
Mon. Not. R. Astron. Soc. 336, 785–796 (2002)
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ABSTRACT
We show that spiral waves in galaxy discs churn the stars and gas in a manner that largely
preserves the overall angular momentum distribution and leads to little increase in random
motion. Changes in the angular momenta of individual stars are typically as large as ∼50 per
cent over the lifetime of the disc. The changes are concentrated around the corotation radius for
an individual spiral wave, but since transient waves with a wide range of pattern speeds develop
in rapid succession, the entire disc is affected. This behaviour has profound consequences for
the metallicity gradients with radius in both stars and gas, since the interstellar medium is
also stirred by the same mechanism. We find observational support for stirring, propose a
simple model for the distribution of stars over metallicity and age, and discuss other possible
consequences.

Key words: ISM: abundances – Galaxy: abundances – Galaxy: kinematics and dynamics –
galaxies: evolution – galaxies: ISM – galaxies: structure.

1 I N T RO D U C T I O N

The metallicity of the interstellar medium (ISM) increases through-
out the life of a galaxy as dying stars throw newly formed heavy
elements into the ISM. It is well established that the metallicity of
the ISM decreases outwards in the Milky Way (Wilson & Rood
1994) and other galaxies (Henry & Worthey 1999). Since stars have
the metallicity of the material from which they were formed, we
should expect: (i) older stars to be more metal-poor than younger
ones and (ii) for a given age, the metallicity of a star to be a decreas-
ing function of the radius at which it was born.

If there were no stellar migration, the stars at a given radius would
have metallicities that varied from zero up to the present-day value
in the ISM at that radius and there would be a perfect correlation
between the ages and metallicities of stars. Edvardsson et al. (1993)
do not find a tight correlation between ages and metallicities of stars
in the solar neighbourhood, but find instead that stars of a given age
have a broad spread in metallicity; e.g. stars of ages ∼5 Gyr have
−0.7 � [Fe/H] � 0.2. Only the lower bound of the metallicity
distribution decreases with age – there are no young, metal-poor
stars in the solar neighbourhood.

Because of a general increase of non-circular motion with age
(Wielen 1977; Lacey 1984; Edvardsson et al. 1993; Dehnen &
Binney 1998), older stars oscillate more in radius than do younger
ones, causing stars from an increasing spread of ‘home radii’ to
appear in a sample at any radius. Typical radial excursions for a
population of stars with rms radial velocity σu are � � √

2σu/κ ,

�E-mail: sellwood@physics.rutgers.edu

where is κ is the epicycle frequency. For old stars in the thin disc
near the Sun � ∼ 1.3 kpc, and migration over distances of this
order proves insufficient to explain the weakness of the correlation
between age and metallicity found by Edvardsson et al.

The spread in the age–metallicity relation therefore requires either
that the metallicity of the ISM was much less homogeneous in the
past than it is today, a distinctly unattractive possibility, or that stars
have migrated by more than their epicycle size from their radii of
birth, as proposed by Wielen, Fuchs & Dettbarn (1996, hereafter
WFD). Since the home radius is determined by the specific angular
momentum of the star, L, about the symmetry axis of the Galaxy,
the latter possibility requires L to be changed.

Changes in angular momentum can arise only from non-
axisymmetric forces, and two sources have been identified: molecu-
lar clouds (Spitzer & Schwarzschild 1953) and spiral arms (Barbanis
& Woltjer 1967), although the spiral-supporting response of a disc
to a massive object orbiting within it makes this distinction some-
what artificial (Julian & Toomre 1966). Subsequent development
of these ideas (Lynden-Bell & Kalnajs 1972; Carlberg & Sellwood
1985; Binney & Lacey 1988; Toomre & Kalnajs 1991; Fuchs 2001)
has shown that changes in the distribution of angular momentum
among the stars should always be accompanied by an increase in
random motion, or ‘heating’, of the stellar distribution. While the
random velocities of stars have tended to increase over the lifetime
of the Galactic disc, as noted above, even old disc stars today have
�/R � 1 and this fact indicates rather modest changes to the initial
distribution of angular momentum.

A small change in the distribution of angular momentum does not,
however, forbid large changes to the angular momenta of individual
stars. In this paper, we show that spiral waves in discs do alter stellar
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angular momenta while largely preserving the overall distribution
of L and causing little increase in random motion. We argue that
churning of the disc by spiral waves in this manner also moves
clouds of interstellar gas, and we discuss observational support for,
and some consequences of, this prediction. The associated radial
migration of stars and gas must reduce the metallicity gradient in
galaxy discs and modify radically the distribution over metallicity
of the stars that one now finds at a given radius.

As previously noted, the spiral response of a galactic disc to a
co-orbiting mass clump blurs the distinction between scattering by
spirals and by mass clumps. In the present paper, we consider the
collective response of the disc to such mass clumps (Toomre &
Kalnajs 1991) as adding to the transient spirals. The direct scat-
tering of individual stars by clouds is important, since it probably
determines the shape of the local velocity ellipsoid (Carlberg 1987;
Jenkins & Binney 1990), but we show in the Appendix that the
angular momentum changes induced by star–cloud scattering are
negligibly small.

We begin by summarizing the theory of scattering of stars by
spiral waves. Next, we present simulations that demonstrate that
angular momentum exchanges at corotation, which have previously
received little attention, are in fact the principal driver of radial
migration in galaxies.

2 S C AT T E R I N G B Y WAV E S

In this section we obtain relations between the angular momentum
changes induced by spirals and the associated changes in the random
velocities of stars that will be useful in Section 3, where we analyse
numerical simulations.

In the rotating frame of a steady spiral perturbation there is an
‘energy’ invariant, Jacobi’s integral EJ, which is defined as [Binney
& Tremaine (1987, hereafter BT) equation (3-88)]

EJ = E − �p L , (1)

where E and L are the specific energy and z-angular momentum
of the star in a non-rotating frame and �p is the pattern speed of
the non-axisymmetric perturbation. Hence, changes in energy and
angular momentum are related by

�E = �p�L . (2)

We now determine the fraction of the energy increment, �E ,
which appears as random motion; the remainder changes the energy
associated with circular motion. If JR is any parameter that quantifies
radial kinetic energy, we can obviously write

dE = ∂E

∂JR
dJR + ∂E

∂L
dL . (3)

If JR is chosen to be the ‘radial action’, the partial derivatives in
this expression become the angular frequencies, ωR and �, of a
radial and azimuthal motion of the star (BT equation 3-150a). In the
epicycle approximation, ωR = κ the classical epicycle frequency,
JR is simply ER/κ , and the radial kinetic energy ER is related to
the maximum radial speed around an epicycle by ER = 1

2 (vR,max)2.

