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ABSTRACT

The determination of the birth radius of the Sun is important to understand the evolution and

consequent disruption of the Sun’s birth cluster in the Galaxy. Motivated by this fact, we

study the motion of the Sun in the Milky Way during the last 4.6 Gyr in order to find its birth

radius. We carried out orbit integrations backward in time using an analytical model of the

Galaxy which includes the contribution of spiral arms and a central bar. We took into account

the uncertainty in the parameters of the Milky Way potential as well as the uncertainty in

the present-day position and velocity of the Sun. We find that in general, the Sun has not

migrated from its birth place to its current position in the Galaxy (R⊙). However, significant

radial migration of the Sun is possible (1) when the 2: 1 outer Lindblad resonance of the bar

is separated from the corotation resonance of spiral arms by a distance ∼1 kpc, and (2) when

these two resonances are at the same Galactocentric position and further than the solar radius.

In both cases, the migration of the Sun is from outer regions of the Galactic disc to R⊙, placing

the Sun’s birth radius at around 11 kpc. We find that in general, it is unlikely that the Sun has

migrated significantly from the inner regions of the Galactic disc to R⊙.

Key words: Sun: general – Galaxy: kinematics and dynamics – open clusters and associations:

general – solar neighbourhood.

1 IN T RO D U C T I O N

The study of the history of the Sun’s motion within the Milky Way

gravitational field is of great interest to the understanding of the

origins and evolution of the Solar system (Adams 2010) and the

study of past climate change and extinction of species on the earth

(Feng & Bailer-Jones 2013). The determination of the birth radius of

the Sun is of particular interest in the context of radial migration and

in the quest for the siblings of the Sun (Portegies Zwart 2009; Brown,

Portegies Zwart & Bean 2010). The work in this paper is motivated

by the possibility in the near future of combining large amounts of

phase-space data collected by the Gaia mission (Lindegren et al.

2008) with data on the chemical compositions of stars (such as

collected by the Gaia-ESO survey; Gilmore et al. 2012) in order to

search for the remnants of the Sun’s birth cluster. Our approach is

to guide the search for the Sun’s siblings by understanding in detail

the process of cluster disruption in the Galactic potential, using

state of the art simulations. One of the initial conditions of such

simulations is the birth location, in practice the birth radius, of the

Sun’s parent cluster. In this paper, we present a parameter study of

the Sun’s past orbit in a set of fully analytical Galactic potentials

and we determine the most likely birth radius of the Sun and by
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how much the Sun might have migrated radially within the Milky

Way over its lifetime.

The displacement of stars from their birth radii is a process called

radial migration. This can be produced by different processes: in-

teraction with transient spiral structure (Sellwood & Binney 2002;

Minchev & Quillen 2006; Roškar et al. 2008), overlap of the dy-

namical resonances corresponding to the bar and spiral structure

(Minchev & Famaey 2010; Minchev et al. 2011), interference be-

tween spiral density waves that produce short-lived density peaks

(Comparetta & Quillen 2012), and interaction of the Milky Way

disc with in-falling satellites (Quillen et al. 2009; Bird, Kazantzidis

& Weinberg 2012).

Since radial migration is a natural process in the evolution of

Galactic discs, it is very likely that the Sun has migrated from

its formation place to its current position in the Galaxy. Wielen

(1996) argued that the Sun was born at a Galactocentric distance

of 6.6 ± 0.9 kpc; roughly 2 kpc nearer to the Galactic Centre. He

based his conclusions on the observation that the Sun is more metal

rich by 0.2 dex with respect to most stars of the same age and

Galactocentric position (Holmberg, Nordström & Andersen 2009)

and the presence of a radial metallicity gradient in the Milky Way.

Other studies also support the idea that the Sun has migrated from

its birth place. Based on chemo-dynamical simulations of Galactic

discs, Minchev, Chiappini & Martig (2013) found that the most

likely region in which the Sun was born is between 4.4 and 7.7 kpc

from the Galactic Centre.

However, if the metallicity of the Sun is not unusual with respect

to the surrounding stars of the same age, it would no longer be valid
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to assume that the Sun migrated from the inner parts of our Galaxy.

By improving the accuracy in the determination of the effective

temperature of the stars in the data of the Geneva–Copenhagen Sur-

vey, Casagrande et al. (2011) found that those stars are on average

100 K hotter and, hence, 0.1 dex more metal rich. This result shifts

the peak of the metallicity distribution function to around the solar

value, thus casting doubt on the observation that the Sun is metal

rich with respect to its surroundings. Further studies also support

the idea that the Sun is not an unusual star (Gustafsson 1998, 2008;

Gustafsson et al. 2010).

The idea that the Sun might not have migrated considerably

has been explored by several authors. By solving the equations of

motion of the Sun under the influence of a disc, a dark matter halo,

spiral arms and the Galactic bar described by a multipolar term,

Klačka, Nagy & Jurči (2012) found that the radial distance of the

Sun varied between 7.6 and 8.1 kpc. They find migration only when

the Sun corotates with the spiral arms and when these structures

represent very strong perturbations. On the other hand, by using the

method suggested by Wielen (1996), Mishurov (2006) found that

the Sun might have been born at approximately 7.4 kpc from the

Galactic Centre.

Has the Sun migrated considerably? And if so, what are the con-

ditions that allow such radial migration? One way of solving these

questions is by computing the motion of the Sun in the Galaxy back-

wards in time. Portegies Zwart (2009) used this technique to find

that the Sun was born at a distance of r = 9.4 kpc with respect to the

Galactic Centre. He used an axisymmetric potential for modelling

the Milky Way, which is not realistic and furthermore, he did not

take into account the uncertainty in the current position and velocity

of the Sun (with respect to the Galactic reference frame).

The aim of this paper is to address the question of the Sun’s birth

radius by carrying out orbit integrations backward in time, using a

more realistic model for the Galaxy which includes the contribution

of spiral arms and a central bar. We account for the uncertainty in

the parameters of the Milky Way potential as well as the uncertainty

in the present-day position and velocity of the Sun. The resulting

parameter study is used to obtain a statistical estimation of the Sun’s

birth radius 4.6 Gyr ago. We use the AMUSE framework (Portegies

Zwart et al. 2013) to perform our computations.

This paper is organized as follows: in Section 2, we describe the

model that we use for the Milky Way. In Section 3, we provide a brief

overview of the AMUSE framework and the modules we developed to

compute potential past orbits of the Sun in the Galaxy. In Section 4,

we present the methodology to survey possible past orbits of the Sun

and thereby constrain its birth radius. In Section 5, we analyse the

orbit integration results and address the question of whether or not

the Sun has migrated in the Galaxy and the conditions that would

allow a considerable radial migration. In Section 6, we discuss

the results and in Section 7, we present our conclusions and final

remarks.

2 G A L AC T I C M O D E L

Since the past history of the structure of the Milky Way is unknown,

we simply assume that the values of the Galactic parameters have

been the same during the last 4.6 Gyr, i.e. during the lifetime of

the Sun (Bonanno, Schlattl & Paternò 2002). We model the Milky

Way as a fully analytical potential that contains an axisymmetric

component together with a rotating central bar and spiral arms.

We use the potentials and parameters of Allen & Santillán (1991)

to model the axisymmetric part of the Galaxy, which consist of

a central bulge, a disc and a dark matter halo. The values of the

Table 1. Parameters of the Milky Way model potential.

Axisymmetric component

Mass of the bulge (Mb) 1.41 × 1010 M⊙
Scalelength bulge (b1) 0.3873 kpc

disc mass (Md) 8.56 × 1010 M⊙
Scalelength disc 1 (a2) 5.31 kpc

Scalelength disc 2 (b2) 0.25 kpc

Halo mass (Mh) 1.07 × 1011 M⊙
Scalelength halo (a3) 12 kpc

Central bar

Pattern speed (�bar) 40–70 km s−1 kpc−1

Semimajor axis (a) 3.12 kpc

Axis ratio (b/a) 0.37

Mass (Mbar) 9.8 × 109–1.4 × 1010 M⊙
Orientation 20◦

Spiral arms

Pattern speed (�sp) 15–30 km s−1 kpc−1

Locus beginning (Rsp) 3.12 kpc

Number of spiral arms (m) 2, 4

Spiral amplitude (Asp) 650–1300 km2 s−2 kpc−1

Strength of the spiral arms (ǫ) 0.02– 0.06

Pitch angle (i) 12.◦8

Scalelength (R�) 2.5 kpc

Orientation 20◦

parameters of these Galactic components are shown in Table 1. For

the central bar and spiral arms, we use the models presented in

Romero-Gómez et al. (2011) and Antoja et al. (2011) as detailed

below.

2.1 Central bar

The central bar of the Milky Way is modelled as a Ferrers bar

(Ferrers 1877) which is described by a density distribution of the

form

ρbar =

{

ρ0

(

1 − n2
)k

n < 1

0 n ≥ 1
, (1)

where n2 = x2/a2 + y2/b2 determines the shape of the bar potential,

where a and b are the semimajor and semiminor axes of the bar,

respectively. Here, x and y are the axes of a frame that corrotates

with the bar. ρ0 represents the central density of the bar and the

parameter k measures the degree of concentration of the bar. Larger

values of k correspond to a more concentrated bar. The extreme

case of a constant density bar is obtained for k = 0 (Athanassoula,

Romero-Gómez & Masdemont 2009). Following Romero-Gómez

et al. (2011), we use k = 1. For these models, the mass of the bar is

given by

Mbar =
2(2k+3)πab2ρ0Ŵ(k + 1)Ŵ(k + 2)

Ŵ(2k + 4)
, (2)

where Ŵ is the Gamma function.

