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The imaginary part of tht nuclear optical potential for neutrons is calculated by means 

of a method of the volume direct processes, on the basis of the statistical independent particle 

model with a eiffuse nuclear surface. It is shown that the localization of the absorption near 

the surface, which was found by Bjorklund and Fernbach, can be reproduced using reaso

nable values for the relevant parame~ers. The effect of the Pauli exclusion principle, of the 

energy dependence of the two-body collision cross section, of the mass number dependence 

of the parameters, and of the correlation between nucleons arc also discussed. 

lVIuch information on the phenomenological op6cal potential parameters has 
been obtained so far, especially from the detailed analyses of the proton-nuclei 
scattering cross section. l

) It was found that a fairly good fit to the experiment~:d 

data could be obtained by using the diffuse-botmdary shape for both the real and 

imaginary part of the nuclear optical p()tential. 
On the other hand the surface absorption model had first been suggested by 

Feshbach, Porter, and vVeisskopf!) from a view-point that the imaginary part would 

be much less dependent on mass number if it is concentrated in a surface layer. 
Amster3

) studied the effects of the various surface absorption potential forms at zero 

energy and also analysed, in collaboration with Emmerich, (J", and (J" c of the first 
few Mev neutrons using several potential forms. However, the determination of 
the best fit surface potential form and the relevant parameters was not aimed at m 
their analysis. 

Recently, Bjorklund and Fernbach4
) have analysed the scattering of 4.1-, 7-, 

and 14- Mev neutrons by complex nuclei, using the optical potential with the follow

ing form* : 

* The notation is slightly changed from that used by Bjorklund and Fernbach. 
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Radial Dependence of Imaginary Part of Nuclear Optical Potential 261 

VCr) =Vop(r) iWq(r) + U(tt/pc) 2 (l/r) (dp(r)/dr) (a·I), (1) 

where 

per) = {l+exp[(r-Ro)/sJ}-\ 

q(r) =exp[- (r-Ror?/t2
], 

(1a) 

(1b} . 

(Ic) 

The characteristic feature of this potential IS the use of a Gaussian form centered 
at the nuclear edge for the imaginary part (Wq(r». At each energy considered, 
was found a single set of parameters that give a fairly good agreement with ex
perimental data of the elastic, total, and nonelastic cross section. Further, the 
calculated nonelastic cross sections show better agreement with experimental data 
when the surface imaginary potential was used instead of the diffuse-boundary 
(Fermi type) imaginary potential. 

Roughly speaking, two types of methods have been developed in order to 
derive the phenomenological potential mentioned above from the more fundamental 
two-body interaction; a) the quantum mechanical one5

) which directly relates· the 
complex potential to the two-body potentials as has recently been elaborately developed 
by Brueckner and his collaborators, and b) the semi-classical one, first proposed by 
Goldberger/i) which relates the imaginary part of the complex potential to the em

pirical two-body cross sections*. vVhile the method a) is clearly more fundamental 
than the method b), in the former approach we must deal with all of the com
plications of the nuclear many-body problem, which in fact is very difficult to do 
at present'). On the other hanel, the method b), notwithstanding its simplicity, 
could successfully give the absolute magnitude of the imaginary potential and its 
dependence upon the energy of the incident particleS) 0) • However, since all the 
imaginary potentials so far derived were based on the Fermi gas having a constant 
density and a sharp boundary, they were constant over the whole nuclear volume. 

In a previous paper10
) , along the line of method b), we used the Thomas-Fermi 

gas model with a diffuse nuelear surface to explain the inelastic scattering of protons. 
at intermediate energies by complex nuclei. The inelastic scattering was explained 
as the direct processes oCl1rring at the diffuse rim of the nucleus, and it was indicat
ed in that paper that it would be very interesting to derive the radial dependence 
of the absorption (imaginary) potential from our theory, in which the Pauli principle 
was exactly taken into account. 