Eliminating �E between equations (2) and (3), we obtain

�JR = �p − �

ωR
�L . (4)

While changes in L at corotation (� = �p) do not cause changes in
JR , those away from corotation do.

The classical Lindblad diagram, Fig. 1, illustrates the physical
origin of this relation. Possible orbits occupy the upper left half of

Figure 1. Classical Lindblad diagram. See text for a description.

this diagram, and are bounded by the locus of the circular orbit of
angular momentum L. Equation (2) states that a steady spiral wave
moves stars on lines with slope �p. Since the tangent to the locus of
circular orbits at corotation has this slope, JR , which is a measure
of the distance from the circular-orbit curve, does not change to first
order when a star corotating with the wave is scattered. Scattering
at more general locations, does result in energy being exchanged
between random and orbital motion, and stars on nearly circular
orbits must be preferentially scattered into non-circular orbits.

When a star is in Lindblad resonance with an m-armed spiral, its
frequencies satisfy (e.g. BT equation 3-122)

ωR = ±m(�p − �), (5)

where the upper sign applies at the outer Lindblad resonance (OLR)
and the lower sign applies at the inner resonance (ILR). Combining
equations (4) and (5) we obtain the pleasingly simple result

�JR = ∓ 1

m
�L (Lindblad resonance). (6)

Here the upper sign applies if the star lies at ILR (� > �p) and
the lower sign applies at OLR. This relation is exact for nearly
circular orbits, and remains the dominant term for moderately ec-
centric orbits where higher resonances also contribute (Lynden-Bell
& Kalnajs 1972).

3 S I N G L E S P I R A L

As a test of the spiral wave theory presented in Section 2, we begin
by studying what happens in a simulation having a single transient
spiral wave. We later describe more realistic simulations with a
succession of spiral waves.

3.1 Choice of model

We wish to construct a simulation that supports a single spiral wave
standing out clearly from the noise; to achieve this goal, we follow
the procedure described by Sellwood & Kahn (1991, Section 3.3).
Mestel’s disc (1963), in which the circular speed is everywhere V0,
suffers only from global one-armed instabilities when the disc is al-
most fully self-gravitating (Zang 1976; Toomre 1977, 1981); Evans
& Read 1998), and becomes stable to all global modes when only
half the disc mass is active (Toomre 1981). These remarkable stabil-
ity properties have been confirmed in N-body simulations (Sellwood
& Kahn 1991; Sellwood & Evans 2001). An appropriate distribution
function (DF) for this disc is (Zang 1976; Toomre 1977)
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f0(E, L) = 1

2

C Lq e[−E(q+1)][
1 + (L i/L)4

] [
1 + (L/Lo)6

] . (7)

The constant C [given in BT (equation 4-162)] yields the correct
surface density when f0 is integrated over all velocities with the
factors in the denominator set to unity, while the pre-factor halves
the active mass. We set the parameter q = 11.44, which in an infi-
nite half-mass disc would yield Q = 1.5. The radial extent of the
otherwise infinite disc is limited by the inner and outer tapers, rep-
resented by the factors in the denominator; these tapers are gentle
enough not to provoke instabilities on their own (Toomre 1981).
The value of Q is raised where the tapers kick in, since they reduce
the active mass density by more than the velocity dispersion. As
the tapers also introduce length-scales into the disc, we adopt the
central radius of the inner taper, Ri = L i/V0, as our length unit, and
set Lo = 15L i. We also adopt V0 as our velocity unit, so Ri/V0 is
our unit of time and L i our unit of angular momentum.

Sellwood & Kahn (1991) showed that the introduction of a narrow
axisymmetric feature into the equilibrium DF destabilizes the disc
in a predictable manner. We therefore multiply f0 by a function of
L and employ the distribution function

f (E, L) = f0(E, L)

[
1 + βw2

L

(L − L∗)2 + w2
L

]
. (8)

We chose the parameters of the Lorentzian function to be: L∗ =
6.5L i, β = −0.4, wL = 0.2L i. While this represents a groove in
the angular momentum density, it causes only a mild depression in
the surface density over a broad range of radii because the particles
move on epicycles; the mean epicycle radius is � � 0.28R.

3.2 Numerical procedure

We set up the model with considerable care to ensure an accu-
rate initial equilibrium, and to keep random fluctuations to a mini-
mum. We adopt the quiet-start procedure described by Sellwood &
Athanassoula (1986) to select the initial coordinates and place the
particles at equal angular intervals around rings.

We use a highly efficient particle–mesh (PM) method (Sellwood
1981, 1983) to compute the interparticle gravitational forces, with
a small softening parameter. Particles move freely over a two-
dimensional polar lattice of (NR, Nφ) points, which is used to tab-
ulate the gravitational field. The grid points are spaced at R =
0.1Ri[exp(αn) − 1], where α = 2π/Nφ and 0 � n � NR . The
mass of each particle is spread over the four nearest grid points and
we employ a standard Plummer softening formula to further smooth
the forces at short range. Radial and azimuthal acceleration com-
ponents are computed directly and tabulated, avoiding the need to
difference a potential function, and we use bi-linear interpolation to
evaluate the acceleration components on each particle. Our choices
of numerical parameters in this run, model S, are given in Table 1.

Forces from the particles are evaluated every time-step. Particles
in the radial range 0.5 < R < 1 are integrated using the given

Table 1. Numerical parameters used in the two simulations.

Model S Model U

Grid size 230 × 256 110 × 128
Softening length 0.05Ri 0.1Ri

Active components m = 2 only 0 � m � 4
Particle number 6 × 105 106

Time-step 0.005Ri/V0 0.005Ri/V0

time-step, while beyond R = 1 time-steps increase by factors of
2 for every factor of 2 increase in radius, with forces arising from
particles in outer zones being determined by interpolation in time
when needed to advance the motion of those on shorter steps – see
Sellwood (1985). Time-steps for the few particles inside R = 0.5
are subdivided by factors of 2 as they approach the centre, but the
force field in this region, which is anyway dominated by the fixed
central attraction, is not updated any more frequently.

