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Abstract. In this paper, we first show that a result of Girela et al. on analytic functions can be extended
to hyperbolic-harmonic functions, and then we establish Hardy-Littlewood-type theorems on hyperbolic
harmonic functions.

1. Introduction and main results

For n > 2, let R" denote the usual real vector space of dimension n. Sometimes it is convenient to
identify each point x = (x1,...,x,) € R" with an n X 1 column matrix so that

X1

Xn
Fora = (ay,...,a,) and x € R", we define the Euclidean inner product (-, -) by
(x,a) = x1a1 + - + X0,
so that the Euclidean length of x is defined by
Wl = 01 = (bl + - 4 b)Y,
Denote a ball in R" with center xy and radius r by

B"(xg,7) = {x e R" : |x — xo| < 1}.
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In particular, B" denotes the unit ball B"(0, 1). Set D = B?, the open unit disk in the complex plane C.
Let Q be a proper subdomain of R". A function f € C?*(Q) is called hyperbolic harmonic (briefly, h-
harmonic, in the following) function in  if it satisfies the hyperbolic Laplace’s equation

Ayt = (1 = x)?Au + 2(n = 2)(1 = [x*)(Vu,x) = 0,

where A denotes the ordinary Laplacian operator and V denotes the gradient. Recall that hyperbolic harmonic
functions are solutions of the Laplace-Beltrami equation with respect to the Poincaré metric

n
ds* = (1 - [P ) dx?
k=1

in the unit ball B”.

Obviously, when n = 2, all h-harmonic functions are harmonic functions. Werefer to[2, 3, 6,14, 18, 28, 29]
for more details of h-harmonic functions.

It turns out that if i) € C(dB"), then the Dirichlet problem

Auf=0 inB"
f=y on JB"

has an unique solution in C(En) and can be represented by

() = Pulglo) = fa P OO0, M

where do is the unique normalized surface measure on JB" and Pj(x, C) is the hyperbolic Poisson kernel
defined by
(1 . |X|2 )n—l
Py(x,0) = | —— (x € B", C € dB").
lx - CP?

Throughout this paper, we use C to denote the various positive constants, whose value may change
from one occurrence to the next.

A continuous increasing function w : [0,00) — [0, 00) with w(0) = 0 is called a majorant if w(t)/t is
non-increasing for ¢t > 0. Given a subset Q of R”, a function f : 3 — R™ (m > 1) is said to belong to the
Lipschitz space A, (Q) if there is a positive constant C such that

If(x) = f(y)| < Cw(lx — y|) forallx, y € Q. (2)

For 69 > 0, let

O
f@dtsc-w(é),owdo @3)
0
and
< w(t) }
o [ “PdrsCraw@), 0<0<d, )
o

where w is a majorant. A majorant w is said to be regular if it satisfies the conditions (3) and (4) (see
[12, 13, 26]).

Let Q be a proper subdomain of R”. We use dn(x) to denote the Euclidean distance from x to the
boundary dQ of Q. In particular, we always use d(x) to denote the Euclidean distance from x to the
boundary of B".
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A proper subdomain G of R” is said to be A,-extension if A,(G) = locA,(G), where locA,(G) denotes
the set of all functions f : G — R" (m > 1) satisfying (2) with a fixed positive constant C, whenever x € G
and y € G such that [x — y| < %dc (x). Obviously, B" is a A,-extension domain.

In [22], the author proved that G is a A,-extension domain if and only if each pair of points x, y € G can
be joined by a rectifiable curve y C G satisfying

w(de(D) )
L dc(1) ds(t) < Co(lx = yl) (5)

with some fixed positive constant C = C(G, w), where ds stands for the arc length measure on y. Furthermore,
the author also proved that A,-extension domains exist only for majorants w satisfying (3). See [13, 15, 22]
for more details on A,-extension domains.

For p € (0, o0], the Hardy class HP(IB") consists of those functions f : B” — R such that f is measurable,
M, (r, f) exists for all 7 € (0,1) and [|f]|, < co, where

sup My(r, f), if p € (0,00), 1/p
— JO<r<1 — 14
=10 ) ifpme MO ( [ o do(C)) .
zeB"

A classical result of Hardy and Littlewood asserts that if p € (0,00], @ € (1,00) and f is an analytic
function in D, then

M,y(r, f') = O((%)a) asr— 1
if and only if

My(r, f) = O(( log 1 i r)Wl) asr— 1,

Indeed the above result of Hardy and Littlewood provides a close relationship between the integral means
of analytic functions and those of their derivatives [11, 19, 20]). In [16, Theorem 1(a)], Girela and Peldez
refined the above result for the case @ = 1 as follows.

