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Abstract 

In this paper, we address the problem of recover- 
ing the camera radial distortion coefficients from one 
image. The approach that we propose uses a special 
kind of snakes called radial distortion snakes. Ra- 
dial distortion snakes behave like conventional de- 
formable contours, except that their behavior are 
globally connected via a consistent model of image 
radial distortion. Experiments show that radial dis- 
tortion snakes are more robust and accurate than 
conventional snakes and manual point selection. 

1 Introduction 

Most cameras with wide fields of view suffer from 
non-linear distortion due to simplified lens construc- 
tion and lens imperfection. In general, there are two 
forms of camera distortion, namely radial distortion 
and tangential distortion. In this paper, we address 
the problem of recovering the camera radial distor- 
tion coefficients from one image. We present a new 
technique that uses what we call radial distortion 
snakes. Unlike conventional snakes, the behavior of 
radial distortion snakes are globally connected via 
a consistent model of image radial distortion. Our 
radial distortion recovery is directly linked with the 
feature (edge) detection process. 

1.1 Prior work 

A lot of work on camera calibration require a 
calibration pattern with known exact dimensions. 

Brown [3] uses a number of parallel plumb lines 
to compute the radial distortion parameters using an 
iterative gradient-descent technique. The extraction 
of points on the plumb lines is very manual intensive. 
Swaminathan and Nayar [9] use a user-guided self- 
calibration approach. The distortion parameters are 
computed from user-picked points along projections 
of straight lines in the image. 

Stein [8] uses point correspondences between 
multiple views to extract radial distortion coeffi- 
cients. He uses epipolar and trilinear constraints 
and searches for the amount of radial distortion that 
minimizes the errors in these constraints. 

Photogrammetry methods usually rely on using 
known calibration points or structures [2, 3, 101. For 
example, Tsai [lo] uses corners of regularly spaced 
boxes of known dimensions for full camera calibra- 
tion. 

The idea of active deformable contours, or snakes, 
was first described in [6] .  Since then, there has been 
numerous papers on the applications and refinement 
of snakes. Virtually all the snakes, some of which 
may be parameterized, work independently of each 
other. Our snakes are globally parameterized, and 
they deform in a globally consistent manner. 

2 Finding the radial distortion param- 
eters 

We begin this section with a brief description of 
the lens distortion equation. 

There are camera calibration techniques that use the 
scene image or images themselves, and possibly tak- 2.1 The radial distortion equation 

ing advantage of special structures such as straight 
lines, parallel straight lines, and perpendicular lines. The modeling of lens distortion can be found in 
An example is that of Becker and Bove [I]. They use [7]. In essence, there are two kinds of lens distor- 
the minimum vanishing point dispersion constraint tion, namely radial and tangential (or decentering) 
to estimate both radial and decentering (or tangen- distortion. Each kind of distortion is represented by 
tial) lens distortion. The user has to group parallel an infinite series, but generally, a small number is 
lines together. adequate. 

* Work done while the author was with Cambridge Re- We assume that the tangential clistortion can be 
search Lab., Compaq Computer Corp. neglected and the principal point is the center of the 



image. The radial distortion equations are then 

where IC'S are the radial distortion parameters, 
(xu, y,) is the theoretical undistorted image point 
location, (xd, yd) is the measured distorted image 
point location, and Rd = xz + yz. 

In our approach, the user draws lines on the image 
that correspond to projections of straight 3-D lines. 
These drawn lines need not be exact. We then use 
snakes to search for the best-fit lines to extract radial 
distortion parameters. A direct approach would be 
to use normal snakes. 

2.2 Using conventional snakes 

In this method, the motion of the snakes is based 
on two factors: motion smoothness (due to exter- 
nal forces) and spatial smoothness (due to internal 
forces). Given the original configuration of a snake, 
a point on the snake p j  moves by the amount 6pj 
at  each step given by 

(3) 
where Nj and N, are the neighborhood of pixel at  
p j ,  including p j .  6pedgej is the computed motion 
of the ith point towards the nearest detectable edge, 
with its magnitude being inversely proportional to 
its local intensity gradient. pjk and pik are the re- 
spective neighborhood weights. In our implementa- 
tion, X = 0.5 and Nj = Nj, the radius of the neigh- 
borhood being 5 and the weights pjk = pik being 
{1,2,4,8,16,32,16,8,4,2,1). 

Once the snakes have settled, the camera radial 
distortion parameters can then be recovered using a 
least-squares formulation. 

2.3 Using radial distortion snakes 

Using conventional snakes have the problem of 
getting stuck on wrong local minima. This problem 
can be reduced by imposing more structure on the 
snake-namely, the shape of the snake has to be 
consistent with the expected distortion of straight 
lines due to global radial distortion. For this reason, 
we call .such snakes radial distortion snakes. 

The complexity of the original objective function 
can be reduced if we consider the fact that the effect 
of radial distortion is rotationally invariant about 

the principal point, ignoring asymmetric distortions 
due to tangential distortion and non-unit aspect ra- 
tio. 

This method has the following steps: 

1. For each snake, find the best fit line, 

2. Rotate each snake about the principal point so 
that the rotated best fit line is horizontal. Let 
the angle of this rotation be a, for the ith snake. 

3. Estimate best fit set of radial distortion param- 
eters I C ~ ,  ..., ICL from the rotated set of lines (de- 
scribed shortly). 

4. Find the expected rotated distorted point pi = 
(xj, yj), whose undistorted version lies on a hor- 
izontal line, i.e., 

(0) (0) Given the initial points (xj , yj ), we take X j  = 

x y )  and iteratively compute yj from 

until the difference between successive values of 
yik) 's is negligible. 