The groove will excite a separate instability for each azimuthal
wavenumber, m (Sellwood & Kahn 1991). We therefore restrict the
disturbance forces from the particles to those arising from the m = 2
component of the density distribution. The axisymmetric part of the
field is held fixed throughout.

3.3 Effect of one spiral disturbance

Fig. 2 shows the later evolution of a single growing spiral mode,
which saturates at approximately time 270 and then decays leaving
a weak bar-like feature. Fig. 3 shows the distribution of values of
the ratio �E/�L , which equation (2) implies will equal �p. The
sharp peak in this distribution coincides extremely well with the
measured pattern speed of the mode, �p = 0.141, implying that
the vast majority of changes are induced by this spiral. The shaded
histogram shows this quantity evaluated for only those particles
with initial L > 2L i; a heavy tail to large values appears only when
particles with small L are included (unshaded), showing that the tail
is associated with the formation of the inner bar.

Fig. 4 shows the mean and the 20th and 80th percentiles of the
distribution of �L values as a function of the initial L; corotation
and the Lindblad resonances for the spiral are marked. The left-
hand panel shows the changes for all particles, the right-hand panel
shows those for the 20 per cent of particles with the smallest epicy-
cle energies. The changes are large, especially near corotation. �L
increases with distance from corotation at such a rate that particles
are transferred to the other side of corotation: the line of slope −2, on
which particles move symmetrically across corotation, is marked.
Thus the net effect of the large individual changes in L is to cause
particles to change places.

Changes away from corotation are clearly much smaller. Some are
associated with the Lindblad resonances, but those near the centre
are perhaps somewhat confused by the development of the bar.

The theory in Section 2 asserts that the heating associated with
a given change �L tends to zero as we approach corotation from
either side. Fig. 5 confirms this prediction by showing the dispersion
in the radial velocities as a function of radius at the initial moment
and at t = 300. It is evident that the large changes in L at coro-
tation produced no significant heating, whereas the comparatively
small changes at the inner Lindblad resonance caused considerable
heating.

3.4 Orbit trapping at corotation

The physics of the changes at corotation is easy to understand. We
show, in Fig. 6, orbits in a Mestel disc when a steady two-armed
spiral perturbation is imposed. Particles initially have velocity of
magnitude V0 in the tangential direction and are followed until their
orbits approximately close on themselves. Those inside corotation
overtake the wave; they gain angular momentum as they fall into the
spiral arm, which causes them to move to larger radii and slow their
drift relative to the wave, enabling large changes in L to develop.
As the figure shows, particles initially close enough to the radius
of corotation, interact so strongly that their speed relative to the
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Figure 2. The later part of the growth and subsequent decay of an isolated spiral mode in a disc that was seeded with a groove. The radius of the circles is 15Ri

and only one particle in 120 is plotted.

Figure 3. The distribution of the ratio �E/�L of the changes in integrals up
to t = 300 in the disc that was seeded with a groove. The vertical dashed line
marks the measured pattern speed of the spiral mode. The shaded histogram
shows only those particles with initial L > 2, while the unshaded shows all
particles.

wave is reversed. These are called ‘horseshoe orbits’ (Goldreich &
Tremaine 1982). A particle that has moved out across corotation
in this way subsequently slips backwards relative to the wave and
eventually falls backwards into the other arm. As it falls, it loses
angular momentum, moves to smaller radii and eventually pulls
ahead of the wave. These successive episodes of angular momentum
gain and loss cause particles on horseshoe orbits to move around
the maximum of the spiral potential as shown.

Section 3.3.3(b) of BT describes an analytic approximation to
such motion in a sinusoidally varying potential of time-independent
amplitude �0. In this approximation, the phase variable ψ = 2(φ −
φmax), where φmax is the azimuth at which the potential peaks, obeys
the pendulum equation

ψ̈ = −p2 sin ψ, (9)

where

p = 2

R

√
|�0|A
−B

(10)

with A and B being the Oort constants; for the Mestel disc,
A = −B = �/2. Equation (9) admits an energy invariant Ep =
1
2 ψ̇2 − p2 cos ψ . Orbits with Ep > p2 circulate, while the horseshoe
orbits have EP < p2 and librate. The periods of the horseshoe orbits
increase with Ep from the minimum value (BT equation 3-127b)

Tmin = πR0

√
−B

A|�0| , (11)

which is associated with the orbits that make the smallest excursions
in R. For the orbit on which R varies most, the changes in R and L
are given by (BT equation 3-129)

�R = 2

√
|�0|
AB

�L = 2AR�R.

(12)

The spiral perturbation in the simulation is transient, rather than
steady. Clearly, scattering from one side of corotation to the other
cannot be completed if the non-axisymmetric potential is at full
strength for less than 0.5Tmin. On the other hand, if the disturbance
persists for a time much greater than 0.5Tmin, many particles will be
scattered both across and back, leading to smaller net changes.

The time variation of �0 near the radius of corotation is shown
in Fig. 7. From t = 0 to ∼250, the disturbance potential grows
exponentially, with growth rate γ = 0.047. At t ∼ 250 growth slows
and from t ∼ 270 the disturbance potential fades even more quickly
than it grew. Rough estimates from Fig. 7 are that the peak amplitude
of the perturbing potential �0 � 0.35 and its duration Ton ∼ 20
time units. With equation (11) these values yield Tmin ∼ 38, so
Ton ∼ 0.53Tmin. Hence, as expected, particles cross the resonance at
most once. Inserting our value for �0 in equation (12) we find that
the largest change in angular momentum is predicted to be �L =
�R � 2.4, in excellent agreement with the observed magnitude of
the changes around corotation in Fig. 4.

This picture of the physics of the instability can only be approxi-
mate since it is based on orbits in a steady rather than a time-varying
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Figure 4. Left-hand panel: the full curve shows the mean change in L to t = 300 for all particles of the given initial L. The shaded area is bounded by the 20th
and 80th percentiles of the particles when ordered by magnitude of �L . The dashed line has a slope of −2, to show the locus of particles where the changes
would be symmetric about corotation. The vertical lines mark the positions of corotation (solid) and the Lindblad resonances (dotted) for near-circular orbits.

