
(3.18). For example, to be able to compute the conformal
blocks with double precision (10�16), one would need the
coefficients up to level

n 
 16=log 10ð1=�Þ; (4.3)

which gives n 
 20 for z ¼ 1=2. This number is a bit of an
underestimate, because it assumes that the sum of the
coefficients at level n is uniformly bounded, while in fact
it grows with n as in Eq. (3.21). Also more levels will be
needed if one wants to evaluate derivatives.
It should also be rather easy to generalize the �-series

method to the case of unequal external dimensions �1 �
�2 and �3 � �4. The extra terms in the Casimir operator
for unequal external dimensions are all first order in

derivatives [20]. So, the operator ~D will remain first order,
and we can expect that the boundedness properties of the
coefficients Bn;j will still hold. Such a generalization will

be useful for the conformal bootstrap analysis of several
scalar correlators simultaneously. For example, in the 3d
Ising model, it would be interesting to study simulta-
neously the correlators h����i, h����i, and h����i.
The second of these correlators has unequal external di-
mensions in two conformal partial wave expansion chan-
nels out of three.

B. Analytic toy model for the conformal bootstrap

As already mentioned, Eq. (4.1) is usually analyzed
numerically. Numerics are essential both for computing
the conformal blocks and their derivatives at z ¼ 1=2 and
for performing searches in the resulting derivative spaces,
which in the most advanced studies [9,10] can haveOð100Þ
dimensions. If one needs precision, numerics are unavoid-
able at present.
Leaving precision aside, here we would like to address a

more modest question: can one provide an analytic under-
standing of why the method of Ref. [1] gives nontrivial
constraints? Some intuitive explanations were given in
Sec. 5.1 of Ref. [1], but those still relied on properties of
conformal blocks which had to be checked by plotting

18For even d, these derivatives can be written via the 3F2
functions (see Appendix B.1 of Ref. [5]). It is not known at
present how to use these analytic expressions in practice rather
than as a starting point for the numerical evaluation.
19We should also mention three different types of bootstrap
analyses where analytic results could be obtained: Ref. [3] in the
large N expansion, Ref. [11] for CFT in presence of a boundary,
and Refs. [13,14] in the Minkowski space near the light cone.
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them in Mathematica. As we will now explain, analytic
results can be obtained using the �-series representation.

The basic idea is the following. We have shown that the
conformal blocks can be represented as series in the
‘‘Gegenbauer blocks’’ P E;jðr; �Þ. These series are rapidly
convergent, to the extent that even the first term provides
already a very good approximation:

G�;l 
 P�;lðr; �Þ: (4.4)

The relative error is of order �2, which is about 3% at z ¼
1=2. Importantly, the error is uniformly small for all � and
l. Replacing the conformal blocks in Eq. (4.1) by their
Gegenbauer block approximation, we get the ‘‘toy’’ boot-
strap equation (	 � ��):

½ð1� zÞ	ð1� �zÞ	 � z	 �z	�
þX

�;l

f2�;l½H�;lðz; �zÞ �H�;lð1� z; 1� �zÞ� ¼ 0;

H�;lðz; �zÞ � ð1� zÞ	ð1� �zÞ	½ð�ðzÞ�ð�zÞ��=2

� Cð�Þ
l

�
�ðzÞ þ �ð�zÞ
2½�ðzÞ�ð�zÞ�1=2

�
=Cð�Þ

l ð1Þ:

(4.5)

It is expected to give qualitatively the same results as the
full bootstrap equation, with an advantage that the analysis
can be done analytically, since the Gegenbauer block
derivatives can be computed explicitly. We will give below
two examples of this approach.

A comment is in order concerning the spectrum of �’s
and l’s appearing in the second term of the toy bootstrap
equation. If we view it as an approximation to the full
equation (4.1), then of course it is the same spectrum as in
the full equation, i.e., all primaries in the ��� OPE.
However, an alternative point of view can be useful. We
can consider the toy equation as exact, provided that we
allow not only the primaries but also their descendants to
appear in the spectrum. When we do the bootstrap in terms
of the full conformal blocks, we have extra constraining
power because the OPE coefficients of descendants are
proportional to those of the primaries. In the toy bootstrap,
we choose to discard this information and allow descend-
ants to appear with independent coefficients. One can also
imagine an intermediate situation when descendants up to
a certain level are included with the relative coefficients
fixed by conformal symmetry, while the higher ones are
taken independent.

