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The imaginary part of tht nuclear optical potential for neutrons is calculated by means
of a method of the volume direct processes, on the basis of the statistical independent particle
model with a eiffuse nuclear surface. It is shown that the localization of the absorption near
the surface, which was found by Bjorklund and Fernbach, can be reproduced using reaso-
nable values for the relevani parameters. The effect of the Pauli exclusion principle, of the
energy dependence of the iwo-body collision cross section, of the mass number dependence

of the parameters, and of the correlation between nucleons are also discussed.

§ I. Imtroduction

Much information on the phenomenological optical potential parameters has
been obtained so far, especially from the detailed analyses of the proton-nuclei
scattering cross section.” It was found that a fairly good fit to the experimental
data could be obtained by using the diffuse-boundary shape for both the real and
imaginary part of the nuclear optical potential.

On the other hand the surface absorption model had first been suggested by
Feshbach, Porter, and Weisskopf” from a view-point that the imaginary part would
be much less dependent on mass number if it is concentrated in a surface layer.
Amster? studied the effects of the various surface absorption potential forms at zero
energy and also analysed, in collaboration with Emmerich, o, and o, of the first
few Mev neutrons using several potential forms. However, the determination of
the best fit surface potential form and the relevant parameters was not aimed at in
their analysis.

Recently, Bjorklund and Fernbach” have analysed the scattering of 4.1-, 7-,
and 14- Mev neutrons by complex nuclei, using the optical potential with the follow-
ing form* :

* The notation is slightly changed from that used by Bjorklund and Fernbach.
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V(r)=Vep(r) +iWq(r) + U/ 1re)? (1) r) (dp(r) /dr) (6-1), (1)

where
p(I=(repl(—RY/S (w)
() =expl— (r—R)YE, (1b) |
Ry=rA"" : (1c)

The characteristic feature of this potential is the use of a Gaussian form centered
at the nuclear edge for the imaginary part (Wq(7)). At each energy considered,
was found a single set of parameters that give a fairly good agreement with ex-
perimental data of the elastic, total, and nonelastic cross section. Further, the
calculated nonelastic cross sections show better agreement with experimental data
when the surface imaginary potential was used instead of the diffuse-boundary
(Fermi type) imaginary potential.

Roughly speaking, two types of methods have been developed in order to
derive the phenomenological potential mentioned above from the more fundamental
two-body interaction ; a) the quantum mechanical one” which directly relates the
complex potential to the two-body potentials as has recently been elaborately developed
by Brueckner and his collaborators, and b) the semi-classical one, first proposed by
Goldberger,” which relates the imaginary part of the complex potential to the em-
pirical two-body cross sections®. While the method a) is clearly more fundamental
than the method b), in the former approach we must deal with all of the com-
plications of the nuclear many-body problem, which in fact is very difficult to do
at present”. On the other hand, the method b), notwithstanding its simplicity,
could successfully give the absolute magnitude of the imaginary potential and its
dependence upon the energy of the incident particle”. However, since all the
imaginary potentials so far derived were based on the Fermi gas having a constant
density and a sharp boundary, they were constant over the whole nuclear volume.

In a previous paper'”, along the line of method b), we used the Thomas-Fermi

gas model with a diffuse nuclear surface to explain the inelastic scattering of protons.

at intermediate energies by complex nuclei. The ineclastic scattering was explained
as the direct processes ocurring at the diffuse rim of the nucleus, and it was indicat-
ed in that paper that it would be very interesting to derive the radial dependence
of the absorption (imaginary) potential from our theory, in which the Pauli principle
was exactly taken into account. '

We shall show in this work that by using the Thomas-Fermi gas model as

in the previous paper, it is possible to reproduce the phenomenological absorption
potential of Bjorklund and Fernbach. In this connection, it is to be noted that the
simple Thomas-Fermi gas model as used by us is also applicable with a considerable
validity to other surface problem'’, such as the derivation of nuclear surface energy.

* The real part of the optical potential cannot be derived on the method b).