Figure 5. Dispersion in radial velocity as a function of radius in the disc that
was seeded with a groove at t = 0 (light) and t = 300 (dark). The vertical
lines mark the positions of corotation (solid) and the Lindblad resonances
(dotted) for near-circular orbits.

potential. None the less, we have shown that it yields a semiquanti-
tative understanding of the simulations.

Moreover, it predicts that particles on nearly circular orbits will
experience larger changes in L than particles on more eccentric
orbits: the angular velocity with which the latter circulate about the
galactic centre varies significantly as the particles oscillate radially,
so it is impossible for such particles to hold station with respect to
a steadily rotating wave. The right-hand panel of Fig. 4 confirms
this prediction by showing the mean and spread of changes in L for
the 20 per cent of particles with the smallest epicycle energies. One
sees that the changes are ∼50 per cent larger than those for the disc
as a whole.

Figure 6. Orbits in a spiral perturbation. The background model is Mestel’s
disc and the perturbing potential is �1 = �0 cos[2(φ − φ0 − �pt)] where
φ0(R) = 2(R/R0 − 1) + π/2. The locus of the deepest part of the potential
of the wave is marked by dots.

The emergence of horseshoe behaviour may be the principal
change that limits the amplitude of a spiral mode. Standard linear
stability theory (e.g. Kalnajs 1971, 1977) assumes an infinitesimal
disturbance and computes the orbital response as small departures
from the unperturbed orbits. The linear mode is the self-consistent
disturbance for which the sum of the orbit responses is equal to
that required to generate the disturbance potential with a particu-
lar pattern speed, �p, and growth rate, γ . At any finite amplitude
there will be particles on horseshoe orbits, but the existence of these
orbits will not have a significant impact at first, because (i) they
will be small in number and (ii) they will have long periods, and
first-order perturbation theory will give a good account of the mo-
tion of a particle on a horseshoe orbit until the particle reaches the
point at which ψ̇ = 0. As the mode grows the period of any trapped
orbits decreases, and the width of the horseshoe region grows
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Figure 7. Part of the time variation of the amplitude of the m = 2 component
of the gravitational potential, |�0|, measured at R = 7.1Ri, the radius of
corotation of the spiral shown in Fig. 2.

exponentially; thus the number of particles that develop horseshoe
behaviour grows exponentially and the time for which linear per-
turbation theory remains valid for them becomes short. When the
condition γ Tmin > 1 is first violated, particles on horseshoe orbits
that have passed through ψ̇ = 0 are suddenly important contributors
to the overall dynamics, and we have to expect linear perturbation
theory to fail. Thus many particles reverse their direction of motion
in the rotating frame rather abruptly, which leads to a rapid decrease
in the disturbance potential as the density enhancement disperses
on a time-scale �0.5Tmin(�20). These ideas are consistent with the
behaviour shown in Fig. 7.

3.5 Comparison with other work

Lynden-Bell & Kalnajs (1972, hereafter LBK) presented an analysis
of the angular momentum exchanges between a growing wave and a
disc that went far beyond the elementary considerations of Section 2.
Their widely quoted result is that in the limit of vanishing growth rate
angular momentum changes occur only at resonances. Carlberg &
Sellwood (1985, hereafter CS), focusing on heating, extended their
analysis to transient waves.

LBK averaged the change in L over all initial phases of the star.
Clearly, orbit-averaging makes it impossible to discover how wide
is the spread in �L at a given initial value of L. However, one
might hope that it would correctly predict the net change in L, and
qualitatively it does; their results for growing waves correctly predict
that resonances are broadened, and that stars just inside corotation
should, on average, gain L while there should be a net loss just
outside.

Since the second-order perturbation theory developed by LBK
and CS assumes that changes to all quantities are small, their anal-
yses implicitly exclude the trapping process associated with horse-
shoe orbits (Fig. 6), but may give an adequate description of the
behaviour outside the trapping region. The signs of the angular mo-
mentum changes in Fig. 4 are in agreement with LBK and CS, but
the largest changes in L are associated with order unity changes to
an angle variable and are therefore outside the regime where their
predictions hold. Furthermore, any perturbation analysis that seeks
to expand changes in the dynamical variables in powers of the per-
turbing potential �0, will have difficulty in recovering the result
�L ∼ √|�0|. Horseshoe orbits become important in the simula-
tion both because the perturbation is strong and because it is of short
duration. A strong perturbation causes the horseshoe region to have

a significant width, while a more enduring perturbation would allow
particles to recross corotation and end up with essentially unchanged
angular momenta.

In an influential paper Wielen (1977) showed that the increase in
the velocity dispersion of K and M stars with age could be reproduced
by a model in which stars diffused in velocity space with diffusion
coefficients that are isotropic and constant. In reality, even in the
absence of scattering, the velocity of a star changes radically in the
course of a half an epicycle period, so a picture based on velocity
space is of limited value. When stars are viewed as diffusing in
integral space (Binney & Lacey 1988), one finds both that diffusion
is extremely anisotropic, and that the diffusion coefficients vary
from point to point in the space in a manner that contradicts Wielen’s
simple picture. Indeed, star–wave scattering drives diffusion that is
as anisotropic as it logically can be, in that stars diffuse along lines in
two-dimensional integral space (Section 2). Neglecting such effects
leads to seriously mistaken results.

It seems possible that the horseshoe behaviour we have identified
is the effect that Zhang (1996) describes as a ‘collisionless shock’ as
stars pass through spiral arms. She also claims additional scattering
in this event, but any scattering at corotation must occur without
heating the disc.

4 U N C O N S T R A I N E D S I M U L AT I O N

We next describe a more realistic simulation that displays a succes-
sion of very mild spiral waves. We again use a half-mass Mestel
disc with initial Q = 1.5 (in the absence of tapers). This model has
no initial groove and we place our 1000 000 particles at random
azimuths, so that the model starts with shot noise. We also include
forces from azimuthal wavenumbers 0 � m � 4, so that there are of-
ten significant patterns with different rotational symmetries present
at the same time. The numerical details, summarized under Model
U in Table 1, differ in insignificant respects from those in Model S
described above.