2.1.1 Galactic bar parameters

Number of bars The inner part of the Galaxy has been exten-

sively studied within the COBE/DIRBE (Weiland et al. 1994) and

Spitzer/GLIMPSE (Churchwell et al. 2009) projects, which demon-

strated that the centre of the Milky Way is a complex structure.
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While the COBE/DIRBE data showed that the surface brightness

distribution of the bulge resembles a flattened ellipse with a minor-

to-major axis ratio of ∼0.6, the Spitzer/GLIMPSE survey confirmed

the existence of a second bar (Benjamin et al. 2005) which was pre-

viously observed by Hammersley et al. (2000). Since the longitude

and length ratios of these bars are in strong disagreement with both

simulations and observations, Romero-Gómez et al. (2011) sug-

gested that there is only a single bar at the centre of the Milky

Way, which was confirmed by the analysis of Martinez-Valpuesta

& Gerhard (2011), who show that the observations of the central

region of the Milky Way can be explained by one bar. Hence we

take into account the contribution of only one bar in the potential

model of the Milky Way, using the parameters as obtained from the

COBE/DIRBE survey.

Pattern speed The value of the pattern speed of the bar is uncertain.

From theoretical and observational data Dehnen (2000) concluded

that �bar = 50 ± 3 km s−1 kpc−1; however, Bissantz & Gerhard

(2002) argued that a more suitable value for the pattern speed of

the bar is 60 ± 5 km s−1 kpc−1 . Taking into account these values,

we assume that the bar rotates as a rigid body with a pattern speed

between 40 and 70 km s−1 kpc−1.

Semimajor axis and axis ratio Based on the best-fitting model

by Freudenreich (1998) and on the uncertainty in the current solar

Galactocentric position,1 the semimajor axis of the COBE/DIRBE

bar is between 2.96 and 3.31 kpc. With these assumptions, the axis

ratio of the bar is between 0.36 and 0.38. In our simulations, we

maintain these two parameters constant with the values listed in

Table 1.

Mass and orientation of the bar Several studies suggest that the

mass of the COBE/DIRBE bar is in the range 0.98–2× 1010 M⊙
(Matsumoto et al. 1982; Dwek et al. 1995; Zhao 1996; Weiner &

Sellwood 1999). Given that the bar is formed from the bulge, we

assume the mass of the bar is in the range 9.8 × 109–1.4 × 1010

M⊙.

The orientation of the bar is defined as the angle between its

major axis and the line that joins the Galactic Centre with the

current position of the Sun. We fixed this angle at 20◦ (Pichardo,

Martos & Moreno 2004; Romero-Gómez et al. 2011; Pichardo et al.

2012), as illustrated in Fig. 1.

Effect of a growing bar From N-body simulations, it appears that

bars in galaxies are formed during the first 1.4 Gyr of their evolution

(Fux 2000; Polyachenko 2013). Thus, we assume that the bar was

already present in the Milky Way when the Sun was formed 4.6 Gyr

ago.

2.2 Spiral arms

The spiral arms in our Milky Way Models are represented as periodic

perturbations of the axisymmetric potential. Following Contopoulos

& Grosbol (1986), the potential of such perturbations in the plane

is given by

φsp = −AspRe−R/R� cos (m(φ) − g(R)) , (3)

where Asp is the amplitude of the spiral arms. R and φ are the

cylindrical coordinates of a star measured in a corotating frame

with the spiral arms. R� and m are the scalelength and the number

1 We conservatively assume the uncertainty in the distance from the Sun to

the Galactic Centre is 0.5 kpc.

Figure 1. Configuration of the Galactic potential at the beginning of the

backward integration in time. The spiral arms are assumed to start at the

ends of the major axis of the bar. The blue circle is the current position of the

Sun, r⊙ = ( − 8.5, 0) kpc. The angle the Sun–Galactic Centre line makes

with respect to the semimajor axis of the bar is 20◦. The inset shows the

distribution of 5000 Galactocentric distances that were selected from a 3D

Gaussian centred at the current phase-space coordinates of the Sun.

of spiral arms, respectively. The function g(R) defines the locus

shape of the spiral arms. We use the same prescription as Antoja

et al. (2011):

g(R) =
( m

N tan i

)

ln

(

1 +

(

R

Rsp

)N
)

. (4)

Here, N is a parameter which measures how sharply the change from

a bar to a spiral structure occurs in the inner regions of the Milky

Way. N → ∞ produces spiral arms that begin forming an angle

of ∼90o with respect to the line that joins the two starting points

of the locus (Antoja et al. 2011, as illustrated in Fig. 1 below).

To approximate this case, we use N = 100. Rsp is the separation

distance of the beginning of the spiral shape locus and tan i is the

tangent of the pitch angle.

2.2.1 Spiral arm parameters

Pattern speed Some studies point out that the spiral arms

of the Milky Way approximately rotate with a pattern speed

�sp = 25 ± 1 km s−1 kpc−1 (e.g. Dias & Lépine 2005), while

others argue that the value is �sp = 20 km s−1 kpc−1 (e.g. Martos

et al. 2004). Since the pattern speed of the spiral arms is uncertain,

we chose a range between 15 and 30 km s−1 kpc−1, as in Antoja

et al. (2011). In addition, we assume the spiral arms rotate as rigid

bodies.

Locus shape, starting point and orientation of the spiral arms

In the simulations, we adopt the spiral arm model obtained from

a fit to the Scutum and Perseus arms. This is the so-called locus 2

in the work of Antoja et al. (2011). We also assume that the spiral

structure starts at the edges of the bar. Hence Rsp = 3.12 kpc. With

this configuration, the angle between the line connecting the starting
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point of the spiral arms and the Galactic Centre–Sun line is 20◦ (see

Fig. 1).

Number of spiral arms Drimmel (2000) used K-band photometry

of the Galactic plane to conclude that the Milky Way contains two

spiral arms. On the other hand, Vallée (2002) reviewed a number of

studies about the spiral structure of the Galaxy – mostly based on

young stars, gas and dust – and he concluded that the best overall fit

is provided by a four-armed spiral pattern. Given this discrepancy,

we carry out simulations with m = 2 or 4 spiral arms.

Amplitude and strength of the spiral arms We used the amplitude

of the spiral arms from the Locus 2 model in Antoja et al. (2011),

which is between 650 and 1100 km2 s−2 kpc−1. The strength of

the spiral arms (as defined in section 5 of Antoja et al. 2011) cor-

responding to this range of amplitudes is between 0.029 and 0.05.

We however explored the motion of the Sun for amplitudes of up to

1300 km2 s−2 kpc−1 (ǫ ∼ 0.06) in a two-armed spiral structure.

Other parameters We also use the value of the locus 2 model of

Antoja et al. (2011) for the pitch angle (i) and scalelength (R�) of

the spiral perturbation. These values are listed in Table 1.

Transient spiral structure Several theoretical studies support the

idea that spiral arms in galaxies are transient structures (Sellwood

& Binney 2002; Sellwood 2011). Nevertheless, Fujii et al. (2011)

found that spiral arms in pure stellar discs can survive for more than

10 Gyr when a sufficiently large number of particles (∼107) is used

in the simulations. In this work, we use only static spiral structure.

Multiple spiral patterns Lépine et al. (2011a) have argued that

the corotation radius of the spiral arms is located at solar radius,

i.e. at R = 8.4 kpc; however, based on the orbits of the Hyades

and coma Berenices moving groups, Quillen & Minchev (2005)

concluded that the 4:1 inner Lindblad resonance of the spiral arms

is located at the solar position, placing the corotation resonance at

around 12 kpc. To reconcile the uncertainty in the location of the

coronation resonance of the spiral structure, Lépine et al. (2011b)

suggested the existence of multiple spiral arms with different pattern

speeds in the Galaxy. While the main grand-design spiral pattern

has its corotation at 8.4 kpc, an outer m = 2 pattern would have its

corotation resonance at about 12 kpc, with the 4:1 inner Lindblad

resonance at the position of the Sun. These multiple spiral patterns

have been observed in N-body simulations (see e.g. Quillen et al.

2011).

In this work, we also consider a superposition of spiral patterns

as suggested by Lépine et al. (2011b) to study the motion of the Sun

in the Galaxy.

3 TH E AMUSE F R A M E WO R K

AMUSE, the Astrophysical MUltipurpose Software Environment

(Portegies Zwart et al. 2013), is a framework implemented in PYTHON

in which different astrophysical simulation codes can be coupled to

evolve complex systems involving different physical processes. For

example, one can couple an N-body code with a stellar evolution

code to create an open cluster simulation in which both gravitational

interactions and the evolution of the stars are included. Currently,

AMUSE provides interfaces to codes for gravitational dynamics, stel-

lar evolution, hydrodynamics and radiative transfer.

