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The small-amplitude radial oscillations of a gas microbubble encapsulated by a viscoelastic solid

shell and surrounded by a slightly compressible viscoelastic liquid are studied theoretically. The

Kelvin–Voigt and 4-constant Oldroyd models are used to describe the viscoelastic properties of the

shell and liquid, respectively. The equation for radial oscillation is derived using the method of

matched asymptotic expansions. Based on this equation, we present the expressions for damping

coefficients and scattering cross sections at the fundamental frequency and at twice that frequency.

The numerical maximization of the amplitude-frequency response function shows that the resonance

frequency for the encapsulated microbubble highly depends on viscous damping, and therefore,

significantly differs from the undamped natural frequency. The effects of the shell and liquid

parameters on the resonance frequency and scattering cross sections are analyzed. © 2002

American Institute of Physics. @DOI: 10.1063/1.1503353#

I. INTRODUCTION

Despite the fact that microbubbles covered with a bio-

compatible surface-active layer have been the subject of in-

tense experimental research and commercial development for

use as contrast agents for medical ultrasound diagnostics,1–3

a rigorous theoretical description for the pulsations of such

encapsulated bubbles in blood flow is not available. Existing

theoretical models are based upon various forms of the

Rayleigh–Plesset ~RP! equation for spherical bubble oscilla-

tions, and attempt to take into account, often on the basis of

unjustified conjectures, the elasticity and viscosity of the sur-

factant layer which is treated as a viscoelastic solid shell.4,5

In particular, in the de Jong model4,6,7 encapsulation provides

additional damping of bubble oscillations and makes the

bubble more ‘‘rigid.’’ In doing so, a shell friction is included

in the damping coefficient and a shell elasticity term is added

in the Rayleigh–Plesset ~RP! equation. Neither a normal

stress balance at the bubble surface nor a rheological equa-

tion for the shell is considered. The heart of the Church

model5,8 is the modified RP equation which is derived from

conservation of radial momentum assuming the existence of

two interfaces: One between the gas and the shell and an-

other between the shell and the surrounding liquid, i.e., tak-

ing into account the finite thickness of the encapsulating

layer. The shell itself is modeled as a viscoelastic solid.

The standard RP equation holds only if the liquid sur-

rounding a gas bubble is Newtonian and incompressible.

These assumptions may be reasonable in certain inorganic

aqueous media but not for living matter and, in particular,

human tissue and blood.9–12 Nonetheless, the RP-based mod-

els are claimed to be ‘‘validated by extensive experimental

results’’ by fitting the models, i.e., the a priori unknown

values of shell elasticity and viscosity, to experimental mea-

surements. In our view, such models cannot be accurately

used to interpret in vivo measurements and our goal in the

paper is to provide a more accurate description which can

actually be used with confidence for this purpose. To date, no

theoretical studies on radial oscillations of encapsulated mi-

crobubbles in compressible viscoelastic liquids are available.

The effects of acoustic radiation are considered by Chin and

Burns.13 However, their model is simply a modified Trilling

equation which is appropriate only for the pulsation of free

microbubbles ~without encapsulation! in Newtonian liquids.

A microbubble in a liquid undergoes forced radial oscil-

lations when the ultrasound wave, the wavelength of which

is much larger than the bubble radius, impinges upon it. The

size of the bubble decreases in the positive half cycle of the

ultrasound wave and increases in the negative one. The pul-

sating microbubble emits secondary ultrasound waves in the

surrounding liquid ~blood!, i.e., it behaves as a source of

sound. The microbubble, therefore, enhances the backscatter

signal from blood and provides bright blood pool contrast,

especially if it is driven at its resonance frequency. The most

effective scatterer of ultrasound is a free microbubble: Its

resonant scattering cross sections are of the order of a thou-

sand times greater than its geometrical cross section.14 How-

ever, such a microbubble dissolves very quickly after intra-

venous injection before entering the systemic circulation.

Encapsulation extends the lifetime of the microbubble but

degrades its scattering properties.6 Also, the natural fre-

quency of microbubble oscillations is augmented5,15 by the

elasticity of the encapsulating layer. The response of the sur-

rounding tissue suppresses the backscattered signal of the

microbubble at the fundamental ~driving! frequency. Fortu-

nately, a pulsating gas bubble is a highly nonlinear system.

At rather large values of the acoustic pressure amplitude, it
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generates a wide spectrum of harmonics and

subharmonics.16,17 When the bubble oscillations are reso-

nant, the backscattered signal has harmonic and subharmonic

components with decreasing intensity but strong enough to

be used for diagnostic purposes. This has made possible the

method of ‘‘second-harmonic imaging:’’ Ultrasound is trans-

mitted at the fundamental frequency and received at twice

that frequency.18 Of vital importance for contrast harmonic

imaging is, therefore, to know the correct expressions for the

resonance frequency and the scattering cross sections at the

driving frequency and at twice the driving frequency. These

expressions are given and analyzed in the present paper.

There are other, more impressive areas of microbubble

applications. The encapsulated bubbles with an average size

less than that of a red blood cell ~<10 mm in size! are ca-

pable of penetrating even into the smallest capillaries and

releasing drugs and genes, incorporated either inside them or

on their surface, under the action of ultrasound.19,20 These

microbubbles can transport a specific drug to a specific site

within the body ~for instance, an anticancer drug to a specific

tumor!. The tissue-specific drug delivery will be more effec-

tive if targeting ligands are attached to the microbubble sur-

face. The ligands ~biotin or antibody! bind to the receptors

~avidin or antigen! situated at the blood vessel walls of the

target site and force the microbubble to attach to the blood

vessel walls.21 The attachment of microbubbles to the walls

can assure targeted drug delivery. Under exposure to suffi-

ciently high-amplitude ultrasound, these microbubbles would

rupture, spewing drugs or genes, which are contained in their

encapsulating layer, to the target tissue. Commercial devel-

opment of these ideas is in its initial phase, but methods for

preparing such microbubbles have already been patented.22

The ultrasound-induced breakup has been observed for sev-

eral ultrasound contrast agents, including albumin- and

phospholipid-covered microbubbles.23 An understanding of

microbubble behavior is also important for a range of appli-

cations in biotechnology. The colloidal gas aphrons, which

are microbubbles encapsulated by surfactant multilayers, are

coming into use for the recovery of cells and proteins as well

as for the enhancement of gas transfer in bioreactors.24

The remainder of the paper is structured as follows. Sec-

tion II gives the governing equations for the radial flow of

the viscoelastic liquid around an encapsulated microbubble.