220z 1snbny 0z uo1senb Aq 2G/29€61/092/2/1 z/e1one/did/woo dnoolwspede)/:sdyy woly papeojumoq
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§ 2. Calculation and results

At first we consider the case in which the incident particle is a neutron. It
is assumed that the incident neutron interacts individually with the nucleons in the
target with a cross section which differs from that for free nucleons only through
the restrictions due to the Pauli principle. As the target nucleons are supposed to
be the constituents of the Thomas-Fermi gas with a diffuse boundary, the Fermi
momentum p,(7) is radially dependent and can be evaluated from the nucleon
density 0,(7) and 0,(7) :

P (r) =37 1 o (r) P, (2)
‘When a Fermi type function is assumed for the actual shape of 0, and o,
o(r) =a{l+exp (r—c)/b]} 7, (3)
we have
PR (r) =[37 al (1+expl (r—0) /B]} (4)
where ¢ is the half-density radius, & the diffuseness parameter, and a the normali-
zation constant'”. Then, the kinetic energy of an incident neutron in the nucleus
is given by
E (r)=pp' () /2m+S,+E, (5)

‘where py,(7) is the Fermi momentum of the neutrons bound in the nucleus, S,
the separation energy of the neutron, and £ the kinetic energy of the incident
neutron outside the nucleus. Contrary to the usual theory, E,(r) is here directly
given by the nucleon density distribution o(7), without referring to the real part
of the optical potential V(7). The assumption that an incident neutron is absorb-
ed from the incident channel when it collides with a target nucleon leads to an
expression for the absorption coefficient K (7) which is here radially dependent :

K(r) =K,(r) +K.(7)
:407)(7‘) &np<r) +;0n(7') &nn(r): (6)

where &,,(7) and &,,(r) are certain average neutron-proton and neutron-neutron
cross section. The averages in &,,(r) and ¢,,(») are taken approximately over
all possible relative collision momenta p(7), under the restrictions due to the Pauli
exclusion principle. ,

Let the momenta of incident and target nucleons be p,(7) and p,(r) and the
relative momenta of the initial and final states be p(7) and p’(r), respectively.
Then, & (7)) may be expressed as

() =[dp.(r) [ 42 20 (Do (B (), () /5,1 [y, )

where d¥’ is the solid angle element for p’ (7). The two-body collision cross section
o (p(r), p'(»)) in the center of mass system is assumed to be isotropic and inversely
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proportional to p°(7)'®. This assumption is appropriate in the present case. In
eq. (7), the integral in the denominator is taken over the range of momenta at
the radial coordinate » of the target nucleons (i.e. from 0 to pr(r)), and the
integral in the numerator is performed under the restriction of the Pauli exclusion
principle at the place ». Assuming o (p(r), p' () =0, (p(7))/An=0,/47 p*(+),
we get

a(r) =60, p(r) I(r)/ps(r), | (8)
where
» 20,2 91+ 2%
K= SAFE=2D 2 AR gy
da V' 2(1+2%) 1+4+-32°
x=po(7) /P (r), a=py(r) /P, (1), (8b)
and the integration limits are
a=0, b=« for E,(r)=2E(r),
- (8c)
a=y 2a—1, b=a for E,(r) <<2E,(r),
respectively.

The actual numerical calculation has been carried out for Sn nucleus, where
the empirical value for S, is 9.7 Mev. The parameters & and ¢ in the expression
for 0,(r) can be determined fairly well from the analysis of the high energy electron
scattering'; 5=0.57 X 10" cm and ¢=1.1 X A'*X 10™"* cm. Since there is no definite
experimental evidence for the density of neutron p,(7), two sets of values of & and
¢ are assumed with the same type of distribution as p,(7) : (A) p,is of the same
form as p, and (B) p, is a little extended beyond p, but has the same surface
thickness as p,.
E,(0) at the center of the nucleus are listed in Table 1.

The values for & and ¢, and the corresponding Fermi energies.