AMUSE is used by writing PYTHON scripts to access all the numerical

codes and their capabilities. Every code incorporated in AMUSE can

be used through a standard interface which is defined depending

on the domain of the code. For instance, a gravitational dynamics

interface defines how a system of particles moves with time and

in this case, the user can add or remove particles and update their

properties. We created an interface in AMUSE for the Galactic model

described in Section 2. For details about how to use AMUSE, we

refer the reader to Portegies Zwart et al. (2013) and Pelupessy et al.

(2013). More information can also be found at http://amusecode.org.

The computation of the stellar motion due to an external gravi-

tational field can be done in AMUSE through the BRIDGE (Fujii et al.

2007) interface. This code uses a second-order Leapfrog method to

compute the velocity of the stars due to the gravitational field of the

Galaxy. All these computations are performed in an inertial frame.

Given that the potentials of the bar and spiral arms are defined to

be time independent in a reference system that corotates either with

the bar or with the spiral arms, we modified BRIDGE to compute

the position and velocity of the Sun in one of such non-inertial

frames. Moreover, since the time symmetry of the second-order

Leapfrog is no longer valid in a rotating frame, we need to use a

higher order scheme. These modifications resulted in a new interface

called ROTATING BRIDGE. This code can also be used to perform self-

consistent N-body simulations of stellar clusters that also respond to

the gravitational non-static force from their parent galaxies. In these

simulations, the internal cluster effects like self-gravity and stellar

evolution can be taken into account. In Appendix A, we derive the

equations of motion for the ROTATING BRIDGE for a single particle and

its generalization to a system of self-interacting particles. We also

show the accuracy of this code under different Galactic parameters.

4 BAC K - T R AC I N G T H E S U N ’ S O R B I T

Contrary to the epicyclic trajectories that stars follow when they

move under the action of an axisymmetric potential, the orbits of

stars become more complicated when the gravitational fluctuations

generated by the central bar and spiral arms are taken into account,

specially where chaos might be important. In chaotic regions, small

deviations in the initial position and/or velocity of stars produce

significant variations in their final location. Hence, in order to de-

termine the birth place of one star, it is necessary to use a precise

numerical code able to resolve the substantial and sudden changes in

acceleration that such star experiments. Additionally, it is necessary

to compute its orbit backwards in time by using a sampling of posi-

tions and velocities around the star’s current (uncertain) location in

phase space. With this last procedure, we get statistical information

about the region in the Galaxy where the star might have been born.

We follow this methodology to find the most probable birth radius

and velocity of the Sun to infer whether or not it has radially mi-

grated during its lifetime. To ensure numerical accuracy in the orbit

integration, we used a sixth-order Leapfrog in the ROTATING BRIDGE

with a time step of 0.5 Myr. This choice leads to a fractional energy

error of the order of 10−10 (see Section A1).

As a first step, we generate 5000 random positions and velocities

which are within the measurement uncertainties from the current

Galactocentric position and velocity of the Sun (r⊙, v⊙). This se-

lection was made from a 4D normal distribution centred at (r⊙, v⊙)

with standard deviations (σ ) corresponding to the measured errors

in these coordinates. We assume that the Sun is currently located at:

r⊙ = (−R⊙, 0) kpc; where the distance of the Sun to the Galactic

Centre is R⊙ ± σ R = 8.5 ± 0.5 kpc. The uncertainty in y⊙ is set to

zero as the Sun is by definition located on the x-axis of the Galactic

reference frame.

MNRAS 446, 823–841 (2015)
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Since we consider the motion of the Sun only on the Galactic

plane, the velocity of the Sun is v⊙ = (U⊙, V⊙), where

U⊙ ± σU = 11.1 ± 1.2 kms−1

V⊙ ± σV = (12.4 + VLSR) ± 2.1 kms−1 . (5)

The vector (11.1 ± 1.2, (12.4 ± 2.1) kms−1 is the peculiar motion

of the Sun (Schönrich, Binney & Dehnen 2010) and VLSR is the

velocity of the local standard of rest which depends on the Galac-

tic parameters that are listed in Table 1. We use the conventional

Galactocentric Cartesian coordinate system. This means that trans-

lated to a Sun-centred reference frame the x-axis points towards the

Galactic Centre, the y-axis in the direction of Galactic rotation and

the z-axis completes the right-handed coordinate system.

Recently Bovy et al. (2012) found an offset between the rotational

velocity of the Sun and VLSR of 26 ± 3 km s−1, which is larger than

the value measured by Schönrich et al. (2010). We also use this

value to trace back the Sun’s orbit.

In Fig. 1, we show the configuration of the Galactic potential

at the beginning of the backward integration in time. Since it is

unknown how spiral arms are oriented with respect to the bar at

the centre of the Galaxy, we assume that they start at the edges of

the bar. The blue circle in this figure represents the current location

of the Sun. The line from the Sun to the Galactic Centre makes an

angle of 20◦ with the semimajor axis of the bar. In the small plot

located at the left-hand top of Fig. 1, we show the distribution of

the 5000 positions in cylindrical radius R.

Each of the 5000 positions and velocities that were gener-

ated from the 4D normal distribution are used to construct a set

of present-day phase-space vectors with (cylindrical) coordinates:

(Rp, ϕp, vRp
, vϕp

)k; k = 1, . . . , 5000 (note that ϕp is fixed at π ). The

Sun is then located at each of these vectors and its orbit is computed

backwards in time until 4.6 Gyr have elapsed. Before starting the

integration, we reversed the velocity components of the Sun as well

as the direction of rotation of the bar and spiral arms.2

After integrating the orbit of the Sun backwards in time, we obtain

a sample of birth phase-space coordinates (Rb, ϕb, vRb
, vϕb

)k; k = 1,

. . . , 5000. The distributions of present-day and birth phase-space

coordinates then allow us to study the past motion of the Sun and

infer whether or not it has migrated during its lifetime.

To take the uncertainties on the Galactic model into account, we

also varied the bar and spiral arm parameters according to the values

listed in Table 1. For a subset of the Galactic model parameters, we

verified that 5000 birth phase-space coordinates are a representative

number for sampling the position and velocity of the Sun 4.6 Gyr

ago. By means of the Kolmogorov–Smirnoff test, we found that the

distribution of positions and velocities of the Sun after integrating

its orbit backwards in time, is the same when k = 5000, 10 000 or

20 000. Depending on the Galactic parameters, the p-value from the

test is between 0.2 and 0.98.

5 R ESULTS

For every choice of bar and spiral arm parameters, we have the

distribution of the present-day phase-space coordinates of the Sun

p(rp, vp) and of the Sun’s phase-space coordinates at birth p(rb, vb).

The amount of radial migration experienced by the Sun during its

2 The convention used in the ROTATING BRIDGE is right-handed; hence, for the

backward integration in time the pattern speed of the bar and spiral arms are

positive.

motion through the Galaxy can be obtained from the probability

distribution p(Rp − Rb) (referred to below as the ‘migration distri-

bution’) of the difference in the radial distance between the present

day and birth locations of the Sun. We use the median of the distri-

bution to decide whether or not the Sun has migrated a considerable

distance during its lifetime.

(i) Median p(Rp − Rb) > dm: the Sun migrated from inner regions

of the Galactic disc to R⊙ (migration from inside-out).

(ii) Median −dm ≤ p(Rp − Rb) ≤ dm: the Sun has not migrated

(iii) Median p(Rp − Rb) < −dm: the Sun migrated from outer

regions of the Galactic disc to R⊙ (migration from outside-in).

The parameter dm indicates when the value of Rp − Rb is consid-

ered to indicate a significant migration of the Sun within the Galaxy.

We derive the value of dm by considering the distribution p(Rp −

Rb) for the case of a purely axisymmetric Galaxy, in which case for

the Sun’s orbital parameters the migration should be limited. The

migration distribution for this case is shown in Fig. 2. From this

distribution, it can be seen that for the axisymmetric case indeed the

Sun migrates only little on average (∼0.6 kpc) and that the maxi-

mum migration distance is about 1.7 kpc (note that p(Rp − Rb) = 0

for Rp − Rb � −1.7 kpc). Based on this result, we use dm = 1.7 kpc

in the discussions of the results below. Considering changes in the

Sun’s radial distance larger than 1.7 kpc as significant migration is

consistent with the estimates of the Sun’s migration made by Wielen

(1996) and Minchev et al. (2013).

The value of the median of p(Rp − Rb) is not enough to character-

ize this probability distribution which is often multimodal (see top

panel of Fig. 2) and we thus introduce the following quantities:

Pi−o =
∫ ∞

dm
p(Rp − Rb) d(Rp − Rb)

Po−i =
∫ −dm

−∞
p(Rp − Rb) d(Rp − Rb) , (6)

where Pi-o is the probability that the Sun has experienced consid-

erable migration from the inner regions of the Galactic disc to its

present-day position, while Po-i is the probability that the Sun has

significantly migrated in the other direction. One of the aims of our

study is to find Milky Way potentials for which the above probabil-

ities are substantial, thus indicating that the Sun has likely migrated

a considerable distance over its lifetime.