Theorem 1.1. ([16, Theorem 1(a)]) Let p € (2, 00). For v € (0,1), if f is an analytic function in ID such that

M, (1, f') = o((ﬁ)) asr—1,
then forall B > 1/2,

M,(r, f) = O((log 1 ir)ﬂ) asr — 1. (6)

In [16, Pyes, Equation (26)], Girela and Peldez asked whether g in (6) can be substituted by 1/2. This
problem was affirmatively settled by Girela, Pavlovic and Peldez in [17] (see [17, Theorem 1.1]). We show
that Theorem 1.6 can be extended to h-harmonic functions in B” with § = 1/2. On the related topics, see
[5,7,8,10,27].

Theorem 1.2. Let p € [2, 00) and w be a majorant. For r € (0,1), if f is h-harmonic from B" into R such that
1
M,(r,Vf) < Co(—),
o1, V1) < Ca7—)

then

Myt < 1o DAL Df T ]
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Especially, if n = 2 and w(t) = t, then

1

My, = O (108 115

and the estimate of (7) is sharp.

) asr—1 (7)

Krantz [21] proved a Hardy-Littlewood-type theorem for harmonic functions in B” with respect to the
majorant w(t) = w,(t) = t* (0 < a < 1) as follows. For the extended discussion on this topic, see [4, 9].

Theorem 1.3. ([21, Theorem 15.8]) Let u be a harmonic function in B" and 0 < a < 1. Then u satisfies

w
[Vu(x)| < C e forany x € B

if and only if
[u(x) — u(y)l < Cwu(lx — yl) for any x, y € B".
We generalize Theorem 1.3 to the following form.

Theorem 1.4. Let w be a majorant satisfying (3), Q2 be a A,-extension domain and f be a h-harmonic function from
Qinto R. Then f € A,(Q) if and only if
w(da(v))

da(x)

Let w be a majorant and D be a bounded set of R”. We use AZ(D) to denote all the bounded continuous
functions f in D with the norm

Vix)<C for any x € Q.

W@—ﬂw?<m

”f“w,D = sup { w(lx - ]/I)

x,y€D x+y
Taking another majorant w’, we define the operator norm
1P Lf Moo, B
IPulloser = —” I .
Fent @, Iflmrzo flloas:

For each a € dB", we define
na,m(C) = w(lC - ﬂ|) for Ce JB".

We refer to [1] for the similar definitions of harmonic functions.
Proposition 1.5. Let w be a majorant. Then 1,,, € AB(B").
The following result is the classical Hardy-Littlewood Theorem.

Theorem 1.6. ([11, Theorem 5.1]) Let f be an analytic function in 1D and continuous in D. Then for some
O<ac<l,
If(e’el) - f(e’ez)l < Cwo(|601 — O2) for any 0 < 61, 0, < 21

wa(d(2))

d(z)

The following result is a Hardy-Littlewood-type theorem for hyperbolic functions. For the extensive
discussions on this topics, see [1, 13, 23-25].

if and only if

If'@l<C for any z € D.

Theorem 1.7. Let w be a majorant. Then for each a € dB" and any x € B", there is a constant C > 1 such that
Ph[na,w](x) < Ca)(|x - {Ill), l‘ftlTld Onl]/ if”Ph”m—)m < 0.

We will prove Theorems 1.2, 1.4 and 1.7 in section 2.
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2. Proofs of the main results

Lemma 2.1. ([28, Lemma 3.2]) If f € C*(IB"), then
@ § . f0Od0(Q) = == [, Ay f)de(x) and
(b) L]Bn f(rC)dG(C) = f(o) + 11;3]'1’{(0 g(|X|, I”)Ahf(x)d"[(x), where

1 2112
gl 7) = f =

dt = G:LXTZ)" and dVy denotes the normalized Lebesgue volume measure on B".