We shall show in this work that by using the Thomas-Fermi gas model as. 
in the previous paper, it is possible to reproduce the phenomenological absorption 
potential of Bjorklund and Fernbach. In this connection, it is to be noted that the 
simple Thomas-Fermi gas model as used by us is also applicable with a considerable 
validity to other surface problemll), such as the derivation of nuclear surface energy. 

* The real part of the optical potential cannot be derived on the method b). 
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262 K. Harada and lV. Oda 

§ 2. Calculation and results 

At first we consider the case in which the incident particle is a neutron. It 
is assumed that the incident neutron interacts individually with the nucleons in the 
target with a cross section which differs from that for free nucleons only through 
the restrictions due to the Pauli principle. As the target nucleons are supposed to 
be the constituents of the Thomas-Fermi gas with a diffuse boundary, the Fermi 
momentum PF( r) is radially dependent and can be evaluated from the nucleon 
d.ensity (lp (r) and pn (r) : 

(2) 

When a Fermi type function is assumed for the actual shape of tip and pm 

(I( r) =a {I +exp[ (r-c) / b]} -1, (3) 

we have 

(4) 

where c is the half-density radius, b the diffuseness parameter, and a the normali
:zation constaneO). Then, the kinetic energy of an incident neutron in the nucleus 
is given by 

(5) 

where PFn(r) is the Fermi momentum of the neutrons bound in the nucleus, Sn 
the separation energy of the neutron, and E the kinetic energy of the incident 
neutron outside the nucleus. Contrary to the usual theory, EI (r) is here directly 
,given by the nucleon density distribution p ( r), without referring to the real part 
of the optical potential V (r). The assumption that an incident neutron is absorb
oed from the incident channel when it collides with a target nucleon leads to an 
~xpression for the absorption coefficient K ( r) which is here radially dependent: 

K(r) =Kp(r) +Kn(r) 

= (I p ( r) ii np ( r) + pn ( r) ii nn ( r) , (6) 

where iinp (r) and iinn (;-) are certain average neutron-proton and neutron-neutron 
'cross section. The averages in iinp (r) and (j nn (r) are taken a pproximately over 
all possible relative collision momenta p ( r), under the restrictions due to the Pauli 

exclusion principle. 
Let the momenta of incident and target nucleons be PI (r) and P2 (r) and the 

relative momenta of the initial and final states be p (r) and p' (r), respectively. 
Then, ii (r) ma y be expressed as 

(7) 

where dId' is the solid angle element for p' (r). The two-body collision cross section 
,0"' (p ( r), pi ( r» in the center of mass system is assumed to be isotropic and inversely 
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Radial Dependence of Imaginary Part of Nuclear Optical Potential 263 

proportional to p2 (r) 12) • This assumption is appropriate in the present case. In 
eq. (7), the integral in the denominator is taken over the range of momenta at 
the radial coordinate r of the target nucleons (i.e. from 0 to PF'( r) ), and the 
integral in the numerator is performed under the restriction of the Pauli exclusion 
principle at the place r. Assuming o-(p(r), p'er»~ =o-t(jy(r»/4rr:=o-o/4r.p2 (r) , 

we get 

iT (r) =60-0 PI (r) I(r) / p/(r), (8) 

where 

/-------------

I ( r) = J:~S~t=(i:+C;2r~L~ tanh -1 -~~yl~~~~~)--dx, (8a) 

x= P2(r) / PI (r), a= PF(r) / pJr), (8b) 

and the integration limits are 

a=O, b=a 
(8c) 

respecti vely. 
The actual numerical calculation has been carried out for Sn nucleus, where 

the empirical value for Sn is 9.7 Mev. The parameters band c in the expression 
for ('p(r) can be determined fairly well from the analysis of the high energy electron 
scattering13

); b=0.57X10-13 cm and c=l.l Xil1
/:

l X 10-13 em. Since there is no definite 
experimental evidence for the density of neutron ('n (r), two sets of values of band 
c are assumed with the same type of distribution as (lp (r) : (A) ('n is of the same 
form as ('p, and (B) ('n is a little extended beyond ('p but has the same surface 
thickness as ('po The values for band c, and the corresponding Fermi energies. 
EF,(O) at the center of the nucleus are listed in Table 1. 