The 4-constant Oldroyd and Kelvin–Voigt constitutive equa-

tions are used to model the liquid and the shell, respectively.

In Sec. III we construct the equation for radial oscillations of

an encapsulated microbubble in a compressible viscoelastic

liquid using the method of matched asymptotic expansions.

The small-amplitude bubble oscillations are examined in

Sec. IV. We derive the formulas for the first- and second-

harmonic amplitudes of oscillation and present the expres-

sions for the resonance frequency and the first- and second-

harmonic scattering cross sections there. In Sec. V the

damping coefficients for the encapsulated microbubble, the

effects of damping on the resonance frequency as well as the

dependencies of the resonance frequency and scattering cross

sections on the shell and liquid parameters are analyzed. Sec-

tion VI concludes the paper.

II. GOVERNING EQUATIONS

Consider spherically symmetric radial flow in an un-

bounded viscoelastic liquid which surrounds a gas bubble

covered by an encapsulating layer. The layer is modeled as

an incompressible viscoelastic solid shell and taken to be of

finite thickness, i.e., we assume the existence of two inter-

faces: One between the gas and the encapsulating layer and

the other between the layer and the surrounding liquid ~Fig.

1!. In writing the governing equations, we take into account

the compressibility of the liquid but neglect the effects of

gravity and other body forces; we also assume that the pres-

sure is spatially uniform inside the bubble, the shell is in-

compressible, gas diffusion affects neither the velocity nor

the stress fields, the temperature in the liquid remains con-

stant during the oscillations, the gas within the bubble is

polytropic, the partial pressure of the vapor is small com-

pared with the gas pressure, and the bubble motion is purely

radial, i.e., there is no rotation or shape deformation. Under

these assumptions, the radial flow of the liquid around an

encapsulated bubble is described in spherical coordinates

(r ,Q ,w) by the equations of continuity

]r

]t
1

]~rvr!

]r
1

2rvr

r
50, ~1!

and radial momentum

rS ]vr

]t
1vr

]vr

]r
D52

]p

]r
1~“•x!r , ~2!

the barotropic equation of state for the liquid

p l5p l~r l!, ~3!

a polytropic pressure-volume relationship for the gas

p i5p i0S a0

a
D 3k

, ~4!

the initial conditions

FIG. 1. Schematic sketch of an encapsulated bubble.
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t50: a5a0 , R5R0 , vr50, p l5p0 , r l5r l0 ,
~5!

and the boundary conditions at the interfaces and infinity

r5a: vr5

da

dt
, p i5ps2xrr

(s)
1

2s1

a
, ~6!

r5R: vr5

dR

dt
, p l2xrr

(l)
5ps2xrr

(s)
2

2s2

R
, ~7!

r→`: vr→0, p l→p0 . ~8!

Here t is time, r the radial coordinate, r the density, p the

pressure, vr the radial component of the velocity, x the stress

tensor, a(t) the inner radius of the bubble, R(t) the outer

radius of the bubble ~together with the encapsulating layer!,
p i the internal pressure of the bubble ~gas pressure!, and k a

polytropic exponent. The subscript 0 refers to the unper-

turbed state of the bubble. The subscripts l and s identify

liquid and shell parameters. Surface tension at the inner ~gas-

shell! and outer ~shell-liquid! interfaces is denoted by s1 and

s2 , respectively. Equations ~1! and ~2! are integrated with

respect to r from a(t) to ` using the parameters appropriate

for the shell ~r5rs0 , p5ps , x5x
(s)) and the liquid ~r

5r l , p5p l , x5x
(l)) in the regions (a ,R) and (R ,`). Tak-

ing into account that xQQ5xww for a purely radial flow and

that the shell is incompressible, these equations can be re-

written in the form

]vr

]r
1

2vr

r
50, for rP~a ,R !,

~9!
]r l

]t
1

]~r lvr!

]r
1

2r lvr

r
50, for rP~R ,` !,

rs0S ]vr

]t
1vr

]vr

]r
D52

]ps

]r
1

]xrr
(s)

]r
1

2

r
@xrr

(s)
2xQQ

(s) # ,

for rP~a ,R !,

~10!

r lS ]vr

]t
1vr

]vr

]r
D52

]p l

]r
1

]xrr
(l)

]r
1

2

r
@xrr

(l)
2xQQ

(l) # ,

for rP~R ,` !.

It is worth commenting on the validity of the above as-

sumptions. Gas pressure may be considered uniform if the

Mach number of the bubble wall motion, calculated with

respect to the speed of sound in the gas, is much less than

unity, and the wavelength of sound in the gas is much larger

than the characteristic bubble radius.25,26 Significant pressure

nonuniformities would develop in a collapsing bubble and at

frequencies that are large compared with the resonance fre-

quency of free bubble oscillations.26 The second condition

for uniformity of the gas pressure implies that all pressure

perturbations, leading to or generated by pulsations of the

bubble, propagate in the gas, and hence in the liquid, as long

waves. We can then consider a region of the liquid near the

bubble surface, and thus the shell, to be incompressible.27

Since gas diffusion in and out of the bubble manifests itself

over time scales much longer than the period of bubble os-

cillations, we eliminate the gas transfer problem from con-

sideration. The constant temperature in the liquid may be

explained by noting that the specific heat of the liquid is very

large compared with that of the gas, i.e., ‘‘the liquid may be

regarded as a thermostat that absorbs and gives off heat to

the bubble walls without changing its temperature.’’ 25 How-

ever, heat conduction through the bubble wall affects the

bubble dynamics very strongly. Fortunately, the heat influx

equation for the gas can be replaced by an approximate poly-

tropic pressure-volume relationship in the case of a calori-

cally perfect gas, uniform internal pressures, and small-

amplitude bubble oscillations.26,28,29 A polytropic exponent k
then takes the value from 1 ~isothermal behavior! to gg