1. Toy bootstrap for z¼ �z

For the first example [32], let us consider the toy equa-
tion (4.5) for real 0< z < 1. The angular part of the
Gegenbauer blocks is then trivial, and the equation takes
an extremely simple form:

½ð1� zÞ2	 � z2	� þX
�

f2�fð1� zÞ2	½�ðzÞ��

� z2	½�ð1� zÞ��g ¼ 0: (4.6)

We will use this equation to show that there is an upper
bound on the lowest primary dimension�min in the���
OPE. This is a problem of the kind first considered in
Ref. [1], except that here we are not distinguishing between
scalar and higher spin primaries.
For the proof, let us Taylor expand Eq. (4.6) in x ¼ z�

1=2. Only odd powers of x will appear since the functions
are odd. From the first term we get

ð1� zÞ2	 � z2	 ¼ �C	

�
xþ 4

3
ð	� 1Þð2	� 1Þx3 þ � � �

�
;

(4.7)

where C	 > 0 is a constant whose precise value is unim-
portant. When expanding the Gegenbauer block terms, let
us assume that all � � 	 (we aim for a contradiction
here). Then we can approximate z2	 
 ð1� zÞ2	 

ð1=2Þ2	 ¼ const, while the relevant part is

½�ðzÞ�� � ½�ð1� zÞ�� ¼ B�

�
xþ 4

3
�2x3 þ � � �

�
; (4.8)

where B� > 0 is another inessential constant. We can
change normalization of the blocks so that B� ! 1 (incor-
porating this constant into f2�). Requiring that Eq. (4.6) be

satisfied term by term in the Taylor expansion, we get

C	 ¼ X
f2�; C	ð	� 1Þð2	� 1Þ ¼ X

�2f2�:

The Oðx5Þ terms, etc., would give more equations, but we
will not use them here. Bounding the rhs of the second
equation from below by �2

min

P
f2� and using the first

equation, we conclude that

�min 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið	� 1Þð2	� 1Þp
: (4.9)

This shows that our original assumption that �min � 	 is
inconsistent; hence, there must be a bound on �min in
terms of 	. Its actual value can be found by a more careful
analysis, expanding the Gegenbauer block terms without
the approximation � � 	.

2. Including the spin dependence

We will next consider the toy bootstrap equation (4.5)
not restricting to the z ¼ �z line. The advantage is that the
spin information will be now accessible through the order
of the Gegenbauer polynomial. So we can try to set an
upper bound on the lowest scalar in the ��� OPE,
which is precisely the problem considered in Ref. [1].
For the simplest bound, we will expand Eq. (4.5) to the

third order in z and �z around z ¼ �z ¼ 1=2. Because of
various (anti)symmetries, only three derivatives are inde-
pendent. We will choose
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@z; @3z � @2z@�z; @3z þ 3@2z@�z (4.10)

as a basis, as these linear combinations somewhat simplify
the subsequent algebra. Because all functions are elemen-
tary, the derivatives can be evaluated explicitly. Equating
them to zero, we get the following linear system:X
�;l

�ð1=2Þ�f2�;lh�;l¼h0;0;

h0;0¼½2	;�16	ð	�1Þ;16	ð2	2�3	þ1Þ�t;
h�;l¼½ ffiffiffi

2
p

��2	;�4�2þ�
ffiffiffi
2

p ð�4	þ8klþ7Þ
þ16	2�16	ðklþ1Þ�8kl;8

ffiffiffi
2

p
�3�12ð4	þ1Þ�2

þ ffiffiffi
2

p ð48	2�12	þ7Þ��16	ð2	2�3	þ1Þ�t;
(4.11)

where kl is the logarithmic derivative of the Gegenbauer
polynomials at � ¼ 1,

kl � ½Cð�Þ
l �0ð1Þ

Cð�Þ
l ð1Þ ¼ lðlþ 2�Þ

2�þ 1
: (4.12)

Notice that the spin and the spacetime dimension enter
only through this coefficient and via the unitarity bounds.