The simulation, shown in Fig. 8, displays a succession of very
mild spiral waves that gradually heat the inner disc, while the outer
disc has not heated much by t = 1200. The change in the radial
velocity dispersion between the start and the end of the simulation
is illustrated in Fig. 9; it more than doubles for stars in the inner disc.
The stability parameter, Q, rises to Q > 2 everywhere by t = 1200,
when spiral activity has diminished but not completely ceased.

Fig. 10 shows as a function of radius the power in the Fourier
transform with respect to time of the m = 2 component of the
density distribution. The power is strongly concentrated around a
number of discrete frequencies ωi. The Lindblad resonances for each
frequency occur where the horizontal ridge intersects the dashed
curves and the intersection with the full curve marks corotation. It
is evident that there is always significant power extending from the
ILR to CR for each wave, and the power sometimes extends out to
the OLR.

Fig. 11 shows for each particle the difference, �L , between the
initial and final values of L for that particle plotted against the initial
value of L. Changes in L of 50 per cent are not uncommon. Fig. 12,
which is an unsharp-masked version of Fig. 11, reveals small-scale
variations in particle density that in Fig. 11 are obscured by the
overall decline in the particle density from the line �L = 0. Several
diagonal ridges of enhanced particle density are apparent. Each ridge
is presumably the signature of a spiral feature of some frequency ωi,
and is equivalent to the shaded strip in Fig. 4 as it runs from upper
left to lower right through CR. Thus each diagonal ridge in Fig. 12
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Radial mixing in galactic discs 791

Figure 8. Part of the evolution of the unconstrained simulation. The spiral activity is very mild at all times, the pattern visible at time 1170 is perhaps the
strongest of all. The radius of the circles is 21Ri and only one particle in 200 is plotted.

Figure 9. The light-shaded region shows the initial radial velocity dispersion
in model U, the dark-shaded region shows the change by t = 1200. The two
curves and right-hand scale show the local stability parameter Q at the same
times.

is created by particles on horseshoe orbits crossing corotation for
some ωi.

Fig. 13 shows the extent of mixing within the disc that spiral
activity causes by showing several distributions in final home radius
of particles that initially have essentially identical home radii. The
distributions are wide: particles at intermediate radii can be moved
by a factor of 2 or more in either direction. The initial mean epicycle
size, � � 0.28Rhome throughout most of the disc, doubles for stars
in the inner disc, while those at large radii are scarcely changed by
t = 1200 (Fig. 9).

5 D I S C U S S I O N

5.1 Stellar migration

Our simulations suggest that stars can migrate significant distances
within discs, whilst remaining on nearly circular orbits. To decide
how important this effect is for real galaxies, we need to scale the
numerical results to take into account that galaxies are typically
three times older than the duration of our simulation, and to allow for

Figure 10. The power spectrum of the m = 2 component of the density
variations in the unconstrained simulation. The dashed curves mark the loci
of ILR and OLR for the given frequency, while the full curve shows the locus
of CR.

possible differences in the amplitude |�0| of the non-axisymmetric
components of the potentials. In Section 3.4, we argued that the size
of a typical step in radius is proportional to

√|�0|, so, if successive
steps are uncorrelated and on average equally spaced in time, the
net distance migrated should scale like

√
t |�0|, where t is the age

of the disc.
Near-infrared photometry provides the obvious way to estimate

�0. Rix & Rieke (1993) have argued that the contribution by mas-
sive stars to K-band luminosity is small and patchy, so the K-band
light is a reliable measure of the stellar mass distribution in galaxies
on large scales. Rix & Zaritsky (1995), Gnedin, Goodman & Frei
(1995), Block & Puerari (1999) find that in the K band the arm–
interarm surface-brightness contrast is generally �30 per cent. For
comparison in our unconstrained simulation the arm–interarm con-
trast in mass density is at most ∼15 per cent. The extent of radial
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Figure 11. The change in L to t = 1200 plotted against the initial L for
one particle in 11 of those in the simulation with recurrent transient spiral
structure.

Figure 12. An unsharp-masked version of Fig. 11 reveals ridges in the
particle distribution that extend diagonally from top left to bottom right.

migration must also be a sensitive function of the disc-mass fraction,
because both the arm–interarm contrast and the magnitude of the
potential fluctuation that is produced by a given contrast increase
with the disc-mass fraction. A variety of arguments indicate that in
high surface-brightness disc galaxies, more than half of the mass
interior to two scalelengths lies in the disc (Debattista & Sellwood
1998, 2000; Weiner, Sellwood & Williams 2001; Kranz, Slyz & Rix
2002; Binney & Evans 2001). In our simulations exactly half of the
mass resides in the disc, so we are probably underestimating the
extent of radial migration by a factor of a few. Widening the dis-
tribution shown in the left-hand middle panel of Fig. 13 by even a
factor of 1.5, one is led to the conclusion that old stars formed in the
solar neighbourhood should be scattered nearly uniformly within
the annulus from R = 4 to 12 kpc.

If the radial migrations of individual stars were equivalent to the
random steps taken by particles in a diffusive medium, the galactic
disc would spread quite rapidly because the radial steps are rather
large. In the present case, however, any spreading of the disc will
actually be rather slow because the large migrations that occur each

Figure 13. The distributions of home radii at t = 1200 of particles starting
with initial home radii within the range indicated by the vertical dotted lines.
Typical epicycle radii are initially ∼0.28Rhome; they do not increase much
in the outer disc but rise in the inner disc to ∼0.5Rhome by t = 1200.

side of corotation almost exactly cancel by conservation of angular
momentum; only the relatively small transfer of angular momentum
outwards from the ILR to corotation enables the disc to spread ra-
dially. The inability of angular momentum exchanges at corotation
to induce radial spreading is reflected in their inability to heat the
disc significantly (equation 4), since when a disc spreads, random
energy is inevitably released (LBK; Lynden-Bell & Pringle 1974).