5. Update points using current best estimate of n's 
and edge normal. In other words, the point p j  
is updated based on 

with 0 5 q 5 1. pYma1 is the expected new 
position of the snake point using the conven- 
tional snake approach (see (3)). For the ith 
snake, pyPa is obtained by rotating p i  (calcu- 
lated from the previous step) about the princi- 
pal point by (-ai). 

6. Iterate all the above steps until overall mean 
change is negligible, or for a fixed number of 
iterations. The latter condition is adopted in 
our work. 

In our case, we set the time-varying function of q 
to  be linear from 0 to 1 with respect to the preset 
maximum number of iterations. 

To find the radial distortion parameters ~ 1 ' s  given 
rotated coordinates, we minimize the objective func- 
tion 



where N, is the number of snakes, Rij = x:j + Y,2j 
and wij is the confidence weight associated with the 
j t h  point in the ith snake. In our work, wij is the 
edge strength at  ( x i j ,  y i j )  We use the rotated ver- 
sions in order to simplify the analysis of the objective 
function. 

Taking the partial derivatives with respect to the 
unknown parameters and equating them to zero, we 
get a linear system of equations that can be easily 
solved for K,'s. For L > 1, we estimate the K'S in 
succession. In other words, we first estimate K I ,  fol- 
lowed by 61 and KZ,  and so on, up ti1 the last stage 
where we estimate all the radial distortion parame- 
ters KI, ..., KL. 

3 Results 

In this section, we present results from both syn- 
thetic and real images. For all the experiments de- 
scribed in this section, we recover K I  and KZ only, 
i.e., we set L = 2. This is generally sufficient for low 
to moderately distorted images in practice. 

3.1 Experiments using synthetic images 

In our first set of experiments, we use synthetic 
images containing straight lines and distort them 
with known radial distortion parameters. In addi- 
tion, we vary the image noise to see how it affects 
both the conventional and radial distortion snake 
algorithms. In particular, the actual radial distor- 
tion parameters corresponding to = and 
~2 = 10-lo are applied to images with a resolution 
of 480 x 512. The gaussian image noise (specified by 
the standard deviation in intensity level a )  is varied 
from 0 to 100 intensity levels. Figure 1 shows re- 
sults for a test image with a = 100. It is clear from 
Figure 1 that the radial distortion snakes yielded a 
better result than that of conventional snakes. 

The results of the series of experiments are shown 
in Figure 2. As can also be seen, for low image noise 
levels, both snake algorithms exhibit reasonable ro- 
bustness to image noise. However, the radial distor- 
tion snake algorithm is even more stable despite the 
presence of significant image noise, in comparison to 
the conventional snake algorithm. 

3.2 Experiments using real images 

Figure 3 illustrates a situation where the radial 
distortion snakes appear to have converged to a 
more optimal local minima than that of conventional 
snakes for the same snake initialization. This exam- 
ple shows that the radial distortion snakes are more 
tolerant to errors in snake initialization by the user. 
Our algorithm works for highly distorted images as 
well, as Figure 4 shows. 

Figure 1: Synthetic image with a = 100: (a) Origi- 
nal image, (b) Manually drawn lines, (c) With con- 
ventional snakes, (d) With radial distortion snakes. 

Radial distortion snakes appear to have the ef- 
fect of widening the range of convergence compared 
to  conventional snakes (as exemplified by Figure 3). 
Despite this, wrong convergence do occur with radial 
distortion snakes, especially in cases of bad initial 
line placements. 

4 Discussion 

I t  is clear from experiments that using the radial 
distortion snakes is better than using conventional 
snakes. We have demonstrated that the radial dis- 
tortion snakes find best adaptation according to best 
global fit to  radial distortion parameters. They ap- 
pear to be less prone to being trapped in bad local 
minima in comparison to conventional snakes. At 
every step, the radial distortion snakes act together 
to give an optimal estimate of the global radial dis- 
tortion parameters and deform in a consistent man- 
ner in approaching edges in the image. 

In comparison to the radial distortion snake, each 
conventional snake is locally adaptive and works in- 
dependently of all the other snakes in the same im- 
age. They are not specialized, nor are they designed 
to be optimal to the task (in our case, the recovery 
of radial distortion parameters). This is clearly an- 
other demonstration of the benefit of incorporating 
global task knowledge directly in the early stages 
of the problem-solving algorithm. The concept of 
the radial distortion snake is very much in the same 
spirit as that of task-oriented vision [5]. 



5 Summary and future work 
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Figure 2: Graph showing the effect of gaussian image 
noise (standard deviation in intensity level) on RMS 
undistortion error ERMS. 

Figure 3: Office scene: (a) Initial snake configura- 
tion, and final snake configuration for (b) Conven- 
tional snakes, (c) Radial distortion snakes, (d) Cor- 
rected image from (c). 

Figure 4: An example with very significant distor- 
tion: (a) Initial snake configuration, (b) Final snake 
configuration, and (c) Corrected image. Note that 
the snakes are shown in black here. 

We have described radial distortion snakes as a 
mechanism to recover radial distortion parameters 
from a single image. Radial distortion snakes de- 
form in concert based on a common radial distortion 
model. 

One direction for future work is to extend this 
work to estimate the principal point and tangen- 
tial (or decentering) distortion parameters as well. 
Another area is to fully automate the process of de- 
termining radial distortion by edge detection and 
linking, followed by hypothesis and testing. A ro- 
bust estimator may be used to reject outliers (e.g., 
RANSAC-like algorithm [4]). 
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