Next we eliminate the rhs from the last two equations in
Eqs. (4.11) with the help of the first one. We get a homo-
geneous system:X
�;l

q�;lg�;l ¼ ð0; 0Þt; q�;l � �3�ð1=2Þ�f2�;l; (4.13)

g�;l¼
1�3

ffiffiffi
2

p ð	þ1=4Þ��1þð4	2þ3	=2�1=8Þ��2

��1� ffiffiffi
2

p ð	þ2kl�1=4Þ��2þð4	þ2Þkl��3

 !
:

(4.14)

The rest of the discussion follows closely Sec. 5.4 of
Ref. [1]. We have to study how the direction of the vectors
g�;l varies when we increase � from the unitarity bound to

infinity. For l ¼ 0 we vary � from �0;min to infinity, where

�0;min is the lowest scalar dimensions. If the set of all

directions stays within a cone of opening angle <�, then
Eq. (4.13) will not have a nontrivial solution, while in the
opposite case it will. The difference from Ref. [1] is that
now g�;l are given explicitly, and the analysis can be

carried out analytically. We will not give here the details,
but we have checked that an upper bound on �0;min can be

obtained using this method for all 2 	 d 	 4, at least for 	
near the scalar unitarity bound.

C. Truncated bootstrap equation with an error estimate

As mentioned above, one could also try to do bootstrap
imposing the bootstrap equation point by point at several
z ¼ zi, rather than in the Taylor expansion around z ¼ 1=2.
We would like to discuss here the issues arising if one
wants to implement this technique. Conformal block

evaluation for any z can be done with the �-series. The
next question is then how to distribute the sampling points.
To get an idea, let us consider the rate of convergence of the
conformal block decomposition (2.3). As shown in
Ref. [27], the error induced by truncating Eq. (2.3) at
some maximal dimension � ¼ �� is exponentially small:�������� X

O: �ðOÞ���

f2OGOðz; �zÞ
��������& �

4��

�
�ð4�� þ 1Þ j�ðzÞj

�� : (4.15)

To be precise, this estimate was shown to hold for �� �
��=ð1� j�ðzÞjÞ. Most importantly, it holds in an arbitrary

CFTwith no extra assumptions about the ��� OPE. For
example, it might seem that having too many operators at
high �, or a single operator with a huge OPE coefficient,
might invalidate this bound. However, the proof in
Ref. [27] shows that such situations cannot occur in a
consistent CFT.
The estimate (4.15) is relevant to our discussion, because

in most practical approaches to the bootstrap one has to
truncate the spectrum of considered operators from above
(to make the problem finite). Now we know that the
error induced by this operation is controlled by j�ðzÞj,
while the error in the crossed channel will be controlled
by j�ð1� zÞj. Therefore, it seems natural to distribute the
points zi in a region of the form (see Fig. 9)


ðzÞ ¼ max ðj�ðzÞj; j�ð1� zÞjÞ 	 
c; (4.16)

where 
c should be chosen commensurately with the even-
tual dimension cutoff ��.
One way to choose �� is so that the error (4.15) is

below the numerical precision one is working with (say
double precision) everywhere within the region (4.16).
Alternatively, one can choose �� lower, so that the error
is non-negligible. Then one has to include this error
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FIG. 9 (color online). The contour plot of the function 
ðzÞ in
the plane ðRez; ImzÞ. Only the region Imz � 0 is shown, since
the conformal blocks are symmetric in z, �z.
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estimate directly into the bootstrap equation. Such a modi-
fied equation takes the form��������ðv���u��Þþ X

�ðOÞ	��

f2O½v��GOðu;vÞ�ðu$vÞ�
��������

	Eðz; �zÞ;
Eðz; �zÞ

’ �
4��

�
�ð4��þ1Þmaxðj1�zj2�� j�ðzÞj�� ;jzj2�� j�ð1�zÞj�� Þ:

(4.17)

We think it would be interesting to try to carry out
bootstrap analysis based on this ‘‘truncated bootstrap equa-
tion’’ rather on the conventional technique of expanding
around z ¼ 1=2. There are many free parameters one can
play with: ��, 
c, the number of points zi at which to
impose Eq. (4.17), and what is the optimal way to distribute
them in the region (4.16). Once all these parameters are
fixed, the problem of deciding whether Eq. (4.17) has a
solution with f2O � 0 can be solved via the linear program-

ming algorithms.
It is worth pointing out an additional feature of

Eq. (4.17), which makes it particularly useful when the
conformal blocks are computed via the �-series, whose
coefficients can be computed up to arbitrary order but
whose closed form is unknown. Namely, it remains valid
when the conformal blocks GOðu; vÞ are replaced by the
‘‘truncated blocks’’—the partial sums of the �-series up to
the level �þ n � ��. This is because the error estimate
(4.15) is in fact valid when the contributions of all states of
dimension above �� are included into the lhs (and not just
the conformal multiplets of primaries above ��). It is in
this stronger form that the error estimate was proved in
Ref. [27].