~adiabatic behavior with gg being the ratio of constant-

pressure to constant-volume specific heats for the gas! and

the energy dissipation due to thermal effects is accounted for

in the damping coefficient of radial oscillations29,30 ~effects

of heat conduction on bubble oscillations are considered in

Sec. V!. In reality, the shell is not a solid material because

the microbubble is encapsulated by a layer of surface-active

molecules ~lipids or proteins!, which are mobile. This is the

reason why we consider the nonzero ~but small! surface ten-

sion at the outer interface. Given the small size of the bubble

and hence the decreased mobility of surface-active molecules

due to the small surface area of the interface, the assumption

that the encapsulating layer is a viscoelastic solid is reason-

able. Problems of shape deformation or rotation of the

bubble are beyond the scope of the present paper. Finally, we

neglect body forces and the partial pressure of the vapor for

the sake of simplicity.

We employ the Kelvin–Voigt constitutive equation to

model the shell,31 i.e., we assume that

x
(s)

52~Gsg1msġ !, ~11!

where

g5
1
2 ~“u1“u

†! and ġ5
1
2 ~“v1“v

†! ~12!

are the strain and rate-of-strain tensors, u and v the displace-

ment and velocity vectors, Gs and ms the shear modulus and

the shear viscosity of the shell. It is common practice to

employ the Kelvin–Voigt model for estimating the stresses

in cell membranes.32 The same model was used by Church5

to account for viscous properties of elastic solid shells. Gen-

erally, the stress tensor in a linear viscoelastic solid has non-

deviatoric terms proportional to tr(g) and tr(ġ), where ‘‘tr’’

denotes the trace of a tensor. However, these terms vanish

due to the assumption of shell incompressibility. This is fully

confirmed in the case of purely radial flow. Indeed, if we

restrict our attention to purely radial pulsations of the mi-

crobubble, the strain and rate-of-strain tensors are only de-

fined by the radial components of the displacement and ve-

locity vectors. From Eq. ~9! and boundary conditions ~6! and

~7! it follows that the radial velocity of shell particles is

given by

vr5

a2

r2

da

dt
5

R2

r2

dR

dt
. ~13!

It is easy to show that if the volume of the shell is constant

during radial oscillations, the difference between the spheri-
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cal volumes V54p(r1ur)
3/3 and V054pr3/3 associated

with a shell particle ~initially at position r) after and before

radial deformation is equal to C1(t)54p(a3
2ae

3)/3 or

C2(t)54p(R3
2Re

3)/3 @note C1(t)5C2(t)#. Here ur is the

radial displacement; r , ae , Re and r1ur , a , R are, respec-

tively, the unstrained and strained positions of the shell par-

ticle, the inner interface, and the outer interface. For infini-

tesimal displacements, i.e., when ur!a0 and hence ua2aeu
!a0 , we then have

ur5

a2~a2ae!

r2 5

R2~R2Re!

r2

and

grr522gQQ52

2a2~a2ae!

r3 ,

~14!

ġrr522ġQQ52

2a2

r3

da

dt
.

Taking into account that gQQ5gww and ġQQ5ġww due to

spherical symmetry, one may obtain from Eq. ~12! that

tr(g)5grr1gQQ1gww50 and tr(ġ)5ġrr1ġQQ1ġww50.

Finally, rr- and QQ-components of the stress tensor take the

forms

xrr
(s)

522xQQ
(s)

52

4a2

r3 FGs~a2ae!1ms

da

dt
G , for rP~a ,R !

~15!

which agrees with formula ~10! in Ref. 5. ~Note once again

that xQQ5xww for pure radial flows.!
It should be noted that the unstrained inner radius of the

bubble ae is not ordinarily equal to the equilibrium radius

a0 . This implies that there are nonzero stresses ~or pre-

stresses! in the shell even if the microbubble does not change

its volume. The pre-stresses in the shell can be a result of gas

diffusion. Suppose that a free microbubble of radius ae is

covered in a saturated liquid by a layer of surface-active

material forming the shell layer. Initially, the stresses in the

layer are zero. Then the microbubble begins to dissolve due

to interfacial tension which creates an over-pressure in the

gas inside the bubble relative to the pressure in the liquid.

The contraction of the bubble leads to the straining of the

shell, and hence to nonzero stresses inside the shell. The

stresses, or more precisely the component of the stress tensor

in the radial direction ~radial stress!, increase with decreasing

bubble volume and act in opposition to interfacial tension.

When the radius of microbubble reaches the value a0,ae ,

the radial stress in the layer is counterbalanced by interfacial

tension and the microbubble stops shrinking. This counter-

balance may be one of the reasons why encapsulated mi-

crobubbles are more stable than free ones.5

In a compressible liquid the stress tensor x
(l) consists of

two parts. The first part is the shear stress tensor t
(l) that

depends on the rate-of-strain tensor. If the liquid is Newton-

ian, this tensor looks as follows:33

t
(l)

52m lF ġ2

tr~ ġ !I

3
G , ~16!

where m l is the shear viscosity of the liquid. The second part

is the isotropic tensor n
(l)

5 f 0I with f 0 being in general a

function of invariants of the rate-of-strain tensor,34 i.e., f 0

5 f 0(I1 ,I2 ,I3), where I15tr(ġ), I25$@ tr(ġ)#2
2tr(ġ2)%/2,

and I35Det(ġ). To a first approximation

n
(l)

5k
v
tr~ ġ !I, ~17!

k
v

is the second ~or dilatational! viscosity of the liquid.