We also characterize the width of the distribution p(Rp − Rb)

through the so-called Robust Scatter Estimate (RSE) (Lindegren

et al. 2012) which is defined as RSE = 0.390152 × (P90 − P10),

where P10 and P90 are the 10th and 90th percentiles of the distri-

bution, and the numerical constant is chosen to make the RSE equal

to the standard deviation for a Gaussian distribution.

The orbit integrations were carried out by using the peculiar

velocity of the Sun inferred by Schönrich et al. (2010), unless oth-

erwise stated.

5.1 Radial migration of the Sun as a function of bar

parameters

In order to study the radial migration of the Sun under the variation

of mass and pattern speed of the bar, we fixed the amplitude, pattern

speed and number of spiral arms such that they have little effect on

the Sun’s orbit. We chose the values: A = 650 km2 s−2 kpc−1,

�sp = 20 km s−1 kpc−1and m = 2. With these values of amplitude

and pattern speed, we produce spiral arms with a strength at the
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Figure 2. Results of the back-tracing of the Sun’s orbit in a purely ax-

isymmetric Milky Way potential. Top: the migration distribution p(Rp −

Rb). Middle: distribution of the birth radius of the Sun p(Rb). Bottom: the

distribution of birth locations of the Sun on the xy-plane. The dotted black

line in the top two panels represents the median of distributions. Note that

this is negative for p(Rp − Rb), which means that the migration of the Sun is

from outer regions of the Galaxy to R⊙. The distribution of birth positions

of the Sun seen on the xy-plane suggests that it is not possible to determine

the exact formation place of the Sun 4.6 Gyr ago.

lowest limit (ǫ = 0.029) and resonances located in extreme regions

of the Galactic disc. The 2:1 inner/outer Lindblad resonance of the

spiral arms (ILRsp, OLRsp) and the corotation resonance (CRsp), are

located at 1.4, 16 and 10.9 kpc, respectively.

In Fig. 3, we show the median, RSE, Pi-oand Po-i of the distribution

p(Rp − Rb) as a function of the mass and pattern speed of the bar.

The mass of the bar was varied in steps of 0.02 M⊙ and the pattern

speed in steps of 0.5 km s−1 kpc−1. The maximum and minimum

values of Mbar and �bar were set according to the ranges listed in

Table 1. Fig. 3 also shows the position of the 2:1 outer Lindblad

resonance of the bar (OLRbar).

Note that the median of the distribution p(Rp − Rb) is always

negative. This indicates that the migration of the Sun in this case on

average is from outer regions of the Galactic disc to R⊙. The median

of p(Rp − Rb) is also always lower than 1.08 kpc, independently of

the mass and pattern speed of the bar.

On the other hand from the bottom panel of Fig. 3, it is clear that

regardless of the mass and pattern speed of the bar, it is unlikely that

the Sun has migrated considerably from the inner or outer regions

of the Galactic disc to R⊙. The low probability of significant radial

migration can also be seen in the width of the migration distribution

which is always below 0.92 kpc (top-right panel Fig. 3).

We conclude that the presence of the central bar of the Milky Way

does not produce considerable radial migration of the Sun. This

result is not surprising, because although the OLRbar has played an

important role in shaping the stellar velocity distribution function

in the solar neighbourhood (Dehnen 2000; Minchev et al. 2010),

the gravitational force produced by the bar falls steeply with radius,

reaching about 1 per cent of its total value at R⊙ (Dehnen 2000).

Klačka et al. (2012) studied the motion of the Sun in an analytical

model of the Galaxy that considers a multipolar expansion of the

bar potential. By assuming the current location of the Sun as r⊙ =

(−8, 0, 0) kpc and v⊙ = (0, 220, 0) kms−1, they found that the

central bar of the Galaxy does not generate considerable radial

migration of the Sun if spiral arms are not considered, changing the

Galactocentric distance of the Sun only 1 per cent from its current

value R⊙. We find more than 1 per cent change in radius because

we take into account the potential of the spiral arms in the Galactic

model.

Fig. 4 shows the distributions p(Rp − Rb) and p(Rb) for a choice

of bar parameters. In this specific case the median of p(Rp − Rb) is

−0.83 kpc, which means that the birth radius of the Sun is around

9.3 kpc. From the distribution of Sun’s possible birth positions on

the xy-plane (bottom panel Fig. 4), it is clear that even for this

smooth and static potential only the birth radius of the Sun can

be constrained. The uncertainty in ϕ for the Sun’s birth location is

caused by the uncertainty in the present-day phase-space coordi-

nates of the Sun.

In this section, we have simulated the radial migration of the

Sun as a function of mass and pattern speed of the bar. We find no

significant migration. In the next section, we study the motion of

the Sun when the parameters of the spiral arms are varied.

5.2 Radial migration of the Sun as a function of spiral arm

parameters

In this section, we study the effects of the spiral structure on the

radial migration of the Sun and thus keep fixed the mass and pat-

tern speed of the bar. We chose the lowest limit for the bar mass

Mbar = 9.8 × 109 M⊙. The pattern speed of the bar was set to be

�bar = 40 km s−1 kpc−1. With this value, the resonances of the

bar are located at extreme regions in the Galactic disc, in particular

OLRbar which is at 10.2 kpc. In Section 5.2.1 and 5.2.2, we explore

the effects of the amplitude, CRsp location and number of spiral

arms on the radial migration of the Sun.
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Figure 3. Top: median and RSE of the migration distribution p(Rp − Rb) as a function of the mass and pattern speed of the bar. Negative values in the median

indicate migration from outer regions of the Galactic disc to R⊙, while positive values indicate migration from inner parts to R⊙. The position of the bar’s

outer Lindblad resonance, OLRbar, with respect to the Galactic Centre is also shown. For this set of simulations, the position of CRsp is fixed at 10.9 kpc.

Bottom: Pi-o and Po-i as a function of the mass and pattern speed of the bar.

5.2.1 Effect of two spiral arms

In Fig. 5, we show the characteristics of the migration distribution

as a function of the amplitude and pattern speed of two spiral arms.

We varied the amplitude in steps of 50 km2 s−2 kpc−1 and the pat-

tern speed in steps of 0.2 km s−1 kpc−1. Note that for most of the

spiral arm parameters the median of p(Rp − Rb) is negative, sug-

gesting that the migration of the Sun has been mainly from outer

regions of the Galactic disc to R⊙. If the CRsp is located between

9.0 and 10.6 kpc with respect to the Galactic Centre, the median

of p(Rp − Rb) remains between −1.08 and −1.44 kpc for most of

the values of Asp. The median of p(Rp − Rb) can reach values of

up to −1.80 kpc if Asp = 1100 km2 s−2 kpc−1 and �sp = 24.2 km

s−1 kpc−1 (CRsp at 9 kpc). For this latter case, there is a probability

between 40 and 50 per cent that the Sun has migrated consider-

ably from outer regions of the Galactic disc to its current position

(cf. Fig. 5, bottom-right panel).

We also studied the radial migration of the Sun for amplitudes

higher than 1100 km2 s−2 kpc−1, up to 1300 km2 s−2 kpc−1 We

found that the migration of the Sun on average is from outer regions

of the Galactic disc to R⊙. The Sun only migrates considerably

when 1200 ≤ Asp ≤ 1300 km2 s−2 kpc−1 and �sp = [21.4, 21.8] km

s−1 kpc−1 (CRsp ∼10.23 kpc). According to the former results and

given that the OLRbar is located at 10.2 kpc, the significant radial

migration of the Sun occurs when the distance between CRsp and

OLRbar is in the range [0, 1] kpc. An illustration of the migration

distribution p(Rp − Rb) for these higher amplitudes is shown in the

first and second rows of Fig. 6.

On the other hand, according to the bottom-left panel of Fig. 5,

we find that it is unlikely that the Sun has migrated from inner

regions of the Galactic disc to R⊙.

Other studies have also evaluated the effect of the spiral arms

of the Milky Way on the motion of the Sun. Klačka et al. (2012)

found that under the simultaneous effect of the central bar and

spiral arms, the Sun could experience considerable radial mi-

gration when it corotates with spiral arms that have a strength

ǫ = 0.06. In our simulations this strength corresponds to an ampli-

tude Asp = 1300 km2 s−2 kpc−1. According to our simulations,
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Figure 4. Top: distribution function p(Rp − Rb) for the Galaxy model with

weak spiral arms and a central bar. The vertical dotted black line is the median

of the distribution. Middle: radial distribution of the birth radius of the Sun

p(Rb) for the same Galactic parameters. The vertical green lines represent

the location of the resonances produced by the bar while the blue lines,

represent the location of the resonances due to the spiral arms. The dashed,

solid and dotted lines represent the 2:1 inner Lindblad (ILR), corotation

(CR) and 2:1 outer Lindblad (OLR) resonances, respectively. Hereafter, we

will use this same convention. Bottom: distribution of birth positions of the

Sun seen on the xy-plane. The OLRbar is shown as the circular dotted green

line. We also show the configuration of the spiral arm potential 4.6 Gyr ago.

the Sun experiences considerable radial migration when

Asp = 1300 km2 s−2 kpc−1 and �sp = [21.4, 21.8] km s−1 kpc−1 ;

therefore significant radial migration is found when �sp = 1.2�⊙.