5.2 Abundance distributions

The really important effects of radial migration lie in the field of
chemical evolution. Fig. 14 plots measured values of O/H against
Galactocentric radius for H II regions from Shaver et al. (1983) and
Vilchez & Esteban (1996) rescaled to R0 = 8 kpc. The line is the
linear least-squares fit to the data for R > 5.5 kpc. The dispersion
in [O/H] about the mean line is 0.16 dex, which is not significantly
larger than the quoted errors in the data of Shaver et al. and Vilchez
& Estaban. Hence, it is widely believed that the intrinsic dispersion
in [O/H] at fixed R is �0.1 dex (Edmunds 1998) and at each radius in
the disc we may suppose that the ISM has a well-defined metallicity.

The squares in Fig. 15 show the distribution in [Fe/H] and age
of 189 stars from the sample of Edvardsson et al. (1993). The Sun
is plotted as a circle. Since Edvardsson et al. selected stars to ob-
tain wide ranges in τ and [Fe/H], the distribution of points has
significant selection bias in the sense that the spread in age and
[Fe/H] is unrepresentatively broad (see Section 3.2 of Edmunds
1998). None the less, the figure shows that age and metallicity are
weakly correlated if at all; the only clear effect is that there is a
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Figure 14. Oxygen abundances of 31 H II regions from Shaver et al. (1983,
squares) and from (Vilchez & Esteban (1996, triangles). The original data
have been rescaled to R0 = 8 kpc. The Orion nebula, from Shaver et al.,
is marked by a cross, and the Sun, with O abundance 8.93 from Anders &
Grevesse (1989), is marked by a circle. The line is the linear least-squares
fit to the data for R > 5.5 kpc.

Figure 15. The distribution of a sample of 189 nearby stars in metallicity
and age. The data are from Edvardsson et al. (1993). The circle marks the
position of the Sun.

dearth of young, metal-poor stars, presumably because the ISM at all
star-forming radii has been for some time more metal-rich than
[Fe/H] ∼−0.4.

Radial migration enables old stars that formed from promptly
enriched gas at small galactocentric radii to appear in a solar-
neighbourhood sample, thus weakening any correlation between
age and metallicity. Migration from outside R0 also allows a smaller
number of young metal-poor stars to be in such a sample. A sim-
ple quantitative model illustrates these phenomena. In this simple
model, at time t and radius R stars form at a constant rate from an
ISM having a metallicity rising linearly with time as

Z (R, t) = ZG + t

t0
[Z (R, t0) − ZG], (13)

where ZG is the metallicity of protodisc material and t0 = 12 Gyr
is the age of the disc. At the present time the metallicity of the gas
is given by the line in Fig. 14,

log[Z (R, t0)] = a − b

(
R

R0
− 1

)
, where

{
a = −0.17
b = 0.96.

. (14)

The density of stars in the (log Z , log τ ) plane is then given by

NR0 (τ, Z ) ∝ τ Z Re−R/Rd Pτ (R0|R)

∣∣∣∣dR

dZ

∣∣∣∣ . (15)

Here the surface density of newly formed stars is assumed to be pro-
portional to e−R/Rd with Rd = 0.28R0 (Drimmel & Spergel 2001),
while Pτ (R0|R) is the probability that a star formed at radius R mi-
grates to R0 in time τ , and R(t0−τ, Z ) is the radius at which the ISM
had metallicity Z at time t0 −τ . We calculate illustrative predictions
for the case in which Pτ is

Pτ (R0, R) = (
2πσ 2

τ

)−1/2
exp

[
− (R0 − R)2

2σ 2
τ

]
(16)

with

στ = R0

[
(0.16)2 + (0.4)2 τ

t0

]1/2

. (17)

The first term in the square brackets represents the radial migration
associated with epicyclic motion for a typical thin-disc radial veloc-
ity σu = 34 km s−1 (table 10.4 of Binney & Merrifield 1998), which
we assume for simplicity to be time-independent. Fig. 16 shows
the predicted distribution that one obtains from these formulae with
ZG = 0.1 Z�, which is the approximate lower boundary on the
populated zone in Fig. 15. The distribution of Fig. 16 has features in
common with the observational plot, Fig. 15. In particular, both plots
show a dearth of stars around (2, −0.5), a high population density
around (8, 0) and an approximately horizontal upper boundary on
the populated zone. The observational plot does not show the same
extremely high density of stars around (10, −0.75) that is evident
in the predicted distribution. This density peak is large owing to our
assumption that at early times the ISM everywhere had metallicity
0.1 Z�, but it is exacerbated by the use of a logarithmic age coor-
dinate. In the observational plot errors in age estimates, which are
obviously largest for the oldest stars, scatter stars from the furthest
realistic ages to unrealistically high ages, thus reducing the density
of stars around τ = t0.

WFD argue that the Sun is a beautiful example of stellar migra-
tion. It is on an unusually circular orbit for a star of its age (4.5 Gyr),
with home radius approximately 200 pc outside R0 and pericentre
approximately 140 pc inside R0. WFD note that the Sun is not only
more metal-rich than the average nearby star of comparable age by
0.17 dex (Fig. 15), but is actually more metal-rich than the present-
day local ISM (as represented by the Orion molecular cloud, which

Figure 16. The density of points in the (log(Z ), log τ ) plane predicted by
the models of chemical evolution and stellar migration described in the text.
The curve shows the local metallicity of the ISM according to equations (13)
and (14).
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is marked by a cross in Fig. 14). They argue from these facts that
the Sun was born at R ∼ (R0 − 2 kpc).

Fig. 16 clearly shows that migration brings into the solar neigh-
bourhood many more stars that are more metal-rich than the local
ISM than it imports more metal-poor stars: metal-rich immigrants
are imported by arms with corotation inside R0 that effect exchanges
between the solar neighbourhood and an annulus around R ∼ 5 kpc,
while metal-poor immigrants are imported by arms that have coro-
tation outside R0 and move stars from R ∼ 11 kpc. Since there are
many fewer stars at R ∼ 11 kpc than at R ∼ 5 kpc, metal-rich
immigrants outnumber metal-poor ones by a significant factor. The
clear implication is that at R ∼ 5 kpc there should be many stars
with subsolar metallicities. As most migration is accomplished with
little change to the random motion of the stars, it is not surprising
that the Sun has a nearly circular orbit.