Apart from the Newtonian and linear viscoelastic cases, the

shear stress tensor has a finite trace,35 i.e., tr@t
(l)#Þ0. There-

fore, if the liquid is compressible and/or the constitutive

equation for the liquid is nonlinear, there is a ‘‘viscous’’ con-

tribution to the mean pressure pm52tr@p
(l)#/3 @p(l)

52p lI1x
(l) is the total stress tensor in the liquid# that re-

sults in its variation from the thermodynamic pressure p l in

the liquid.

We assume that the liquid surrounding the encapsulated

microbubble is viscoelastic or more specifically, the liquid

obeys the 4-constant Oldroyd constitutive equation.35 From

~16! it follows that in the compressible case this equation

should contain additional terms involving tr(ġ):

t
(l)

1l1

Dc

Dt
t

(l)
1l3F ġ2

1

3
tr~ ġ !IG tr@t

(l)#

52m lH ġ2

1

3
tr~ ġ !I1l2

Dc

Dt
F ġ2

1

3
tr~ ġ !IG J . ~18!

Here l1 , l2 , and l3 are the material constants ~the constants

l1 and l2 are often referred to as relaxation and retardation

times, respectively!, Dc /Dt is the codeformational ~contra-

variant convected! time derivative

Dcf

Dt
5

Df

Dt
2~“v!†

•f2f•~“v!, f5t or ġ , ~19!

and D/Dt5]/]t1v•“ is the material time derivative.

Straightforward analysis shows that if the liquid flow is

purely radial, the first two diagonal components of the shear

stress tensor are in the form

F11l1

D

Dt
Gtrr

(l)
22l1

]vr

]r
trr

(l)

5

4m l

3
H 12

l3

2
tr@t

(l)#22l2

]vr

]r
1l2

D

Dt
J S ]vr

]r
2

vr

r
D ,

~20a!

F11l1

D

Dt
GtQQ

(l)
22l1

vr

r
tQQ

(l)

52

2m l

3
H 12

l3

2
tr@t

(l)#22l2

vr

r
1l2

D

Dt
J S ]vr

]r
2

vr

r
D .

~20b!

Since tr@t
(l)#5trr

(l)
12tQQ

(l) is not equal to zero, the shear

stress tensor can be represented as the sum of deviatoric

~traceless! and nondeviatoric tensors36

t
(l)

5t
(ld)

1
1
3tr@t

(l)#I. ~21!

Substituting ~21! into Eqs. ~20! and taking into account that
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tQQ
(ld)

52
1
2 trr

(ld) , ~22!

one can obtain the system of two coupled differential equa-

tions for trr
(ld) and tr@t

(l)#

F12

4l1

3
S ]vr

]r
1

vr

2r
D1l1

D

Dt
Gtrr

(ld)

52

2

3
S l32

2l1

3
D S ]vr

]r
2

vr

r
D tr@t

(l)#

1

4m l

3
F12

4l2

3
S ]vr

]r
1

vr

2r
D1l2

D

Dt
G S ]vr

]r
2

vr

r
D ,

~23a!

F12

2l1

3
S ]vr

]r
1

2vr

r
D1l1

D

Dt
G tr@t

(l)#

52l1S ]vr

]r
2

vr

r
D trr

(ld)
2

8m ll2

3
S ]vr

]r
2

vr

r
D 2

. ~23b!

Such traceless stress tensor formulation for viscoelastic fluid

flow is more suitable for analytical calculations. Also, as

shown by Oliveira,36 this formulation provides stability

of numerical computations. Finally, the rr- and

QQ-components of the stress tensor for the radial flow of the

4-constant Oldroyd liquid around the encapsulated mi-

crobubble can be written as

xrr
(l)

5trr
(ld)

1

1

3
tr@t

(l)#1knS ]vr

]r
1

2vr

r
D ,

~24!

xQQ
(l)

52

1

2
trr

(ld)
1

1

3
tr@t

(l)#1knS ]vr

]r
1

2vr

r
D ,

where rP(R ,`) and trr
(ld) and tr@t

(l)# are governed by Eqs.

~23!.
The reason we have adopted the 4-constant Oldroyd con-

stitutive equation is to enable us to understand what would

happen if the medium which surrounds the microbubble is

not just viscous but also has some elastic properties. Even

though blood by itself may show Newtonian behavior, as in

large arteries, blood together with the surrounding tissue pro-

vide a medium which globally has both viscosity and elas-

ticity. In that case, the simplest model that would capture

these effects would be the linear Maxwell model, but it is not

too much harder to include a retardation time and try to

derive results which might have wider applicability ~our re-

sults can be used for the interpretation of experimental data

on small-amplitude oscillations of microbubbles in dilute

polymer solutions!. Finally, since we extend the analysis be-

yond just linearized theory, use of convective time deriva-

tives makes sure that we do not miss any effects associated

with the convective contribution to the time rates of change.

We thus adopt the 4-constant Oldroyd model as a good first

step in trying to account for both viscous and elastic effects

in a general medium and still being able to make analytical

progress. Further explanations are given in Sec. V.

Equations ~3!, ~4!, ~9!, ~10!, ~15!, ~23!, ~24! and bound-

ary conditions ~6!–~8! comprise the full system of equations

for the radial flow of a compressible viscoelastic liquid near

the microbubble encapsulated by a viscoelastic solid shell.

We restrict our attention to the weakly compressible case for

which the equation of state ~3! contains only linear terms

r l5r l01

p l2p0

C l
2 , C l

2
5S dp l

dr l
D

0

, ~25!