By comparing Figs 5 and 3, we can see that a two-armed spiral

pattern tends to produce more radial migration on the Sun than the

central bar of the Milky Way. Sellwood & Binney (2002), and more

recently Minchev & Famaey (2010), found that the larger changes

in angular momentum of stars always occur near the corotation

resonance, the effect of the outer/inner Lindblad resonances being

smaller. Given that in our simulations the motion of the Sun is

influenced by the CRsp and by the OLRbar, it is expected that the

spiral arms produce a stronger effect on the Sun’s radial migration

than the central bar of the Galaxy.

At the top panel of Fig. 6, we show the distributions p(Rp − Rb)

and p(Rb) for an example of a two-arm spiral arm potential that

leads to considerable radial migration of the Sun. In this case the

distance between the CRsp and OLRbar is 0.03 kpc. For this specific

set of bar and spiral arm parameters, the Sun could have migrated

a distance of 1.8 kpc from the outer regions of the Galactic disc to

its current position. Its birth radius would then be around 11 kpc, as

also indicated by the distribution p(Rb). The projection of the Sun’s

birth locations in the xy-plane shows lots of structure, but again only

the birth radius can be constrained.

In the second row of Fig. 6, we show the distributions p(Rp −

Rb) and p(Rb) for a set of spiral arm parameters that produce high

dispersion in the migration distribution p(Rp − Rb) . In this case

the Sun does not migrate on average (Median p(Rp − Rb) ∼ 0).

Additionally, as can be observed in the plot on the right, there is a

fraction of possible birth radii at the inner regions of the Galactic

disc; however, the probability of significant migration from inside-

out in this case is only of 10 per cent.

5.2.2 Effect of four spiral arms

We also assess the radial migration of the Sun under the action

of a Galactic potential composed of four spiral arms. The results

are shown in Fig. 7. Note that when �sp is between 19 and 22 km

s−1 kpc−1 the radial migration experienced by the Sun is less than

1 kpc. Additionally, when CRsp is located between 7.3 and 8.4 kpc,

the median of p(Rp − Rb) is between −0.36 and 0.36 kpc (around

zero). However, the large width of the distribution leads to prob-

abilities of up to 30 per cent that the Sun has migrated from inner

regions of the Galactic disc to its current position. The probability

of significant migration in the other direction is up to 20 per cent.

The larger width of p(Rp − Rb) may be due to the effect of

higher order resonances (4:1 ILRsp/OLRsp) on the motion of the

Sun. The fact that the width of p(Rp − Rb) is large for specific

four-armed Galactic potentials, means that the migration of the

Sun is very sensitive to its birth phase-space coordinates. This ef-

fect can be also observed in the third row of Fig. 6, which shows

p(Rp − Rb) and p(Rb) when the Galactic potential has four spiral

arms. In addition, the projection of the possible birth locations on

the xy-plane shows virtually no structure.

By comparing Figs 5 and 7, we can see that unlike the case when

the Galactic potential has two spiral arms, the median of p(Rp −

Rb) when m = 4 is not much affected by small separation distances

between the CRsp and OLRbar.

5.2.3 Effects of multiple spiral patterns

In addition to evaluating the motion of the Sun in a pure two-

armed or four-armed spiral structure, we use a superposition of two
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Figure 5. Top: median and RSE of the distribution p(Rp − Rb) as a function of the amplitude and pattern speed of a two-armed spiral structure. The location

of the CRsp with respect to the Galactic Centre is also shown. For this set of simulations, the position of the outer Lindblad resonance of the bar, OLRbar is

fixed at 10.2 kpc and it is shown as the vertical dotted green line. Bottom: Pi-o and Po-ialso as a function of the amplitude and pattern speed of two spiral arms.

spiral arms (2 + 2) with different pattern speeds, such as discussed

by Lépine et al. (2011b). We use the same values as Mishurov

& Acharova (2011) to set the pitch angles of the multiple spiral

patterns in the Milky Way. The parameters of the main spiral struc-

ture used in the simulations are: Asp1
= 650, 1300 km2 s−2 kpc−1 ;

i1 = −7◦ and �sp1
= 26 km s−1 kpc−1 . This pattern speed places

the CRsp of the main spiral structure at solar radius. The orienta-

tion of the main spiral pattern at the beginning of the simulations

is 20◦.

The parameters used to model the secondary spiral structure are:

Asp2
= 0.8Asp1

; i2 = −14◦ and �sp2
= 15.8 km s−1 kpc−1 This

pattern speed places the CRsp of the secondary spiral structure at

13.6 kpc and the 4:1 ILRsp at 7.8 kpc. The orientation of the sec-

ondary spiral arms with respect to the main structure at the beginning

of the simulations is −200◦. In addition, we fixed the mass and pat-

tern speed of the bar to Mbar = 9.8 × 109 M⊙ and �bar = 40 km

s−1 kpc−1, respectively.

At the bottom panel of Fig. 6, we show the distributions

p(Rp − Rb) and P(Rb) when the Galactic potential has multiple

spiral patterns. In this simulation the amplitude of the main spiral

structure is Asp1
= 1300 km2 s−2 kpc−1 . We used the tangential

velocity of the Sun from Bovy et al. (2012). As can be seen, the

median of the distribution p(Rp − Rb) is smaller than 1 kpc, mean-

ing that the migration of the Sun on average is not significant. The

birth radius of the Sun is therefore at 8.5 kpc, as can also be seen

from the distribution P(Rb). The projection of birth locations of the

Sun on the xy-plane suggest that there is some fraction of possible

birth radii located at internal regions of the Galactic disc; how-

ever, we found that the probability of considerable migration from

outer or inner regions to R⊙ is between 8 and 13 per cent. These

probabilities are even smaller when Asp1
= 650 km2 s−2 kpc−1 .

We obtain the same results when assuming V⊙ from Schönrich

et al. (2010).

In Section 5.2.1, we have shown that the Sun might have experi-

enced considerable migration in the Galaxy if the CRsp is separated

from the OLRbar by a distance smaller than 1.1 kpc. In the next

section, we explore in more detail the effect of the bar-spiral arm

resonance overlap on the motion of the Sun.
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Figure 6. Left: migration distribution p(Rp − Rb) . Middle: distribution of possible Sun’s birth radii P(Rb). Right: projection on the xy-plane of the possible

birth radii of the Sun. A specific combination of bar and spiral arm parameters are used. In the first and second rows, the Galactic potential has two spiral

arms. In the third row, the Galactic potential has four spiral arms. In the bottom panel, we use a superposition of two spiral arms (2 + 2) with different pattern

speeds. The pattern speed and mass of the bar are fixed to �bar = 40 km s−1 kpc−1 and Mbar = 9.8 × 109 M⊙, respectively. The vertical dotted black line

in the panels on the left is the median of the distribution p(Rp − Rb). The same line styles as in Fig. 3 are used to indicate the resonances due to the bar and

spiral arms in the panel on the middle. In the same panel at the bottom, the dashed and solid magenta lines correspond to the ILRsp and CRsp of the secondary

spiral structure. The blue circle in the panels on the right in the first three rows represents the position of CRsp, which is located from top to bottom at 9.9,

7.6 and 8.4 kpc, respectively. The CRsp due to the multiple spiral patterns are not shown in the plot on the bottom. In the right-hand panel, we also show the

configuration of the spiral arm potential 4.6 Gyr ago. The dashed black line in the figure of the bottom represents the secondary spiral structure.
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Figure 7. Top: median and RSE of the distribution p(Rp − Rb) as a function of the amplitude and pattern speed of a four-armed spiral structure. The location

of the CRsp with respect to the Galactic Centre is also shown. For this set of simulations, the position of the OLRbar is fixed at 10.2 kpc and it is shown as the

vertical dotted green line. Bottom: Pi-o and Po-i also as a function of the amplitude and pattern speed of four spiral arms.

5.3 Radial migration of the Sun in the presence of the

bar-spiral arm resonance overlap

It has been demonstrated by Minchev & Famaey (2010) and

Minchev et al. (2011) that the dynamical effects of overlapping

resonances from the bar and spiral arms provide an efficient mech-

anism for radial migration in galaxies. Depending of the strength of

the perturbations, radial mixing in Galactic discs proceeds up to an

order of magnitude faster than in the case of transient spiral arms.

Given that the solar neighbourhood is near to the OLRbar and that

the Sun is located approximately at 1 kpc from CRsp (Acharova,

Mishurov & Rasulova 2011), it is of interest to study the radial

migration that the Sun might have experienced under the influence

of the spiral-bar resonance overlap.

It is well known that galactic discs rotate differentially. How-

ever, the gravitational non-axisymmetric perturbations such as the

central bar and spiral arms, rotate as rigid bodies. In consequence,

stars at different radii will experience different forcing due to these

non-axisymmetric structures (Minchev & Famaey 2010). There are

specific locations in the Galactic disc where stars are in resonance

with the perturbations. One is the corotation resonance, where stars

move with the same pattern speed of the perturber, and the Lindblad

resonances, where the frequency at which a star feels the force due

to the perturber coincides with its epicyclic frequency κ . Depend-

ing on the position of the star, inside or outside from the corotation

radius, it can feel the Inner or Outer Lindblad resonances.