5.3 Interstellar gas

Gas clouds are deflected by the spiral-arm potential in much the
same way as are stars. The deflections generate in-going and out-
going streams that occur at different azimuths and do not cross
until large changes in radius have been achieved (Sellwood & Preto
2002). The resulting flow in the corotation annulus has a charac-
teristic anticyclonic form. Our model predicts that the entire flow
lasts no more than half its turnover time and will involve veloci-
ties |vr | � |�0|/(−B R0). Fridman et al. (2001) have already called
attention to flows of this form in NGC 3631, and derive peak ra-
dial velocities approaching half the orbital speed at their estimated
corotation radius, again suggesting a very strong spiral pattern.

Fig. 4 showed that stars with lower random velocities experienced
larger changes in L than did hotter stars. Since gas clouds have
smaller random velocities than any population of stars, they should
experience still larger changes in L. Hence, it is possible that the
Orion nebula lies so far below the mean line in Fig. 14 because it
has immigrated to the solar neighbourhood from R ∼ 10 kpc, where
its metallicity would be typical. If the metallicity distribution of
clouds at a given radius has non-negligible width, the theoretical
stellar metallicity distribution of Fig. 16, which is based on the
assumption of negligible width, will be too narrow at small ages.
Comparison of Figs 15 and 16 suggest that this may be true, but one
has to bear in mind that the width of the observational distribution is
exaggerated by both selection bias and errors in the measured stellar
metallicities.

5.4 Dust grains

The impact of migration on the metallicity of interstellar gas must
be to some extent masked by mixing following collisions between
clouds of different metallicity, to produce a new cloud of inter-
mediate metallicity. The chemical composition of an individual
interstellar grain cannot change, however, so the compositions of
the interstellar grains that are currently located at a given radius
should show similar evidence for migration to that evident in Fig. 15.
Clayton (1997) presents evidence for just such an effect.

As the disc ages, the isotopes 29Si and 30Si, which are secondary,
should become more abundant relative to 28Si, which is primary.
Dust grains that were formed before the Solar system have been
identified in meteorites, and measurements of the relative abun-
dances of the three Si isotopes (Hoppe et al. 1994a,b) confirm the
theoretical prediction (Clayton 1988; Timmes & Clayton 1996) that
the abundance ratios n(29Si)/n(28Si) and n(30Si)/n(28Si) should be
tightly correlated in a positive sense. Three problems mar the beauty

of the observed correlation: the slope of the correlation differs from
that expected; the ratios of the Sun are barely compatible with the
correlation; and the measured ratios indicate that the majority of
pre-solar grains formed from material that was substantially more
heavily processed, nucleosynthetically, than that for which the Sun
formed. Clayton (1997) points out that this last finding is similar
to the metal-richness of the Sun relative to the local ISM because
it implies that material that left the ISM at some time prior to the
formation of the Sun, somehow experienced more nucleosynthesis
than material that stayed in the ISM, and continued to be enriched,
right up to the formation of the Sun. Clayton further argues that the
large changes in home radius proposed by WFD could explain the
Si isotope ratios in pre-solar grains by making it credible that they
formed from material that had been enriched by stars that themselves
formed ∼2 kpc interior to the birthplace of the Sun. In the light of
our results we suggest that these grains themselves migrated from
R ∼ 4 to ∼6 kpc, where they were incorporated into the protosolar
cloud.

5.5 Galactic dynamos

Radial mixing in the ISM may also help with the well-known prob-
lem posed by the large-scale (ordered) component of B-fields in
galaxies (e.g. Rees 1994). Standard α�-dynamo theory (Parker
1955) is thought to yield too low a growth rate to achieve the present-
day observed field strengths (Beck et al. 1996) from the likely seed
fields. The growth rate is proportional to the geometric mean of the
rates of galactic shear (the � term) and cyclonic circulation (the
α term) (Kulsrud 1999). Current estimates of the α term are based
on supernovae-driven turbulence (Ferrière 1998), but the large-scale
radial mixing discussed here may enhance the α-effect substantially,
and thereby increase the growth rate obtainable from the dynamo.

6 C O N C L U S I O N S

We have shown that the dominant effect of spiral waves is to churn
the disc. Stars just inside corotation swap places with those outside
because each group surfs on opposite sides of the wave. We present a
simplified model of this behaviour based on the theory of horseshoe
orbits in a steady potential. We find that transient spiral arms are
at peak strength for long enough to produce generally only a single
crossing of corotation by a large fraction of the stars over a broad
swath of the disc around this resonance. The length of the largest
steps taken in R scales as

√|�0|, where �0 is the peak amplitude
of the perturbing potential. Scaling to real galaxies requires calibra-
tion of the near-infrared photometry and estimates of the disc-mass
fraction, but step sizes of 2–3 kpc are expected.

Groups of stars move in both directions, and generally just ex-
change places. This exchange occurs without any significant radial
spreading of the disc or increase in non-circular motions. In this
respect exchanges at corotation differ significantly from those at
the Lindblad resonances, which do engender heating and spreading.
We emphasize, therefore, that the dominant scattering process in the
disc does not alter the surface density profile of the disc.

We argue that the peak amplitude and duration of a spiral wave
are limited by horseshoe behaviour at corotation. The density en-
hancement disperses rapidly when a substantial fraction of particles
on horseshoe orbits have reversed their motion in the rotating frame.

The induced radial migration of stars will largely erase the corre-
lation between metallicity and stellar age that is a clear prediction of
standard chemical-evolution theory. It will also introduce into the
solar neighbourhood large numbers of stars that are substantially
more metal-rich than the local ISM was at the time of their birth.
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Both effects are in accord with data for the solar neighbourhood.
Finally, radial migration of stars will gradually flatten any radial
metallicity gradient within the disc. We predict that there should
be many stars with subsolar metallicities at R ∼ 5 kpc. The fact that
metallicity gradients survive in disc galaxies in the teeth of such
mixing puts a stronger requirement on the effectiveness of whatever
process is responsible for their creation.

Deflection of interstellar clouds by spiral arms at corotation
should induce an anticyclonic circulation in the ISM that may al-
ready have been detected in observations of interstellar velocity
fields. The circulation will bring into the solar neighbourhood gas
from both low- and high-metallicity regions. Such importation of
non-standard gas may account for the anomalously low metallic-
ity of the Orion molecular cloud, and for the presence in the pro-
tosolar cloud of dust grains with large ratios n(29Si)/n(28Si) and
n(30Si)/n(28Si), characteristic of highly nucleosynthetically pro-
cessed material.