Table 1. Values of a, b, c and Ep (0) for Sn 

I 
(A) (B) protons neutrons neutrons 

a 0.67X 10% 0.94X 10~8 0.53 X 10~8 

b 0.57 >< 1O-1~ 0.57X 10-J:1 0.57 X 10-1;\ 

c 5.42 >< 10-J:1 5.42 X 10-1;) 6.66X 10-1:1 

Ep(O) 32.8Mev 41.3Mev 28.3Mev 

The calculated absorption coefficients are shown in Figs. 1, 2, and 3 for E= 14 
Mev, 7 Mev, 4 Mev, respectively. The dotted curves are the ones calculated from 
the optical potential determined from the experiment4

), using the following relation 
between the absorption coefficient and the optical potential, 
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Fig. 1 Full curves are the calculated absorption coefficients for 
E,,=14 Mev. Dotted curve is the empirical one found by Bjork

lund and Fernbach. 
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Fig. 2 Full curves are the calculated absorption coefficients for 

E,,=7 Mev. Dotted curve is the empirical one found by Bjork

lund and Fernbach. 
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Fig. 3 Full curves are the calculated absorption coefficients for 
E,,=4 Mev. Dotted curve is the empirical one found by Bjork

lund and Fernbach. 
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Fig. 4 Full curves are the calculated absorption coefficients for 

Ep=14 Mev. Dotted curve is the one for En=14 Mev. 

One sees that the calculated absorption coefficients agree fairly well with the em
pirical (experimental) results, especially the localization of the absorption at the 
nuclear surface. It is interesting to note that K ( r) is almost indepent of the shape 
of {'n. This is due to the fact that (J" n1~ is much smaller than () nll" In the case 
of the incident protons it is expected that K (r) will be more sensitive to the shape 
of {'n. 

To see this {'n dependence more quantitatively, we calculate the absorption coeffi
cient K ( r) for the incident· proton whose energy is 14 Mev, and show the results 
in Fig. 4. In this case the empirical value for Sp is 6.2 Mev. One sees that with 
pp described by a type (A) K's for both the incident neutron and proton have 
almost the same form, but with ('n described by a type (B) the peak of K for 
the incident proton appreciably shifts towards the outside and its width becomes 
slightly broader than that of K for the incident neutron. 

§ 3. Discussions 

i) We shall here examine the problem why the absorptions were localized at the 
nuclear surface in our calculations on the basis of the statistical independent particle 
model with a diffuse nuclear surface. As one of the reasons, we may imagine that 
the relaxation of the Pauli exclusion principle at the surface due to the decrease 
of f>p,( r) plays an important role. To see whether this is actually the case or not, 
we examined the scattering of 4 Mev neutrons by target protons only. At this 
energy the Pauli exclusion. principle is expected to be most effective. If we assume 
the two-body cross section to be energy-independent, (J" np (1' (r), p' ( r) ) = (J"t! 4n, we 
obtain (see Hayakawa et a1.,9) eq. (2.8» 

ii=(J"t' (E. P.), (10) 

where 
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Fig. 5 pi Po is the proton density normalized to unity 
at the origin. (E. P.) is the factor exprssing the 

rate of reduction of the free collision cross section 

ifnp due to the exclusion principle for E" =4 Mev. 