In Fig. 8, we show the resonances of second multiplicity (for

m = 2) in a galactic disc. The green and red shaded regions cor-

respond to the accepted values of the pattern speed of the bar and

spiral arms of the Milky Way within the uncertainties. As can be

seen, �bar and �sp only allow certain combinations of resonance

overlaps. For the case of two spiral arms, only the overlap of the

OLRbar and CRsp is possible.3 Hereafter we refer to this resonance

overlap as the OLR/CR overlap.

To explore the motion of the Sun in the presence the overlapping

of resonances, we vary the pattern speed of the bar and spiral arms

3 For m = 2, we do not take into account second-order resonances, i.e. 4:1

(ILRbar, sp, OLRbar, sp).
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Figure 8. Resonances of second multiplicity (for m = 2) in galactic discs.

The inner and outer Lindblad resonances (ILR, OLR) are along the solid

and dashed black lines. They are given by: �(R) ± κ/2, where the minus

(plus) sign corresponds to the ILR (OLR). The corotation resonance (CR) is

along the dotted black line and it is given by: CR = �(R). The shaded green

region corresponds to the pattern speed of the bar within its uncertainty. The

shaded red region corresponds to the pattern speed of spiral arms within its

uncertainty. Note that �bar and �sp only allow the overlapping between the

Outer Lindblad resonance of the bar (OLRbar) with the corotation of spiral

arms (CRsp). We refer this resonance overlap as OLR/CR overlap. The grey

shaded region is the location of the OLR/CR overlap in the simulations. The

blue lines show how we set �bar and �sp to generate the OLR/CR overlap

at some desired position.

such that the OLR/CR overlap is located at different positions in the

disc, between 7 and 10.2 kpc from the Galactic Centre, as indicated

by the vertical grey shaded line in Fig. 8. In our simulations, we

varied the location of the OLR/CR overlap every 0.1 kpc. The

amplitude of the spiral arms and the mass of the bar were also

varied.

In Fig. 9, we show the median of p(Rp − Rb) as a function of the

position within the Galactic disc of the OLR/CR overlap. From left

to right, the amplitude of spiral arms increases; from top to bottom,

the mass of the bar is 9.8 × 109 and 1.3 × 1010 M⊙. Note that

regardless of the amplitude of the spiral arms or the mass of the

bar, when the OLR/CR overlap is located at distances smaller than

8.5 kpc, the migration of the Sun is not considerable. In fact, for

these cases, the probability that the Sun has migrated significantly

in either direction is smaller than 10 per cent (see Fig. 10). In con-

trast, when the OLR/CR overlap is located at distances larger than

8.5 kpc, the median of the distribution p(Rp − Rb) is shifted towards

negative values, while the probability for considerable migration

from the outer disc to R⊙ goes up reaching values up to 35 per cent.

The probability of significant migration from the inner disc to R⊙
remains low at values of at most a few per cent.

In Fig. 11, we show the migration distribution for an example

of a case where the OLR/CR overlap has a strong effect, being

located at 9.7 kpc from the Galactic Centre. For this particular case,

Mbar = 9.8 × 109 M⊙ and Asp = 1100 km2 s−2 kpc−1. The median

of p(Rp − Rb) is at −1.3 kpc and thus the radius where the Sun

was born is around 10 kpc. The latter can also be seen in in the

distribution p(Rb). Note how the distribution of birth positions in

the xy-plane is clustered between the second and third quadrants.

This is also seen for other cases, when the OLR/CR overlap is

located between 8.5 and 9.5 kpc. However, for different OLR/CR

distances the clustering is towards other quadrants in the Galactic

Figure 9. Median of the migration distribution p(Rp − Rb) as a function of the position within the Galactic disc of the OLR/CR overlap. The shaded region

corresponds to the RSE of the same distribution. From left to right, the amplitude of the spiral arms, Asp takes the values 650, 900 and 1100 km2 s−2 kpc−1.

From top to bottom, the mass of the bar, Mbar is 9.8 × 109 and 1.3 × 1010 M⊙.
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Figure 10. Probability of considerable radial migration of the Sun as a function of the location of the OLR/CR overlap. The blue points represent the probability

of significant migration of the Sun from inside-out Pi-o, while the red points represent the significant migration from outside-in Po-i . The mass of the bar and

amplitude of spiral arms are the same as in Fig. 9.

plane. Hence, taking the uncertainties in the OLR/CR location into

account again only the birth radius of the Sun can be constrained.

5.4 Radial migration of the Sun with higher values of its

tangential velocity

In this section, we explore the motion of the Sun backwards in time

when assuming the rotational velocity suggested by Bovy et al.

(2012). In Fig. 12, we show the median of the distribution p(Rp − Rb)

as a function of the distance between the OLRbar and CRsp . For this

set of simulations, we fixed the bar parameters to Mbar = 9.8 × 109

M⊙ and �bar = 40 km s−1 kpc−1, respectively. With this pattern

speed, the OLRbar is located at 10.2 kpc with respect to the Galactic

Centre. Additionally, the amplitude of the spiral arms is fixed to

Asp = 1050 km2 s−2 kpc−1 . We varied the pattern speed of the

spiral arms in steps of 1 km s−1 kpc−1 within the range listed in

Table 1. We used two and four spiral arms. For comparison, we

have also plotted the median of the distribution p(Rp − Rb) when

the tangential velocity of the Sun is taken from Schönrich et al.

(2010). As can be observed, the migration of the Sun on average

is approximately 1 kpc higher when V⊙ is taken from Bovy et al.

(2012). In the latter case, the median of the distribution p(Rp − Rb)

is negative for both m = 2 and 4 meaning that the Sun has migrated

from outer regions of the Galactic disc to R⊙. In addition, from the

simulations shown at the top panel of Fig. 12, we found that when

the OLRbar and CRsp are separated by ±0.2 kpc, the Sun migrates

on average a distance around 2 kpc, placing the Sun’s birth place

at around 10.5 kpc from the Galactic Centre. For this specific case,

we found a probability between 55 and 60 per cent that the Sun has

migrated considerably from outer regions of the Galactic disc to its

current position. On the other hand, we found unlikely that the Sun

has migrated from inner regions of the Galaxy to R⊙.

Contrary to the two-armed spiral structure, the migration of the

Sun on average is not significant when m = 4, even for small

distances between the OLRbar and CRsp (see bottom panel Fig. 12).

Note that the median of p(Rp − Rb) is never greater than −1.7 kpc.

However, given that the width of the distribution p(Rp − Rb) is

appreciable, specially when OLRbar − CRsp ≥ 2 kpc, the probability

of considerable migration from inner or outer regions to R⊙ can be

of up to 10 or 20 per cent, respectively.

6 D I SCUSSI ON

It is well known that the metallicity of the interstellar medium (ISM)

depends on time and Galactic radius. Since younger stars formed at

the same Galactocentric radius have higher metallicities, the metal-

licity of the ISM is expected to increase with time. Additionally, it

has been established that the metallicity of the ISM decreases with

increasing the Galactic radius due to more efficient star formation

and enrichment of the ISM in the central regions of galaxies (Daflon

& Cunha 2004; Recio-Blanco et al. 2014).

Past studies of the age–metallicity relation in the solar neighbour-

hood suggested that the Sun is more metal rich by typically 0.2 dex

than most stars at its age and Galactocentric orbit (Edvardsson et al.

1993; Holmberg et al. 2009). Hence, from the relationship between

metallicity and Galactocentric radius, it is natural to deduce that the

Sun might have migrated from the inner regions of the disc to its

current position in the Galaxy (Wielen 1996; Minchev et al. 2013).

However, if the observations are restricted to stars within a dis-

tance of 40 pc from the Sun it seems that its chemical composition

is not unusual after all. Fuhrmann (2004) found a sample of 118

thin-disc stars with a mean age of 4.5 Gyr to have a mean metal-

licity of −0.04 dex. In addition Valenti & Fischer (2005), found

a mean metallicity of −0.01 dex in a sample of F, G and K stars
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Figure 11. Example of the migration distribution for the case of the

OLR/CR overlap located at 9.7 kpc from the Galactic Centre. Here

Asp = 1100 km2 s−2 kpc−1 and Mbar = 9.8 × 109 M⊙. Top: the mi-

gration distribution p(Rp − Rb). The dotted black line indicates the median

of the distribution. Middle: distribution of the birth radius of the Sun p(Rb).

Bottom: distribution of birth positions of the Sun projected on the xy-plane.

The location of the OLR/CR overlap is indicated by the blue circle. The

configuration of the spiral arm potential 4.6 Gyr in the past is also shown.

that were observed in the context of planet search programmes.

More recently, Casagrande et al. (2011) found that the peak of the

metallicity distribution function of stars in the Geneva–Copenhagen

survey (Nordström et al. 2004), is around the solar value. As we

Figure 12. Median of the distribution p(Rp − Rb) as a function of the

distance between the OLRbar and CRsp . The green line is the resulting radial

migration of the Sun when we assume a tangential velocity of 12.4 ± 2.1

kms−1 (Schönrich et al. 2010) in the orbit integration backwards in time.