~C l is the speed of sound in the liquid!. Then, substituting

Eqs. ~25! into Eqs. ~24! and ~9!, defining the dimensionless

variables

r
*
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*
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U
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*
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and denoting
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2s1
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, s2
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2s2
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,

~27b!

one can reduce the governing equations to the form:

r
*

P~a
*

,R
*

!:
]v

*
]r

*

1

2v
*

r
*

50, ~28a!

r
*
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~28b!
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~28c!

r
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D
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21 !#

1

r
*
2
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*
2

v
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*

50,

~28d!

r
*
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*
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*
]t

*

1v
*

]v
*

]r
*
D

52

]

]r
*
H p l*

2

1

3
tr@t

*
(l)#J

1

]

]r
*
Fk

v
*

r
*
2

]~r
*
2

v
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*

1

3t
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r
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r
*

P~R
*

,` !: F12

4De
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S ]v
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]r

*

1

v
*
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*
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D
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*rr
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5
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*rr
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~28h!
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5
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*
23k
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,
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~28i!
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*rr
(ld)

2

1

3
tr@t

*
(l)#2
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r
*
2

]~r
*
2

v
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!

]r
*

5ps*
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*rr
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2
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R
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,

r
*
→`: v

*
→0, p l*

→1. ~28j!

t
*

50: a
*

51, R
*

5R0 /a0 , v
*

50, p l*
51. ~28k!

Here M is the Mach number, De the Deborah number, Rel

and Res are the Reynolds numbers for the liquid and for the

shell, respectively. The characteristic velocity U5Ap0 /r l0 is

of the order of the bubble-wall velocity25 and l is the ratio of

two ~retardation and relaxation! time constants, which is

greater than zero but smaller than unity for a viscoelastic

liquid.35 An asterisk denotes nondimensional quantities.

III. MATCHED ASYMPTOTIC EXPANSION

Because we consider small-amplitude oscillations of the

microbubble covered by a thin shell (R
*

2a
*

!a
*

) with the

bubble-wall Mach number M much less than unity, the space

between the outer bubble interface and infinity can be di-

vided into three zones27,37~see Fig. 2!:

~1! r
*

P@Rex ,`), Rex@R
*

: The external zone ~far from the

bubble!, where the liquid compressibility is significant

but the nonlinear inertial forces produced by convective

accelerations are negligibly small;

~2! r
*

P@R
*

,R in#: The internal zone ~near the bubble wall!,
where the liquid can be considered to be incompressible

and the radial motion is due to contraction and expansion

of the bubble, but the nonlinear convective effects are

significant;

~3! r
*

P(R in ,Rex): An intermediate zone, where both the

liquid compressibility and the nonlinear convective ef-

fects are fairly large.

In the first two zones one can construct asymptotic analytical

solutions, the matching of which provides a solution in the

third overlap zone. In what follows the indexes ‘‘ex’’ and

‘‘in’’ refer to the external and internal zones of the liquid.

A. Far from the bubble

Inasmuch as r
*

@1 in the far field, one can introduce a

parameter «!1 such that

r
*

5

r̃
*
«

, ~29!

where r̃
*

is the radial coordinate that is O(1) in the far field.

This means that system ~28! has two small parameters: M

and «. Let us assume M;« and

v
*

5v

*
(ex)

5

]wex

]r
*

5«
]wex

] r̃
*

, ~30!

where wex is the velocity potential in the external zone. We

substitute ~29! and ~30! into Eqs. ~28! and restrict our atten-

tion to the leading order terms. From Eqs. ~28d! and ~28e!,
we then have

M 2
]p l*

(ex)

]t
1

«2

r̃
*
2

]

] r̃
*
S r̃

*
2

]wex

] r̃
*
D50,

]2wex

]t
*

] r̃
*

52

]p l*
(ex)

] r̃
*

.

~31!

Thus, nonlinear and viscous effects are negligibly small in

the region far from the bubble and the motion of the liquid is

wave-like because ~31! is reduced to the following linear

acoustic equations:

]2wex
*

]t
*
2 5

«2

M 2r̃
*
2

]

] r̃
*
S r̃

*
2

]wex
*

] r̃
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D 5
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M 2r
*
2

]

]r
*
S r

*
2

]wex
*

]r
*
D ,

p l*
(ex)

512

]wex
*

]t
*

, wex5wex
* 1E

0

t
*

F~ t̃ !d t̃

FIG. 2. Schematic of the internal and external zones.
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with the well-known solution

wex5

1

r
*

@c1~ t
*

2Mr
*

!1c2~ t
*

1Mr
*

!#1E
0

t
*

F~ t̃ !d t̃ ,

~32!

p l*
(ex)

512

1

r
*

@c18~ t
*

2Mr
*

!1c28~ t
*

1Mr
*

!# , ~33!

where the prime denotes differentiation with respect to the

argument, F( t̃ ) is an arbitrary function of time, and c2 and

c1 characterize the acoustic waves which move towards and

away from the bubble surface, respectively.

B. Near the bubble wall

Now r
*

;1 and the only small parameter in system ~28!
is M . Upon neglecting the terms of order M 2, Eq. ~28d!
takes the form

1

r
*
2

]

]r
*
S r

*
2

]w in

]r
*
D50, v

*
5v

*
(in)

5

]w in

]r
*

, ~34!

i.e., the standard incompressible formulation is valid near the

outer bubble wall. As seen from Eq. ~34! and boundary con-

ditions ~28h! and ~28i!, the radial velocity in the liquid near

the bubble surface, like in the shell, obeys formula ~13!,
whence it follows that

w in5ws52

R
*
2

r
*

dR
*

dt
*

52

a
*
2

r
*

da
*

dt
*

, ~35!

where w in and ws are the velocity potentials in the inner zone

and the shell. In the incompressible case Eqs. ~28f! and ~28g!
become
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F11De
D

Dt
*
G tr@t

*
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2 D 2
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~36b!

and Eq. ~28e! does not contain the dilatational viscosity term

]
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3t
*rr
(ld)

r
*

.

~37!

Here p l*
(in) is the liquid pressure in the internal zone. Obvi-

ously, one can put Eq. ~28b! in the same form as ~37!
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~38!