V. DISCUSSION

In this paper we developed the theory of conformal
blocks rooted in their physical meaning as sums of ex-
changes of descendant states in the radial quantization.
This point of view is standard in the 2d CFT literature
[26], and our goal here was to demonstrate its utility in
higher dimensions.

We explained how quantum mechanics fixes the struc-
ture of conformal blocks in radial coordinates: it is an
integer-spaced power series in r with angular dependence
given by Gegenbauer polynomials. The coefficient of
each term is positive as a consequence of unitarity. These
coefficients are easy to find using recursion relations fol-
lowing from the fact that the conformal blocks are eigen-
functions of the quadratic Casimir of the conformal group.

We highlighted the existing freedom in the choice of the
radial coordinates. It is the same freedom as when expand-
ing the product of two operators �ðx1Þ�ðx2Þ into a sum of

operators inserted in some point x0, which becomes the
radial quantization origin. Each choice gives a different
representation of the same conformal block, and it is not
a priori clear which one is more convenient. In this paper
we analyzed in detail two natural choices, the end point
x0 ¼ x1 and the middle point x0 ¼ ðx1 þ x2Þ=2.
The end point choice (Sec. II) corresponds to working

with the complex variable z often used to represent
conformal blocks, with explicit 2F1 representations avail-
able in even dimensions d. For general d considered
here, we expand conformal blocks in a power series in
jzj times Gegenbauers. The expansion coefficients An;j

satisfy a three-term recursion relation, also derived earlier
from a different point of view by Dolan and Osborn [20].
An unpleasant feature of these expansions is that the
coefficients at level n grow with the exchanged primary
dimension as �n. For large � many terms need to be
evaluated to get a good approximation to the conformal
block.
Choosing the middle point (Sec. III), one passes from z

to the complex variable

� ¼ z

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p Þ2 : (5.1)

This variable was recently used in Ref. [27] to study
convergence of the conformal block decomposition. As
we showed here, this is also an ideal variable for construct-
ing rapidly convergent expansions of the conformal blocks
themselves. The expansion coefficients Bn;j satisfy a re-

cursion relation which is a bit more involved than for the
An;j: the coefficients at level n are linear combinations of

coefficients at all levels n� 2; n� 4; . . . up to zero, while
for An;j only the level n� 1 contributes. But this compli-

cation pays off: the resulting coefficients do not exhibit any
growth with � or l. This means that the coefficients com-
puted and stored up to some large and fixed level N can be
used to evaluate conformal blocks of arbitrary dimension
and spin with uniform accuracy.
Amazingly, even the first term in these infinite �-series

expansions provides already a pretty good approximation
(within a few %) to the full conformal block. We use this
fact in Sec. IVB to propose the toy bootstrap equation.
Although this equation discards some information com-
pared to using the full conformal blocks, and hence is less
constraining, it has an advantage of involving only elemen-
tary function and being amenable to analytic analysis.
Using this toy bootstrap, we get an analytic understanding
of why the method of Ref. [1] was able to get an upper
bound on the lowest dimension in the OPE.
We believe that our �-series expansions will find many

other future uses in the bootstrap program. Some of the
possibilities are described in Sec. IV. We conclude here by
considering another possible application: bootstrap analy-
sis of four point functions of nonscalar external primaries.
Conformal blocks for such correlators have been studied
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recently in Refs. [22,23],20 but the results were not yet put
to concrete use. Partly this is due to the fact that the
obtained expressions are still rather complicated and not
fully general. For example, Ref. [22] finds only the blocks
corresponding to the symmetric traceless exchanged pri-
maries, while more general representations can be ex-
changed if the external fields have spin. We believe that
the �-series approach could be useful in the problem of
expressing these missing conformal blocks. The basic
building blocks will no longer be simple Gegenbauers,
but they will still be polynomials of the angular variable,
fixed by the SOðdÞ group theory. Once the expansion basis
is known, the coefficients can presumably be found by
using the Casimir equation judiciously. It would be inter-
esting to carry out this computation in detail.
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APPENDIX: BOUNDEDNESS OF
THE �-SERIES COEFFICIENTS

In this Appendix we show that the coefficients Bn;j on

each level n are uniformly bounded for all � and l, as
stated in Eq. (3.18). We have already shown in the main
text that Bn;j remain bounded as � ! 1 for each fixed l.