Proof of Theorem 1.2

Let f be h-harmonic in B". By elementary calculations, we see that

M) = pp = DA = B2V P (8)

For r € [0, 1), the Holder’s inequality yields

f,; IFGOPAVAGOR dot©) < M6 V- M0 ) o)

By (8), (9) and Lemma 2.1, we obtain

My(r,f) = IfO)F + fB o )g(lxl,r)Ah(lf(X)I”)dT(X)

LfFOF +p(p-1) [FP2IV )Pyl r)(1 = ) d(x)

B"(0,r)

= If(O)F +np(p - 1) f % . [f(OP2IV f(pO)Pda(C)dp

FOF +np(p-1) f %Mﬁ(n VAME(p, f)dp. (10)

IA

By computations, we obtain
(1 Z)n 2

f gh— a1

npn — f(l 2)71 zdS

1+r)nzfu s)"2ds

1+r)21-p"!
nmn-1) pr!

g(p, 1)

IA

IA

(11)
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Applying (10) and (11), we get

IA

FOP + np(p - 1) f i 9‘2‘;;2 M2(p, V f)dp

1)1 n-2
o+ PEJEET [ oo, v

rp(p — DA +1"2
+ p— fo (1

M, f)

IA

= IfO)F

_ n— 1
o) + PO DA+ C f (1—rt)w2(—1 )dt
0 1-

n-—1

_ n—2m2 ol
= oy PRZDEENTE f [a)(%ﬂ -] o2

n

. rp(p — 1)(1 + r)” 2C2w(1) f

- rt)MZ(tr, Vf)dt

IN

)dt

1-—rt

IA

IfO)F

/

—rt

which gives

n-22
Mp<r,f>s||f<0>|2 = DOy e) f ! tdt] .

In particular, if n = 2 and w(t) = ¢, then the estimate of (7) is sharp. The proof of the sharpness part follows
from [16, Theorem 1(b)]. The proof of this theorem is complete. [J

Lemma 2.2. Let w be a majorant. Then
(1) w is subadditive, that is, if t,s > 0, then w(s + t) < w(s) + w(t);
(2)fort>0,if A 2 1, then w(At) < Aw(t).

Proof. We first prove (1). Since w(t)/t is nonincreasing for t > 0, we see that for s, > 0,

W) +wlt)—w(s+t) = 5@_”@_(5_”)%
_ [w(s)  w(s+i) tw(t) w(s + 1)
) S(T_ﬁ% (T‘ﬁ)
> 0.

(2) easily follows from the monotonicity of w(t)/t for t > 0. The proof of this lemma is complete. [J

Proof of Theorem 1.4

We first prove the sufficiency. Since Q is a A, -extension domain, we see that for any x, y € Q, by using
(5), there is a rectifiable curve y C Q) joining x to y such that

IA

@) - FW)l f IV FQlds(0)
V4

()
(du(C))
< ny o ©©

Caw(lx = yl).

IA

Now we come to prove the necessity. Let x = (x1,--- ,x,) € Q and r = do(x)/2. Then by Lemma 2.2, for

ally = (y1,--- ,yn) € B'(x,7),
If(x) = f(y)l < Ca(lx — yl) < 2Cw(da(x)).
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For all y € B*(x,r), using (1), we get

0= [ P 0fC 0o,

where
Py, 0 (r2_'y_"'2)n_l dC= (e ) e OB
7 =\ =5 an = 7" sbn .
e s :
By elementary calculations, for each k € {1,2,--- ,n}, we have
IPu(y, O) w2 | (Yx = x)ly — x = 1T + (% = |y — XP)(yi — 1 — 1)
I - 2 - )Py, 0)" | . |
Yk ly —x—r(|

Then for all y € B"(x, r/2),

‘(91’14(%
8yk
n-2
(P =1y = xP)" [y — xlly = x = TP + (2 = ly = xP)lye = G —
< 2(n-1) =% = 1P
2t 93 373
< 2D (? * 7)

21(n — 1) 21
4 2n
(3)
220D . 21(n - 1)
r
which implies that

IA

V()

[Z fyzk(y)l
k=1

Z(‘ f aiph(y, O(f(rC +x) = f(x)da(C)

2}%

< f —my, O(F(C+3) = F)o(O)

k=1

IN

Y f ‘—Ph(y,C)‘|frC+x — f()|da(C)

IA

vz [ w0l lfoc+ 0 - foldoco
JB"

220D 21p(n — 1)
- f& N |f(C+x) = f(0)|do(0)

220D . 21p9(n — 1)Ceo(r)
T

IA

IA

w(do(x))
da(x)
The proof of this theorem is complete. [J

IA

221 21n(n - 1)C
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Proof of Proposition 1.5

Let (3, (p € JB". Without loss of generality, we may assume |1 — 4| < |(; — a|. Then by Lemma 2.2, we
have

|77a,a) (CZ) - 77u,m(C1)|

(|G —al) — w(|C1 —al)

w(|C2 —al = |C; —al + |G —al) — w(|C; — al)
(|G —al = |Gy —al) + w(|C1 — al) — w(ICy —al)
w(|C2 — 1),

IA A

which gives
|na,w(c2) - na,a)(Cl)' <
w(lC-Gl) T

Hence ||N4,0llw,opn <1 < co. On the other hand, for each a € JB",

Na,0(C) = w(C —al) < w(2) < oo for C € IB".