The blue line is the radial migration of the Sun when we assume a tangential

velocity of 26 ± 3 kms−1 (Bovy et al. 2012). The blue shaded region

corresponds to the RSE of p(Rp − Rb) for this latter case. We used: top –

two spiral arms and bottom – four spiral arms.

mentioned in the Introduction, if the Sun is indeed not more metal

rich than the stars of its same age and Galactocentric radius it is

probable that the Sun has not experienced considerable migration

over its lifetime.

Minchev & Famaey (2010) studied the effects of the bar-spiral

arm resonance overlap in the solar neighbourhood. They found that

a large fraction of stars that were located initially at inner and outer

regions of the Galactic disc, ended up at a distance of ∼8 kpc after

3 Gyr of evolution. This explains the observed lack of a metallicity

gradient with age in the solar neighbourhood (Haywood 2008);

however, the same simulations show that after 3 Gyr of evolution,

the peak of the initial radial distribution of stars that end up at

8 kpc is also around 8 kpc, meaning that most of the stars at solar

radius, do not migrate. For their simulations, Minchev & Famaey

(2010) modelled the central bar and spiral arms of the Galaxy as

non-transient perturbations.

In this study, we find that large radial migration of the Sun is only

feasible when the OLRbar is separated from CRsp by a distance less

than 1.1 kpc or when these two resonances overlap and are located

further than 8.5 kpc from the Galactic Centre. In these cases, we

find that the migration of the Sun is always from the outer regions

of the Galaxy to R⊙. When the CRsp is located between 7.3 and

8.4 kpc and the number of spiral arms is four, the Sun migrates on
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average little; however, given that the width of the distribution p(Rp

− Rb) can be up to 2.3 kpc, the radial migration of the Sun highly

depends on its birth phase-space coordinates. For this latter case,

the probability that the Sun has migrated considerably from inner

regions of the disc to R⊙ can be up to 30 per cent. Apart from the

very specific cases mentioned above, we found that in general the

Sun might have not experienced considerable radial migration from

its birth place to its current position in the Galaxy. In the simulations

we did not change the Galactic parameters (mass, scalelength) of

the axisymmetric components of the Milky Way. Since this is a

smooth potential, we do not expect great variations on the solar

motion due to the variation of these parameters.

The model that we used for the Milky Way has two restrictions:

it does not take into account transient spiral structure and it as-

sumes that the Galactic parameters have been fixed during the last

4.6 Gyr. Although there are several studies that suggest that the spi-

ral structure in the Galaxy is transient (Sellwood 2010, 2011), the

evolutionary history of the Milky Way is quite uncertain, thus the

Galactic model used is still valid. The study of the radial migration

of the Sun under the influence of transient spiral arms implies to

extend the space of Galactic parameters even more. Hence, simu-

lations taking into account transient spiral structure will be carried

out in a future work.

Recently, Minchev et al. (2013) made a more complex modelling

of the Milky Way which involves self-consistent N-body simula-

tions in a cosmological context together with a detailed chemical

evolution model. They explored the evolution of a Galaxy for a

time period of 11 Gyr, which is close to the age of the oldest disc

stars in the Milky Way. They found that as the bar grows and the

spiral structure start to form, the CRbar and OLRbar are shifted out-

wards of the disc producing changes in the angular momentum of

stars. These changes in angular momentum can be doubled in the

time interval from 4.4 to 11.2 Gyr. At the end of the simulation

they found that stars of all ages end up at the solar neighbour-

hood (7 ≤ r ≤ 9 kpc). Additionally, from the obtained metallicity

distribution they conclude that the majority of stars come from

inner regions of the Galactic disc (3 ≤ r ≤ 7 kpc), although a

sizeable fraction of stars originating from outside the solar neigh-

bourhood is also observed. By assuming an error of ±1 dex in the

metallicity, they found that the possible region where the Sun was

formed is between 4.4 and 7.7 kpc, with the highest probability to

be around 5.6 and 7 kpc. These results support the conclusions of

Wielen (1996).

According to Minchev et al. (2013), the Sun probably has mi-

grated a distance between 1.5 and 2.9 kpc from the inner regions

of the Galactic disc to R⊙, which is different from what we ob-

tained. The discrepancy in the conclusions is due to the fact that

the structure of the Milky Way and its evolutionary history is quite

uncertain. For instance, Minchev et al. (2013) argued that their re-

sults are strongly dependent on the migration efficiency in their

simulations and also in the adopted chemical evolution model. We

obtained a broad set of possible past Sun’s orbits due to the large

uncertainty in the bar and spiral arm parameters. Hence, a large-

scale determination of the phase-space of stars together with better

measurements of their chemical abundances are needed to constrain

the history of the Milky Way and hence, their current properties.

With the Gaia mission (Lindegren et al. 2008), we can expect to

obtain the parallaxes and proper motions of one billion of stars

very accurately. The HERMES (Freeman & Bland-Hawthorn 2002)

and APOGEE (Allende Prieto et al. 2008) surveys, will provide a

complete data base of chemical abundances and radial velocities for

stars across all Galactic populations (bulge, disc and halo).

With a more accurate determination of the Galactic parameters

(masses, scalelengths, pattern speeds), the motion of the Sun can be

better constrained.

7 SU M M A RY A N D F I NA L R E M A R K S

We studied the radial migration of the Sun within the Milky Way

by computing its past orbit in an analytical potential representing

the Galaxy. We took into account the uncertainties in the distance

of the Sun from the centre of the Galaxy and its peculiar velocity

components as well as the uncertainties in the bar and spiral arm

parameters.

At the start of the simulations, the phase-space coordinates of the

Sun are initialized to 5000 different positions and velocities which

were obtained from a normal distribution centred at (r⊙, v⊙), with

standard deviations reflecting the uncertain present-day values of

r⊙ and v⊙. After performing the backward integration in time,

we obtained a distribution of ‘birth’ phase-space coordinates. We

computed the migration distribution function, p(Rp − Rb), to study

the amount of radial migration experienced by the Sun during the

last 4.6 Gyr. We obtain the following results.

(i) For the majority of the simulations the median of the distri-

bution p(Rp − Rb) is negative. This indicates that the motion of the

Sun has been on average from outer regions of the Galactic disc to

R⊙.

(ii) The bar of the Milky Way does not produce considerable

radial migration of the Sun. In contrast, the variation of amplitude

and pattern speed of spiral arms produce migration on average of

distances up to −1.8 kpc, if the number of spiral arms is two. Hence,

the birth radius of the Sun would then be around 11 kpc. In the case

of a four-armed spiral potential, the Sun does not migrate on aver-

age; however, given that the width of the migration distribution p(Rp

− Rb) can be up to 2.3 kpc, there is a probability of approximately

30 per cent that the Sun has migrated considerably from inner re-

gions of the Galactic disc to R⊙. If the potential of the Galaxy has

multiple non-transient spiral patterns, the Sun does not migrate on

average.

(iii) Only very specific configurations of the Galactic potential

lead to considerable migration of the Sun. One case is when the

separation of the OLRbar and CRsp is less than or equal to 1 kpc.

Another case is when these two resonances overlap and are located

further than 8.5 kpc from the Galactic Centre. For these cases there is

a probability of up to 35 or 50 per cent that the Sun has experienced

considerable radial migration from outer regions of the Galactic

disc to R⊙.

(iv) When the CRsp is located between 7.3 and 8.4 kpc and the

Galactic potential has four spiral arms, the probability that the Sun

has migrated considerably from inner regions of the Galactic disc to

its current position can be up to 30 per cent. For other combinations

of bar and spiral arm parameters, Pi-o ∼ 0. Hence, we found that in

general it is unlikely that the Sun has migrated from inner regions

of the Galaxy to R⊙.

(v) Apart from the cases summarized above, we find that in gen-

eral the Sun might not have experienced appreciable migration from

its birth place to its current position in the Galaxy.

In this study, we consider the motion of the Sun in the plane.

Simulations taking into account the vertical structure of the non-

axisymmetric components of the Galactic potential will be carried

out in future works (e.g Faure, Siebert & Famaey 2014; Monari

et al. 2014 provide prescriptions for such potentials).
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The study of the motion of the Sun during the last 4.6 Gyr has

allowed us to determine its birth radius. This is the first step to

understand the evolution and consequent disruption of the Sun’s

birth cluster in the Galaxy. In this respect, state of the art simulations

are required to predict more accurately the current phase space of the

solar siblings. In these simulations, internal processes such as self-

gravity and stellar evolution have to be taken into account (Brown

et al. 2010). A detailed study of the evolution and disruption of the

Sun’s birth cluster by using realistic simulations will appear in a

forthcoming paper.

According to the above results, the current distribution on the

xy-plane of the solar siblings will be different depending on the

configuration of the Galactic potential. For the bar and spiral arm

parameters that produce a broad migration distribution p(Rp − Rb)

(cases where RSE ≥1.7 kpc), we expect a high dispersion of solar

siblings, spanning a large range of radii and azimuths on the disc.