So here it suffices to consider the case of l large with
respect to n, say l � n.

We will proceed by induction and assume that the in-
equality has already been shown for all levels n0 < n.
Using Eq. (3.12), the bound at level n will follow if we
show that

��þn;j
�þn0;j0=ðC�þn;j � C�;lÞ (A1)

is bounded by a constant which depends only on n and �.
Our first observation is that the �’s satisfy the bound

j��þn;j
�þn0;j0 j 	 const�þ const; (A2)

with constants which depends only on n and �. To show
this, notice that large contributions to �’s appear from only
two sources—first, through the action of r@r, which gives a
factor of ð�þ n0Þ and, second, through the action of
2�ð1� �2Þ@�, which gives factors bj0 ¼ Oðj0Þ. On the

other hand, all the factors produced via the expansion of
denominators in Eq. (3.7) will depend only on n and �.
Notice in particular that aj ¼ Oð1Þ.

Passing to the Casimir difference in Eq. (A1), we write
it as

C�þn;j � C�;l ¼ k2 þ 2kðl� nþ �Þ þ 2nð�þ n� 1Þ;
(A3)

where j ¼ l� nþ k, k ¼ 0; 2; . . . ; 2n, and � ¼ �� l�
2� � 0 by the unitarity bounds. Since we are assuming l �
n, this is a manifestly monotonically increasing function of
k and n.
Consider first the case k � 2. In this case we have a

lower bound:

C�þn;j�C�;l �½ðA:3Þ for k¼n¼ 2�¼ 4ð���Þ ðk� 2Þ:
(A4)

Combining this with Eq. (A2), we see that Eq. (A1) is
indeed bounded independently of � and l, except in the
region near the free scalar unitarity bound� ¼ �, excluded
from consideration as discussed in the main text.
It remains to consider the case k ¼ 0, when the Casimir

difference

C�þn;l�n � C�;l ¼ 2nð�þ n� 1Þ (A5)

can remain small even though both � and l become large.
However, precisely in this case the bound (A2) can also be
improved. The relevant recursion relation coefficients are

��þn;l�n
�þn0;j0¼l�n0 : (A6)

The coefficients with j0 � l� n0 will be zero, because
lowering the spin via Eqs. (3.9) is accompanied by raising
the dimension by at least the same amount. We will now
show that all coefficients of the form (A6) are bounded by
const�þ const. Together with Eq. (A5), this will prove the
boundedness of Bn;l�n and will complete the proof.

For the case n� n0 ¼ 2, this stronger bound can already

be suspected in the expression (3.11) for �Eþ2;j�2
E;j , which

contains two near-canceling terms. In detail, this coeffi-
cient can be expressed as

��þn0þ2;l�n0�2
�þn0;l�n0 ¼ 4ð�þ 2n0Þa�l�n0 (A7)

and satisfies the claimed bound, since a�j 	 1=2 for all j.

For the general case, we notice that the action of ~D on
P�þn0;l�n0 can be written as follows:

~DP�þn0;l�n0 ¼ � 4ð�þ 2n0Þa�l�n0

1� 2r2ð2�2 � 1ÞP�þn0þ2;l�n0�2 þ � � �

(A8)

Here we computed explicitly the action of ð1� 2�2Þr@r
and 2�ð1� �2Þ@�. We omitted many terms ð. . .Þ
which cannot contribute to the relevant � coefficients,
because they raise the dimension without lowering the
spin by the same amount. The � coefficients (A6) with20The 2d case was analyzed exhaustively in Ref. [24].
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n� n0 ¼ 4; 6; . . . are obtained by expanding the denomi-
nator in Eq. (A8). They are given by

��þn;l�n
�þn0;l�n0 ¼ 2ð�þ 2n0Þ Y

j¼l�n0;l�n0�2;...;l�nþ2

ð2a�j Þ (A9)

and clearly satisfy the claimed bound.
The reader will have noticed that the coefficients Bn;l�n,

which required a separate analysis in the above proof,
satisfy a recursion relation among themselves. This is

because the relevant �’s in Eq. (A6) vanish for j0� l�n0.
Because of this fact, these coefficients can in fact be
computed explicitly:

B2m;l�2m ¼ ð1=2Þm
m!

ðlþ 1� 2mÞ2m
ðlþ �þ 1� 2mÞ2m

ð�=2Þm
ð�=2þ 1=2Þm :

(A10)

Their boundedness is also obvious from this formula.
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