Table 1. Values of a, b, ¢ and E;(0) for Sn

; protons i neutrons (A) neutrons (B)
a 0.67 x 108 0.94 x 108 0.53x 1078
b 0.57 X 10~13 0.57 %1013 0.57 % 10713
c 5.42% 10713 5.42x 103 6.66< 10718
E7(0) 32.8Mev 41.3Mev 28.3Mev

The calculated absorption coefficients are shown in Figs. 1, 2, and 3 for E=14
Mev, 7 Mev, 4 Mev, respectively. The dotted curves are the ones calculated from.
the optical potential determined from the experiment”, using the following relation
between the absorption coefficient and the optical potential,

K (r) = (4m /)~ (E+V () +/ (E+V (1)) + W2 ()| &)

220z 1snbny 0z uo1senb Aq 2G/29€61/092/2/1 z/e1one/did/woo dnoolwspede)/:sdyy woly papeojumoq



264

K. Harada and N. Oda

K (1012)
5F
4r  E,=14Mev . N
3k
2 -
1t (B)
(A)
0 i ] L

1 2 3 4 5 6 7 8 9 10 r(10-Bcm)

Fig. 1 Full curves are the calculated absorption coefficients for
E, =14 Mev. Dotted curve is the empirical one found by Bjork-
Jund and Fernbach.
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Fig. 2 Full curves are the calculated absorption coefficients for
E, =7 Mev. Dotted curve is the empirical one found by Bjork-
lund and Fernbach.
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Fig. 3 Full curves are the calculated absorption coefficients for
E, =4 Mev. Dotted curve is the empirical one found by Bjork-
lund and Fernbach.
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Fig. 4 Full curves are the calculated absorption coefficients for
E,=14 Mev. Dotted curve is the one for E, =14 Mev.

One sees that the calculated absorption coefficients agree fairly well with the em-
pirical (experimental) results, especially the localization of the absorption at the
nuclear surface. It is interesting to note that K(7) is almost indepent of the shape
of p,. This is due to the fact that o,, is much smaller than o,, In the case
of the incident protons it is expected that K(r) will be more sensitive to the shape
of py.

"“To see this p, dependence more quantitatively, we calculate the absorption coeffi-
cient K(r) for the incident proton whose energy is 14 Mev, and show the results
in Fig. 4. In this case the empirical value for .S, is 6.2 Mev. One sees that with
0, described by a type (A) K’s for both the incident neutron and proton have
almost the same form, but with g, described by a type (B) the peak of K for
the incident proton appreciably shifts towards the outside and its width becomes
slightly broader than that of K for the incident neutron.

§ 3. Discussions

i) We shall here examine the problem why the absorptions were localized at the
nuclear surface in our calculations on the basis of the statistical independent particle
model with a diffuse nuclear surface. As one of the reasons, we may imagine that
the relaxation of the Pauli exclusion principle at the surface due to the decrease
of pp(7) plays an important role. To see whether this is actually the case or not,
we examined the scattering of 4 Mev neutrons by target protons only. At this
energy the Pauli exclusion principle is expected to be most effective. If we assume
the two-body cross section to be energy-independent, o,,(p(7), p'(r)) =0o,/47, we
obtain (see Hayakawa et al.,” eq. (2.8))

¢=o, - (E. P.), (10)
where

; 7 EF [
(E. P) :“L"‘”’5"“E,,(<'?>' for E,(r)>2Ex(7),

220z 1snbny 0z uo1senb Aq 2G/29€61/092/2/1 z/e1one/did/woo dnoolwspede)/:sdyy woly papeojumoq



266 : K. Harada and N. Oda

LT B 2 ) E(r) > <9E.(; :
5 B0 5 E]<r>( Fﬁm) for £ (r) <2E-(r). (107

1l _ Here (£. P.) is the factor expres-
sing the rate of reduction of the
0.9 free collision cross section o,, due
to the exclusion principle. Then
the absorption coefficient K ()

written as
K(#)=p(r) o, (E.P). (11)

(E. P.), p/p, (the proton density
 normalized to unity at the origin),
and p/pyX (E. P.) are shown in
Fig. 5. From this one sees that
the effect of the relaxation of the
exclusion principle at the nuclear
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g surface is considerably cancelled out
1 ! 3