Then 7,,, is bounded and 1,,, € AZ(B"). The proof of this Proposition is complete. [J

Proof of Theorem 1.7

B
@

We first prove the necessity. Let f € A
positive constant C such that

(dB"). We only need to prove that for any x, y € B", there is a

PLLf1() = Pulf1(0)] < Cllfllwomr (= yl)-
Without loss of generality, we assume that
0 <d(y) < d(x). (12)

Let xg, yo € dB" such that d(x) = |x — xo| and d(y) = |y — yol, respectively. For C € dB", let F(C) = f(C) — f(xo).
We divide the proof into two cases.
Case 1. |x — y| < d(x)/2. For z € B"(x, d(x)/2), using Lemma 2.2, we see that

d d
o= wol <l =21+ bo— ol < T2 4 g = 222,

which yields that

IPhlF1@) < lfllwom [Pal1x,0](2)]
< Cifllwoprw(lx = yl)

C||f||w,aw(3d(x))

IA

2
< %n Fllo e 0(d(2).

Using arguments similar to those in the necessity’s proof of Theorem 1.4, for z € B"(x, d(x)/2), there is a
positive constant C such that

IVPL[f1(z)] = [VPL[F](2)| < C”f”w,a]B"%,
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which gives that

IN

IPuLF1) - ol A1) f[ VPG
XYy

CHf”w,&]B"%M -yl

Cllflleo,omr c(lx = y),

where [x, y] denotes the segment from x to y.

Case 2. |x — y| > d(x)/2. We use the similar approach as in the proof of [1, Theorem 1.1] to prove this case.
By (12), we know that |[x — y| > d(x)/2 > d(y)/2. By elementary calculations, we see that there is positive
constant C such that

IN

IA

|Ph[f](x) - f(xo)| = [Pu[FI®)| < Cllfllw,om [Pr[1x,0] () < ClIf |lo,0m: 0(d(x))
< Cllfllo,osr@(lx = yl). (13)
Similarly,
IPuLF1(y) = £(o)| < Cllfllwomrw(lx — y)). (14)

By using |xo — yol < |x — yl +d(x) + d(y) < 5lx — y| and Lemma 2.2, we know that there is positive constant
C such that

|£(x0) = F(0)| < Cllflhm (1o = yol) < 5CIlFllamr(x = yi)- (15)
By (13), (14) and (15), we conclude that

Pl - Pulfl)] < [Pulf1) = fxo) = (PulfI) = F(wo)) + F(xo) = f(yo)]
< PUf1@) = f@o)| + [Palf1(y) = F(wo)| + | f(x0) = f(yo)]
< 7CH fll s (x = yl).

Now we come to prove the sufficiency. By Proposition 1.5, we have
”Ph[na,w]”w',]B" < ”Ph”w—uu”na,w”w,z?]B" < 0,

which implies that, for x, y € B", there is a positive constant C such that

|Pa16,01(0) = Pulnae](v)| < Callx = y).

Let x € dB" such that d(x) = |xo — x|. By letting y tends to x yields that

|Pi1a,01(x) = Na(x0)| < Calxo — ),

which gives
Pp[10,0](%) < 1,0 (x0) + Ca(lxo — x]) < w(|xo — al) + Cao(|x — al). (16)

Applying (16) and the inequality |xo — a| < |xp — x| + |x — a| < 2|x — 4, we conclude that

Pi[1a,0](x) < Ca(lx = al) + w(lxo - al) < (C + 2)w(|x - a).

The proof of this theorem is complete. [J



Sh. Chen, Z. Su / Filomat 29:2 (2015), 361-370 370

References

(1]
(2]

3

(4]

(5]

(6]

[7]

(8]

191
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

H. Aikawa, Modulus of continuity of the Dirichlet solutions, Bulletin London Mathematical Society 42 (2010), 857-867.

L. V. Ahlfors, M6bius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of
Minnesota, School of Mathematics, Minneapolis, Minn., 1981.