For the Galactic parameters that do not generate a broad distribution

p(Rp − Rb) ( cases where RSE ≤1 kpc), we expect the Sun’s siblings

not to have a large radial dispersion. Therefore, depending on their

final distribution, it would be likely or unlikely to find solar siblings

in the near vicinity of the Sun.

Mishurov & Acharova (2011) concluded that it is unlikely to

find solar siblings within 100 pc from the Sun, since members of

an open cluster are scattered over a large part of the Galactic disc

when the gravitational field associated with the spiral arms is taken

into account. Consequently, a large-scale survey of phase space is

needed. Only the Gaia mission (Lindegren et al. 2008) will provide

data at the precision needed to probe for siblings which are far

away from the Sun (Brown et al. 2010). The realistic simulations

mentioned above will have to be exploited to develop methods

to look for solar siblings among the billions of stars in the Gaia

catalogue; however, together with the kinematics provided by the

simulations, a complete determination of chemical abundances of

stars has to be done to find the true solar siblings (Brown et al. 2010;

Ramı́rez et al. 2014).

The identification of the siblings of the Sun will enable to put

better constraints on the initial conditions of the Sun’s birth cluster,

instead of using only the current solar System properties (Adams

2010; Brown et al. 2010). With well-established initial conditions

for the parental cluster of the Sun, the formation, evolution and

current features of the Solar system could finally be disentangled.
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Athanassoula E., Romero-Gómez M., Masdemont J. J., 2009, MNRAS, 394,

67

Benjamin R. A. et al., 2005, ApJ, 630, L149

Bird J. C., Kazantzidis S., Weinberg D. H., 2012, MNRAS, 420, 913

Bissantz N., Gerhard O., 2002, MNRAS, 330, 591

Bonanno A., Schlattl H., Paternò L., 2002, A&A, 390, 1115
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APPEN D IX A : A NEW A PPROACH FOR

PERFOR M ING REALISTIC SIMULATIONS :

ROTATING BRIDGE

Spiral arms or bars rotate with some pattern speed, which means

that the potential associated with these Galactic components will

depend on time in an inertial frame. Hence, in order to compute the

equations of motion of a set of stars in these Galactic components,

it is convenient to choose a frame which corotates with the bar or

with the spiral arms so that the potential of these perturbations will

be time independent in the rotating frame.

Let us consider a star in a frame that corotates with the central

bar or with the spiral arms. The Hamiltonian of this particle will

be

H =
|| p||2

2m
+ UT(r) −

(

�p × r
)

· p −
1

2
m||�p × r||2 , (A1)

where r and p are the position and momentum vectors of the par-

ticle in the rotating frame, UT(r) = m(φaxi(r) + φp(r)) is the total

potential energy due to the Galactic potential which is composed of

an axisymmetric part φaxi(r) and a perturbation term φp(r) that can

be the bar or spiral arms (where m is the mass of the star). The last

two terms of the Hamiltonian correspond to a generalized potential

energy due to the rotating frame, where �p is the pattern speed of

the bar or the spiral arms.

The above Hamiltonian can be written as

H = HA + HB , (A2)

where

HA =
|| p||2

2m

HB = UT(r) − m
(

�p × r
)

· ṙ −
1

2
m||�p × r||2 .

Note that p = mṙ . A differential operator can be defined in terms

of the Poisson bracket:

DH = { ,H } =
∂H

∂ p

∂

∂r
−

∂H

∂r

∂

∂ p
,

so that the Hamilton’s equations of motion can be written as

ṙ =
(

DHA
+ DHB

)

r (3a)

ṗ =
(

DHA
+ DHB

)

p. (3b)

By solving equations (A3a) and (A3b), we can express the time

evolution of the position and momentum of a particle:

r(t + t) = e(DHA
+DHB )t r(t) (4a)

p(t + t) = e(DHA
+DHB )t p(t), (4b)

where e(DHA
+DHB )t is the time evolution operator that is defined

as

e(DHA
+DHB )t =

k
∏

i=1

eciHAtediHBt + O(tn+1), (A5)

where n is an integer which corresponds to the order of the in-

tegrator. (ci, di) (i = 1, 2, . . . , k) is a set of real numbers. The

simplest case is when the integrator has second order. This inte-

grator, called Leapfrog, has the following coefficients: n = 2, c1 =

0, d1 = 1
2
, c2 = 1, d2 = 1

2
. Those are the coefficients used in the in-

terface of BRIDGE for AMUSE. In Section A1, we will mention briefly

the coefficients used in AMUSE for high-order integrators. The oper-

ators in equation (A5) are applied to r and p in the order (c1, d1,

. . . , ck, dk).

The kick (K) operator or eHBt produces the following set of

equations:

ṙ = 0 (6a)

ṗ = F, (6b)

where F is the total force of the particle in the rotating frame,

which is given by

F = ma − m�p ×
(

�p × r
)

− 2m
(

�p × r
)

. (A7)

Here a = −∇(φaxi(r) + φp(r)). In case of having a central bar and

spiral arms, one rotating frame has to be chosen first to make the

integration of the equations of motion. We chose a frame that coro-

tates with the bar. Every time step t, the force of the axisymmetric

component plus bar is computed; since spiral arms have a different

pattern speed, the position of the star is calculated in another frame

that corotates with the spirals; there, the force due to this perturba-

tion is computed. Finally, the position goes back to the corotating

frame with the bar to calculate the total force.

Given that the momentum can also be written as p = mv, equa-

tions (A6a) and (A6b) can be written as

ẋ = ẏ = ż = 0 (8a)

v̇x = ax + �2
px + 2�vy (8b)
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v̇y = ay + �2
py − 2�vx (8c)

v̇z = az. (8d)

The solution to this system of equations is

vx(t + t) =

[

vx(t) −

(

ay + �2y

2�

)]

cos (2�t)

+

[

vy(t) +

(

ax + �2x

2�

)]

sin (2�t)

+
ay + �2y

2�
(9a)

vy(t + t) =

[

vx(t) −

(

ay + �2y

2�

)]

sin (2�t)

+

[

vy(t) +

(

ax + �2x

2�

)]

cos (2�t)

−
ax + �2x

2�
(9b)

vz(t + t) = vz(t) + azt. (9c)

On the other hand, the drift (D) operator or eHAt , produces this

set of equations:

ẋ = px (10a)

ẏ = py (10b)

ż = pz (10c)

ṗx = ṗy = ṗz = 0, (10d)

which give the solution:

x(t + t) = x(t) + vx(t + t)t (11a)

y(t + t) = y(t) + vy(t + t)t (11b)

z(t + t) = z(t) + vz(t + t)t. (11c)

In the more general case of having a star cluster with self-

gravitating particles, its Hamiltonian will be

H =

n
∑

i

|| pi ||
2

2mi

−

n
∑

i<j

Gmimj

||r ij ||
+

∑

i

mi(φaxi(r i) + φp(r i))

−
∑

i

(

�p × r i

)

· pi −
1

2

∑

i

mi ||�p × r i ||
2, (A12)

which can be separated as equation (A1) with the terms

HA =

n
∑

i

|| pi ||
2

2mi

−

n
∑

i<j

Gmimj

||r ij ||

HB =
∑

i

mi(φaxi(r i) + φp(r i)) −
∑

i

(

�p × r i

)

· pi

−
1

2

∑

i

mi ||�p × r i ||
2.

For this system, the kick operator gives the same set of velocities

as in equations (A9a)–(A9c); nevertheless, when the drift operator

is applied, additionally to the position, the velocity of the particles

has to be updated again by taking into account their gravitational

interaction, as is explained in section 2 of Fujii et al. (2007).

A1 High-order integrators

In AMUSE several high-order integrators have been implemented

from 4th until 10th order. In the case of fourth-order integrators,

they can have 4, 5 or 6 stages (named M4, M5 or M6); that is, the

number of times the force is computed when is applied equation

(A5). The coefficients used in those integrators are the ones found

by McLachlan (1995) and McLachlan, Reinout & Quispel (2002).

The sixth-order integrators implemented in AMUSE are of 11 and 13

stages (M11 and M13), with the coefficients found by Sofroniou

& Spaletta (2005). In the simulations performed here, we used the

ROTATING BRIDGE with a sixth-order integrator.

Figure A1. Fractional energy error as a function of the ROTATING BRIDGE time step when the Galactic potential is composed by – left: axisymmetric part + central

bar. Middle: axisymmetric part + two spiral arms. Right: axisymmetric part + four spiral arms. The fractional energy error was computed by using a star with

the following galactocentric initial position and velocity: r = (−8.5, 0, 0) kpc; v = (11.1, 12.24 + VLSR, 0) km s−1. VLSR is the velocity of the local standard

of rest.
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In order to assess the accuracy of the code, we computed the

energy error as a function of the ROTATING BRIDGE time step (dtb)

for a solar orbit under different bar and spiral arm parameters.

The results are shown in Fig. A1. Note that for a fixed dtb the

sixth-order Leapfrog can be six orders of magnitude more accurate

than the second order Leapfrog. We found that such accuracy is

independent from the bar and spiral arm parameters, as also can be

seen from Fig. A1.

We chose a dtb of 0.5 Myr for the simulations, which corresponds

to an energy error of the order of 10−10 when the Galactic potential

has only a central bar or spiral arms.
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