Here (E. P.) is the factor expres
sing the rate of reduction of the 
free collision cross section (T np due 
to the exclusion principle. Then 
the absorption coefficient K ( r) is 
written as 

K(r) =p(r) ·(Te' (E. P.), (11) 

(E. P.), p/Po (the proton density 
normalized to unity at· the origin), 

and p/Po X (E. P.) are shown in 
Fig. 5. From this one sees that 
the effect of the relaxation of the 

exclusion principle at the nuclear 
surface is considerably cancelled out 
by the decrease of p ( r) . There
fore, using the energy independent 
cross section, one can not obtain 
the localization of the absorption at 
the surface. From the above result 
it appears that the remarkable locali

zation of the absorption at the nucleon surface in our theory is mainly due to the energy 
dependence of two-body collision cross section, although the exclusion principle con
siderably reduce the absorption inside the nuclear surface. The energy dependence 
of the two-body collision cross sections strikingly affects the results because in our 
model the momenta of both the target nucleons and an incident nucleon at the 
nuclear surface are much smaller than inside (see eqs. (2) and (5».* 
ii) On the basis of the Stanford electron scattering experimentll ), the density of 
protons pp is usually described by a Fermi type function (eq. (3), having a central 
region of rather unifor ill density and a surface region in which the density falls 
from 90 to 10 per cent of the central value in a distant D=4.39 b, b being inde
pendent of the mass number A. Taking account of this fact for p (r), we may 
expect that the calculated absorption coefficients K( r) for nuclei with different A 
in our theory would have nearly equal magnitude at a fixed incident energy, with 
the different locations of their maxima corresponding to the different values of radiL 
This expectation will. be supported by the results of Bjorklund and Fernbach that 
at a fixed incident energy one can get by varying only one parameter, that is the 

"," The examination of this discLlssion (i) was done following the suggestion of Dr. Sugie. 
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radius Ro (eq. (Ic)), a fairly good agreement with experimental data on the total 
and nonelastic cross sections as a function of A (about 8 to 220). 

The usual optical potential analysis assumes the same radial form 14) for the 
real and imaginary potential and the resulting imaginary part shows a remarkable 
mass number dependence, i.e. one has to decrease the imaginary part about factor 
two as the mass number increases, in order to obtain a {it to experimental data. 
The neutron excess in heavier nuclei15

) can produce this tendency, but its effect is 
too weak to explain the empirical evidence. On the basis of the surface absorp
tion model, this difficulty is not the case. 
iii) Since our nuclear model is a statistical independent particle model, the correlations 
between the nucleons are ignored. If the correlations were taken into account, the 
higher momentum components of the target nucleons would be increased and the 
nucleus would be represented by a no-degenerate Thomas-Fermi gas at some tem
perature. In another place1G

)* we gave the detailed calculation of the absorption 
coefficient with a non-degenerate Fermi gas (having a constant nuclear density and 
a sharp boundary) in a similar way as in this paper (i.e. as a direct volume pro
cess), and the result showed that the non-degeneracy was not so effective in inceas
ing the absorption coefficient. ** It might be, therefore, expected that in the 
present case with the diffuse surface also the correlation effect will not so much 
alter the fundamental features of the results. However, the finiteness of tempera
ture is but one result of the correlation effect and a great complexity will be intro
duced in the calculation through a complete inclusion of the correlation effect, so 
that we think it a consistent way to work with the classical particle picture toge
ther with the Thomas-Fermi gas at zero temperature. 

Finally, it may be concluded from the results and disussions given above that 
even with the present simple semiclassical model the physical reality underlying the 
nuclear surface problem can be explained successfully to a certain extent. 

The authors would like to express their sincere thanks to Drs. T. Momota 
and A. Sugie for illuminating discussions and careful reading of the manuscript. 

* This calculation was done in connection with the sticking probability in the decay process' 
of a compound nulceus (Cohen's paradox) J7), and the residual nucleus was described by 

a non-degenerate Fermi gas with various excitation energies. 

** An analysis of the dependence of the mean free path of nucleon on the nuclear tempera
ture was also done by Kind and Patergnani,J8) from which the similar conclusion may be 

derived for this case if the nuclear temperature is not so high. 
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