Upon integrating ~37! from R
*

to r
*

and using ~35!, we

obtain
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Equation ~39! provides p l*
(in) anywhere in the liquid near the

bubble, upon invoking the equation of momentum for the

shell and boundary conditions on the interfaces. Let us inte-

grate ~38! over r
*

from a
*

to R
*

and substitute @ps*
2x

*rr
(s) #r

*
5a

*
from ~28h! and @ps*

2x
*rr
(s) #r

*
5R

*
from ~28i!

into the resulting expression. We then have
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Equations ~39! and ~40! can be combined into the following

formula for the pressure in the liquid in the near field of the

bubble:
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*rr
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13F E
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dr̃1E

R
*

r
*

t
* r̃ r̃

(ld)

r̃
dr̃G , ~41!

where

Dr5

r l02rs0

rs0

. ~42!

C. Equation for radial oscillation

Equations ~35!, ~41! and ~32!, ~33! represent asymptotic

solutions of ~28! in the region near the bubble surface and far

from the bubble, respectively. To obtain an equation for ra-

dial oscillation of the encapsulated microbubble, one needs

to match these solutions in the overlap zone r
*

P@R in ,Rex#
on the assumption that this zone is at infinity (r

*
→`) with

respect to the inner solution and near the bubble center r
*
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→0) for the external solution. Matching conditions should be

physically relevant and must not change if other features of

flow, like the presence of vortices, had to be accounted for.

This implies that matching of the velocity potentials, as was

done by Prosperetti and Lezzi37,38 for instance ~see also Ref.

39!, is not appropriate if the flow is not potential. Note that

vortices appear in blood flow in large and curved vessels.40,41

Due to acoustic streaming a rotational field may be produced

in the vicinity of ultrasound contrast agents.42 The physically

correct matching conditions are the equality of volumetric

flow rates 4pr
*
2

v
*

and liquid pressures p l*
:27

4pr
*
2

v

*
(in)ur

*
→`54pr

*
2

v

*
(ex)ur

*
→0 , ~43a!

p l*
(in)ur

*
→`5p l*

(ex)ur
*

→0 . ~43b!

For the incompressible inner region, flow rate depends only

on time

4pr
*
2

v

*
(in)ur

*
→`54pr

*
2

]w in

]r
*
U

r
*

→`

54pa
*
2

da
*

dt
*

.

Therefore, upon using ~30! and ~32! condition ~43a! can be

rewritten in the form

a
*
2

da
*

dt
*

5$2c1~ t
*

2Mr
*

!2c2~ t
*

1Mr
*

!

1Mr
*

@2c18~ t
*

2Mr
*

!1c28~ t
*

1Mr
*

!#%r
*

→0

52c1~ t
*

!2c2~ t
*

!,

whence it follows that

c1~ t
*

!52c2~ t
*

!2Q~ t
*

!, Q~ t
*

!5a
*
2

da
*

dt
*

, ~44!

and the final asymptotic formulas for the velocity potential in

the far and near fields are

wex5

1

r
*
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1Mr
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*

!
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*

2Mr
*

!#1E
0

t
*

F~ t̃ !d t̃ ,

~45!

w in52

Q~ t
*

!

r
*

.

Using ~33! and ~45!, we find the asymptotic solution for

the liquid pressure in the far field

pl*
(ex)

512

1

r
*

@c28~ t
*

1Mr
*

!2c28~ t
*

2Mr
*

!

2Q8~ t
*

2Mr
*

!# . ~46!

Taking into account that

t
*rr
(l) ur

*
→`50,

substitution of Eqs. ~41! and ~46! into the matching condition

~43b! leads to the following equation for radial oscillation of

the encapsulated microbubble:

rs0

r l0
H S 11

Dra
*

R
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D a
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dt
*
2 1F3

2
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Dra
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R
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3 D G

3S da
*
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D 2J 5pa*
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where

pa*
5p i*

2S s1
*

a
*

1

s2
*

R
*
D 13F E

a
*

R
*

x
* r̃ r̃

(s)

r̃
dr̃1E

R
*

` t
* r̃ r̃

(ld)

r̃
dr̃G ,

~48!

p i*
5

p i0

p0

a
*
23k ,

p`*
512M S 2

d2c2

dt
*
2 1

d2Q

dt
*
2 D . ~49!

We have thus obtained the generalized Rayleigh–Plesset

~RP! equation for the radial motion of an encapsulated mi-

crobubble. In dimensional variables Eq. ~47! is of the same

form as derived by Church @see ~5! in Ref. 5#. However, in

the compressible formulation the p` is not the liquid pres-

sure at infinity but is related to the pressure in the matching

zone, i.e., far from the bubble compared to its radius but near

the bubble surface when compared with the wavelength and

the distance between the bubble center and the transducer

location. Note that the contribution of liquid viscoelasticity

to the bubble oscillation is given by the following integral

from R
*

to infinity:

E
R

*

` t
* r̃ r̃

(ld)

r̃
dr̃ ,

whence it follows that the compressibility corrections to Eq.

~18!, which are not small in the zone far from the bubble,

should be taken into account.

For many decades theoretical analyses of bubble dynam-

ics were based on the incompressible Rayleigh–Plesset equa-

tion, according to which the driving pressure was applied at

an infinitely distant position. Nonetheless, there was good

agreement between the solution of the RP equation and the

experimental data only if the pressure measured by a hydro-

phone at the location of the bubble was used as the driving

pressure in the RP equation. This has been somewhat of a

paradox among experimentalists and theoreticians about the

location and magnitude of the pressure that actually drives

the motion of the bubble.43 This paradox can be resolved

only if a finite speed of sound and spherical convergence of

acoustic waves in the liquid are accounted for. Any pressure

disturbance generated in a liquid by a transducer at infinity

never reaches the bubble. Even if the distance between the

transducer and the bubble is finite, we should take into ac-

count an increase in the wave amplitude as the bubble sur-

face is approached until the wave reaches the inner ~incom-

pressible! zone. Hence, the pressure at infinity should be

replaced in the RP equation by the pressure that is measured

at the outer edge of the inner zone, i.e., at the distance r
*

5R in to ensure that this equation is in good agreement with
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experimental results. Moss44 has shown that the appropriate

driving pressure is that within roughly 25 bubble radii from

the bubble, i.e., R in'25R
*

.