S. Burgeth, A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions, Manuscripta Mathematica
77 (1992), 283-291.

Sh. Chen, M. Mateljevi¢, S. Ponnusamy, X. Wang, Lipschitz type spaces and Landau-Bloch type theorems for harmonic functions
and Poisson equations, arXiv:1407.7179 [math.CV], 2014.

SH. Chen, S. Ponnusamy and X. Wang, Integral means and coefficient estimates on planar harmonic mappings, Annales
Academiee Scientiarum Fennicee Mathematica 37 (2012), 69-79.

SH. Chen, S. Ponnusamy and X. Wang, Weighted Lipschitz continuity, Schwarz-Pick’s lemma and Landau-Bloch’s theorem for
hyperbolic-harmonic mappings in C", Mathematical Modelling and Analysis 18 (2013), 66-79.

SH. Chen, A. Rasila and X. Wang, Radial growth, Lipschitz and Dirichlet spaces on solutions to the non-homogenous Yukawa
equation, Israel Journal of Mathematics 204 (2014), 261-282.

Sh. Chen, S. Ponnusamy and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, Mathematische
Zeitschrift 279 (2015), 163-183.

SH. Chen, S. Ponnusamy and A. Rasila, Lengths, areas and Lipschitz-type spaces of planar harmonic mappings, Nonlinear
Analysis: Theory, Methods Applications 115 (2015), 62-70.

Sh. Chen and S. Ponnusamy, Lipschitz-type spaces and Hardy spaces on some classes of complex-valued functions, Integral
Equations and Operator Theory 77 (2013), 261-278.

P. Duren, Theory of H? spaces, 2nd ed., Dover, Mineola, N. Y., 2000.

K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Mathematica 178 (1997), 143-167.
K. M. Dyakonov, Holomorphic functions and quasiconformal mappings with smooth moduli, Advances in Mathematics 187
(2004), 146-172.

S. Eriksson and H. Orelma, A mean-value theorem for some eigenfunctions of the Laplace-Beltrami operator on the upper-half
space, Annales Academize Scientiarum Fennicee Mathematica 36 (2011), 101-110.

E. W. Gehring and O. Martio, Lipschitz-classes and quasiconformal mappings, Annales Academize Scientiarum Fennicee Mathe-
matica 10 (1985), 203-219.

D. Girela and J. A. Peldez, Integral means of analytic functions, Annales Academizee Scientiarum Fennicae Mathematica 29 (2004),
459-469.

D. Girela, M. Pavlovi¢ and J. A. Peldez, Spaces of analytic functions of Hardy-Bloch type, Journal D Analyse Mathematique 100
(2006), 53-81.

S. Grellier and P. Jaming, Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Mathematische
Nachrichten 268 (2004), 50-73.

G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, Journal fiir die reine und angewandte Mathematik 167
(1931), 405-423.

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Mathematische Zeitschrift 34 (1932), 403-439.

S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Mathematicae 3 (1983), 193-260.
V. Lappalainen, Lipj-extension domains, Annales Academiee Scientiarum Fennicee Mathematica Dissertationes 56, 1985.

M. Mateljevi¢, Distortion of quasiregular mappings and equivalent norms on Lipschitz-type spaces, Abstract and Applied
Analysis Volume 2014 (2014), Article ID 895074, 20 pages, Link http://dx.doi.org/10.1155/2014/895074.

M. Mateljevi¢, M. Arsenovi¢ and V. Manojlovi¢, Lipschitz-type spaces and Quasiregular harmonic mappings in the space, Annales
Academize Scientiarum Fennicee Mathematica 35 (2010), 379-387.

M. Mateljevi¢ and M. Vuorinen, On harmonic quasiconformal quasi-isometries, Journal of Inequalities and Applications Volume
2010, Article ID 178732, 19 pages doi:10.1155/2010/1787.

M. Pavlovi¢, On Dyakonov’s paper Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Mathematica 183
(1999), 141-143.

S. Stevi¢, Area type inequalities and integral means of harmonic functions on the unit ball, Journal of the Mathematical Society
of Japan 59 (2007), 583-601.

M. Stoll, Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Variables and Elliptic Equations
57 (2012), 63-89.

L. F. Tam and T. Y. H. Wan, On quasiconformal harmonic maps, Pacific Journal of Mathematics 53 (1998), 464—471.