Our picture is incomplete, however, since we have implicitly as-
sumed that the spiral behaviour manifested by the simulations cor-
rectly mimics the phenomenon in galaxies. Since the origin of spi-
rals in galaxies, and in the simulations themselves, continues to lack
a convincing explanation (e.g. Sellwood 2000), this logical gap is
likely to persist for some time. We regard the ability of simulations
to predict the age–velocity dispersion relation of local disc stars
(Carlberg & Sellwood 1985), the shape of the velocity ellipsoid
(Jenkins & Binney 1990), the need for a dissipative component to
maintain persistent spiral patterns (Sellwood & Carlberg 1984), and
the present success in accounting for the spread of metallicity of
older stars, as indirect evidence to suggest that the recurrent tran-
sient patterns in the simulations do indeed mimic the behaviour in
real galaxies.
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A P P E N D I X A : S TA R C L O U D S C AT T E R I N G

Mass clumps on near-circular orbits induce a collective spiral re-
sponse, or wake, from the surrounding disc (Julian & Toomre 1966).
We regard such collective effects as part of the spiral structure of
the disc, which is the subject of the main part of the paper. Here
we simply show that, when the collective wake is ignored, the in-
teractions between stars and the mass clump can be neglected as a
possible source of additional angular momentum redistribution.

For small radial oscillations, there is a convenient expression for
the epicycle energy of a star in terms of the components u R and
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uφ of its velocity with respect to the local standard of rest (BT
equation 7-94a):

ER = 1

2

(
u2

R + γ 2u2
φ

)
, (A1)

where γ = 2�/κ; i.e. γ = √
2 for a flat rotation curve. Small oscil-

lations of a star perpendicular to the plane approximately conserve
the integral

Ez = 1

2
u2

z + �(R, z), (A2)

where � is an effective gravitational potential. Following Spitzer
& Schwarzschild (1953) we consider stars to be scattered in the
impulse approximation, in which the scattering is complete in a
distance small compared with both the epicycle amplitude and the
smallest distance over which the Galactic potential changes signif-
icantly. In this approximation we have

�ER = u R�u R + 1

2
(�u R)2 + γ 2

[
uφ�uφ + 1

2
(�uφ)2

]

�Ez = uz�uz + 1

2
(�uz)

2.
(A3)

When a star encounters a massive object such as a GMC or a
star cluster, the recoil of the object is negligible and it is natural to
study the encounter in the frame of reference in which the scatterer
is stationary throughout the encounter. If, moreover, the scatterer
is moving on a circular orbit, this preferred reference frame is a
steadily rotating one, and Jacobi’s integral may be written as (BT
equation 3-90)

EJ = 1

2
|v|2 + �eff(r ), (A4)

where v is the velocity of the star in the rotating frame of the cloud
and �eff is the sum of the gravitational and centrifugal potentials.
Since we are treating encounters in the impulse approximation, we
may neglect the change in �eff between the in- and the out-states
of the scattering event, and conclude from the invariance of EJ that
the scattering merely redirects the velocity of the star in the rotating
frame without changing its magnitude v. Moreover, at the radius of
the cloud, u = v. We have therefore

0 = �u2 = 2u R�u R + (�u R)2 + 2uφ�uφ + (�uφ)2

+ 2uz�uz + (�uz)2. (A5)

Comparing this with equation (A3) and noting that �L = R�uφ ,
we obtain

�ER + �Ez = (γ 2 − 1)

(
uφ + 1

2
�uφ

)
�L

R
. (A6)

If we define

Jrand ≡ 1

�
(ER + Ez), (A7)

then equation (A6) can be written as

�Jrand = (γ 2 − 1)
uφ + 1

2 �uφ

vc
�L , (A8)

which is analogous to our result (4) for spiral waves. When a cloud
scatters a star of the same specific angular momentum, uφ = 0 and
the change in Jrand vanishes to first order because the interaction
occurs at corotation for the star. Heating occurs when a cloud scatters
a star that has a different specific angular momentum because then
uφ �= 0 and the interaction occurs away from corotation.

Since a small fraction of stars pass a cloud with uφ � 0, most
scattering by clouds is associated with heating. Hence we may use
estimates of the amount of heating in discs to constrain the amount
of angular momentum transfer for which clouds are responsible.
Equation (A8) implies that

�Jrand

�L
� uφ

vc
. (A9)

Comparing this result with equation (6) for uφ � 50/γ km s−1, we
see that star–cloud encounters are approximately three times more
effective at changing L for a given increment in random velocity than
two-arm spirals at Lindblad resonance. Jenkins & Binney (1990)
concluded that 〈(�JR)2〉wave � 90〈(�JR)2〉cloud. Here angled brack-
ets imply averages over all encounters for a star that has ER/Ez � 1
and an epicycle radius that is not large compared with the typical
radial wavenumber of spiral structure. We have that

1

90

〈
(�JR)2

〉
wave

� 〈
(�JR)2

〉
cloud

∼ 〈
(�Jrand)2

〉
cloud

� R2(γ 2 − 1)2

v2
c

× 〈
u2

φ(�uφ)2 + uφ(�uφ)3 + 1
4 (�uφ)4

〉
cloud

.

(A10)

The ensemble average on the right-hand side of this equation is
dominated by the first term, since the second averages to something
near zero and the third term cannot exceed 1

4 of the first and is likely
to be much smaller. Since scattering events occur at all radial phases,
we may use the approximation 〈u2

φ(�uφ)2〉 � 〈u2
φ〉〈(�uφ)2〉. With

equation (6) and setting γ = √
2, we have finally

〈(�L)2〉cloud ∼ 1

90

v2
c

m2
〈

u2
φ

〉 〈(�L)2〉Lindblad. (A11)

Hence, 〈(�L)2〉cloud = 〈(�L)2〉Lindblad when 〈uφ〉1/2 = vc/(9.5m) �
12 km s−1 for vc = 220 km s−1 and m = 2. Since 12 km s−1 is a
fairly typical value of 〈uφ〉1/2 for an old disc star, we conclude that
the angular momentum changes induced by clouds are comparable
to those induced by waves at Lindblad resonance. Since we have
shown that waves induce much larger changes in L near corotation,
clouds are not significant drivers of radial migration overall.
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