0 : i 1 t 1 !
6 1 2 3 4.5 6 7 8 9 by the decrease of p(r). There-
7(10~1% cm) fore, using the energy independent
Fig. 5 p/pg is the proton density normalized to unity cross section, one .can not obtain

at the origin. (E. P.) is the factor exprssing the

o . X the localization of the absorption at
rate of reduction of the free collision cross section

the surface. From the above result

onp due to the exclusion principle for £,=4 Mev.
it appears that the remarkable locali-

zation of the absorption at the nucleon surface in our theory is mainly due to the energy
dependence of two-body collision cross section, although the exclusion principle con-
siderably reduce the absorption inside the nuclear surface. The energy dependence
of the two-body collision cross sections strikingly affects the results because in our
model the momenta of both the target nucleons and an incident nucleon at the
nuclear surface are much smaller than inside (see egs. (2) and (5)).*

i)  On the basis of the Stanford electron scattering experiment', the density of
protons o, is usually described by a Fermi type function (eq. (3)), having a central
region of rather uniform density and a surface region in which the density falls
from 90 to 10 per cent of the central value in a distant D=4.39 b, b being inde-
pendent of the mass number A. Taking account of this fact for p(r), we may
expect that the caleulated absorption coefficients K (7) for nuclei with different A
in our theory would have nearly equal magnitude at a fixed incident energy, with
the different locations of their maxima corresponding to the different values of radii.
This expectation will be supported by the results of Bjorklund and Fernbach that
at a fixed incident energy one can get by varying only one parameter, that is the

The examination of this discussion (i) was done following the suggestion of Dr. Sugie.
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radius R,(eq.(1c)), a fairly good agreement with experimental data on the total
and nonelastic cross sections as a function of A (about 8 to 220).

The usual optical potential analysis assumes the same radial form' for the

real and imaginary potential and the resulting imaginary part shows a remarkable
mass number dependence, i.e. one has to decrease the imaginary part about factor
two as the mass number increases, in order to obtain a fit to experimental data.
The neutron excess in heavier nuclei'” can produce this tendency, but its effect is
too weak to explain the empirical evidence. On the basis of the surface absorp-
tion model, this difficulty is not the case.
iii) Since our nuclear model is a statistical independent particle model, the correlations
between the nucleons are ignored. If the correlations were taken into account, the
higher momentum components of the target nucleons would be increased and the
nucleus would be represented by a no-degenerate Thomas-Fermi gas at some tem-
perature. In another place'”* we gave the detailed calculation of the absorption
coefficient with a non-degenerate Fermi gas (having a constant nuclear density and
a sharp boundary) in a similar way as in this paper (i.e. as a direct volume pro-
cess), and the result showed that the non-degeneracy was not so effective in inceas-
ing the absorption coefficient.** It might be, therefore, expected that in the
present case with the diffuse surface also the correlation effect will not so much
alter the fundamental features of the results. However, the finiteness of tempera-
ture is but one result of the correlation effect and a great complexity will be intro-
duced in the calculation through a complete inclusion of the correlation effect, so
that we think it a consistent way to work with the classical particle picture toge-
ther with the Thomas-Fermi gas at zero temperature.

Finally, it may be concluded from the results and disussions given above that
even with the present simple semiclassical model the physical reality underlying the
nuclear surface problem can be explained successfully to a certain extent.

The authors would like to express their sincere thanks to Drs. T. Momota
and A. Sugie for illuminating discussions and careful reading of the manuscript.

This calculation was done in connection with the sticking probability in the decay process
of a compound nulceus (Cohen’s paradox)'?, and the residual nucleus was described by
a non-degenerate Fermi gas with various excitation energies.

#%  An analysis of the dependence of the mean free path of nucleon on the nuclear tempera-
ture ‘was also done by Kind and Patergnani,’® from which the similar conclusion may be
derived for this case if the nuclear temperature is not so high.
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