From a theoretical point of view, the driving pressure

p`(t)5p0p`*
is given by ~49!. In order to specify c2(t),

and hence p`*
, we should consider the evolution of the

pressure pR(t
*

) at r
*

5R t ~R t is the dimensionless distance

between the transducer and the bubble center!. Bubble oscil-

lations are then described by the RP equation and the follow-

ing difference equation for c2 @derived from ~46!# with both

lagging and leading times:27,45

pR~ t
*

!5p02

p0

R t

@c28~ t
*

1MR t!

2c28~ t
*

2MR t!2Q8~ t
*

2MR t!# . ~50!

In this paper, we do not consider the boundary condition ~50!
and assume that the function c2(t

*
) is sinusoidal

c2~ t
*

!5C sin vt
*

52

C

2
@ i exp ivt

*
1c.c.# , ~51!

where C is a constant, v is the nondimensional angular driv-

ing frequency, and c.c. means complex conjugate.

The term d2Q(t
*

)/dt
*
2 in ~49! involves the third-order

derivative of the bubble radius a
*

. This difficulty can be

obviated in the small Mach number regime (M!1).37,45 It is

apparent that
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The first two terms on the right-hand side of ~52! can be

replaced by the right-hand side of Eq. ~47!. In view of the

fact that if the Mach number is small, the following rough

estimate is valid:45

S M
d2Q

dt
*
2 D Y S a

*

d2a
*

dt
*
2 D;M

da
*

dt
*

;«a!1,

substitution of ~47! into ~52! and subsequent differentiation

yields

M
d2Q

dt
*
2 5M

d

dt
@a

*
F0~pa*

2p I*
!#1

rs0M

r l0

3F S F1

da
*

dt
*
D a

*

d2a
*

dt
*
2 1

1

2

d

dt
~a

*
F1!

3S da
*

dt
*
D 2G1OH M 2

d

dt
@a

*
F0Q9~ t

*
!#J , ~53!

where

F0~ t
*

!5

r l0

rs0
S 11

Dra
*

R
*

D 21

,

F1~ t
*

!5F0~ t
*

!S 11

Dra
*
4

R
*
4 D ~54!

and

p I*
5122M

d2c2

dt
*
2 . ~55!

The incident pressure p I*
is not equal to the driving pressure

p`*
but takes into account the convergent waves coming to

the bubble from the transducer. It can be considered as the

liquid pressure at the location of the bubble center in the

absence of the bubble,37 because ~i! this pressure results from

the external solution p l*
(ex) at r

*
→0, ~ii! there is no inner

zone in the case of pure liquid. The correction term on the

right-hand side of Eq. ~53! is negligible compared to the

terms which have been kept, provided that da
*

/dt
*

is itself

small.45

To eliminate the variables x
*rr
(s) and t

*rr
(ld) , we should

calculate the integrals in ~48!. From ~28c! it follows that the

first integral can be evaluated as

E
a
*

R
*

x
* r̃ r̃

(s)

r̃
dr̃52

4~R0
3
2a0

3!

3a0
3R

*
3

3FGs
*S 12

ae

a0a
*
D1

rs0

r l0Resa*

da
*

dt
*

G , ~56!

where the unstrained equilibrium radius is

ae5a0~11Z !, Z5

1

4Gs
*
S s1

*1

a0s2
*

R0
D R0

3

R0
3
2a0

3 . ~57!

When deriving ~56!, we have taken into account that for an

incompressible shell, the outer radius of the bubble, R
*

, can

be expressed in terms of the inner radius a
*

as R
*

5A3 a
*
3

1(r0 /a0)3 with r05A3 R0
3
2a0

3 being a constant. The

formula for ae has been obtained from the conditions ~28b!,
~28c!, ~28h!, and ~28i! at t

*
50 under the assumption that

p i05p0 ~the encapsulated microbubbles are permeable to

gas!.5

The calculation of the second integral is more intricate

because of the presence of the material derivative D/Dt
*

and the trace of the shear stress tensor tr@t
*
(l)# in ~28f!. How-

ever, in the case of small deviations of the bubble radius

from the equilibrium value: a
*

(t
*

)511x(t
*

), v
*

;x(t
*

),

when the nondimensional perturbation x(t
*

)!1, from Eq.

~28g! it follows that tr@t
*
(l)# is of the order of x2(t

*
). This

means that in Eq. ~28f! the term

2De

3
S h2

2

3
D S ]v

*
]r

*

2

v
*

r
*
D tr@t

*
(l)# ,

is a cubic nonlinearity, which cannot affect the first and sec-

ond harmonics of bubble oscillation ~see details in the Ap-

pendix!. Of course, in the case of large-amplitude bubble

oscillations ~bubble collapse, sonoluminescence, etc.!, the

trace of the shear stress tensor should be taken into

account.46 But because we consider the linear and quadratic
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nonlinear effects only, we remove this term from the consti-

tutive equation ~28f!. Note that it is exactly zero if l3

52l1/3. Then, Eq. ~28f! can be simplified by using the La-

grangian coordinate y5r
*
3

2a
*
3 and taking into account that

v
*

5Q(t
*

)/r
*
2 in the inner zone @see Eq. ~36a!#:

t
*rr
(l)

52

4

DeRel@y1a
*
3 ~ t

*
!#2/3 E

0

t
*

expS t̃ 2t
*

De
D

3H Q~ t̃ !1lDeQ8~ t̃ !

@y1a
*
3 ~ t̃ !#1/3

2

lDeQ2~ t̃ !

@y1a
*
3 ~ t̃ !#4/3J d t̃ . ~58!

Substituting ~58! into the second integral in ~48! and inte-

grating over y from R
*
3 (t

*
)2a

*
3 (t

*
) to ` result in the for-

mula

q~ t
*

!53E
R

*

` t
* r̃ r̃

(ld)

r̃
dr̃5

6

DeRel
E

0

t
*

expS t̃ 2t
*

De
D @H1~ t̃ ,t

*
!

1H2~ t̃ ,t
*

!#d t̃ , ~59a!

H1~ t̃ ,t
*

!5H Q~ t̃ !1lDeQ8~ t̃ !

a
*
3 ~ t̃ !2a

*
3 ~ t

*
!

2

lDeQ2~ t̃ !

@a
*
3 ~ t̃ !2a

*
3 ~ t

*
!#2J

3H 12F 11

a
*
3 ~ t̃ !2a

*
3 ~ t

*
!

R
*
3 ~ t̃ !

G 2/3J , ~59b!

H2~ t̃ ,t
*

!52

2lDeQ2~ t̃ !

R
*
3 ~ t̃ !@a

*
3 ~ t̃ !2a

*
3 ~ t

*
!#2

3H 12F 11

a
*
3 ~ t̃ !2a

*
3 ~ t

*
!

R
*
3 ~ t̃ !

G21/3J . ~59c!

Note that the integrand in ~59a! is not singular at t̃ 5t
*

if

deviations of the bubble radius from the equilibrium value

are small. Upon retaining linear and quadratic nonlinear

terms, integral ~59! takes the form

q~ t
*

!52

4a0
3

RelR0
3 F S 12

5a0
3

2R0
3 x D q1~ t

*
!

1S 22

a0
3

2R0
3D q2~ t

*
!G , ~60a!

F11De
d

dt
*
Gq1~ t

*
!5F11lDe

d

dt
*
G dx

dt
*

,

~60b!

F11De
d

dt
*
Gq2~ t

*
!5F11lDe

d

dt
*
Gx

dx

dt
*

.

An alternative derivation of ~60! is given in the Appendix. If

we make use of the linear Jeffreys constitutive equation, Eq.

~60a! will look as follows:

q~ t
*

!52

4a0
3

RelR0
3 Fq1~ t

*
!1S 22

3a0
3

R0
3 D q2~ t

*
!G . ~61!

The difference between Eq. ~60a! and the latter equation is

the quadratic nonlinear term

N5

10a0
6

RelR0
6 @xq1~ t

*
!2q2~ t

*
!# , ~62!

which represents the contribution from convective terms of

the constitutive equation to the second harmonic of bubble

oscillation.

Finally, substituting expression ~53! into Eq. ~47!, we

obtain the equation

rs0

r l0
H S 11

Dra
*

R
*

2MF1

da
*

dt
*
D a

*

d2a
*

dt
*
2

1F3

2
1

Dra
*

R
*

S 22

a
*
3

2R
*
3 D 2

M

2

d

dt
*

~a
*

F1!G S da
*

dt
*
D 2J

5pa*
2p I*

1M
d

dt
*

@a
*

F0~pa*
2p I*

!# , ~63a!

pa*
5

p i0

p0

a
*
23k

2S s1
*

a
*

1

s2
*

R
*
D 2

4~R0
3
2a0

3!

3a0
3R

*
3

3FGs
*S 12

ae

a0a
*
D1

rs0

r l0Resa*

da
*

dt
*

G1q~ t
*

!. ~63b!

Under the conditions rs05r l0 , when Dr50 and F0

5F151, Eq. ~63! simplifies to the equation for the oscilla-

tion of a free bubble

S 12M
da

*
dt

*
D a

*

d2a
*

dt
*
2 1

3

2
S 12

M

3

da
*

dt
*
D S da

*
dt

*
D 2

5S 11M
da

*
dt

*
D ~pa*

2p I*
!1Ma

*

d

dt
*

~pa*
2p I*

!.

~64!

If the liquid is Newtonian and the shell thickness is zero, the

dimensional version of Eq. ~64! is of the same order as the

Keller–Miksis equation47 @see also ~6.8! in Ref. 37#.

IV. FIRST- AND SECOND-HARMONIC RESPONSE

A. Equations for perturbations

Let us consider small-amplitude oscillations of the en-

capsulated microbubble in the sinusoidal acoustic field ~51!,
i.e., when the incident pressure

p I*
512PA sin vt

*
511

PA

2
@ i exp~ ivt

*
!1c.c.# ,

~65!
PA522v2MC .

The dimensionless amplitude of this field is small such that

PA5«pP , where P;O(1) and «p!1. The solution of Eq.

~63! can then be expanded in powers of the parameter «p

a
*

511x , R
*

5

R0

a0
F11

a0
3

R0
3 x1

a0
3

R0
3 S 12

a0
3

R0
3D x2

1O~x3!G ,

~66a!

x5x~ t
*

;«p!5«px1~ t
*

!1«p
2x2~ t

*
!1 ¯ , ~66b!

which are then inserted into ~60! and ~63!. At orders «p and

«p
2 we then obtain the equations for the first- and second-
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order perturbations in the inner radius of the microbubble,

x1(t
*

) and x2(t
*

), respectively. Under the assumption that

q1(t
*

)5«pq1
(1)(t

*
)1«p

2q1
(2)(t

*
)1o(«p

2) and p i05p0 , the

first-order equations look as follows:

a0

d2x1

dt
*
2 1d0

dx1

dt
*

1g0x11

4a0
3

RelR0
3 F11L

d

dt
*
Gq1

(1)~ t
*

!

52

P~ i2Lv !

2
exp ivt

*
1c.c., ~67a!

F11De
d

dt
*
Gq1

(1)~ t
*

!5F11lDe
d

dt
*
G dx1

dt
*

. ~67b!

Here

L5

r l0M

rs0
S 11

Dra0

R0
D 21

, ~68a!

a05

rs0

r l0
F11

Dra0

R0

1

4L

Res
S 12

a0
3

R0
3D G , ~68b!

g053k2s1
*2

s2
*a0

4

R0
4 14Gs

*S 12

a0
3

R0
3D F11S 11

3a0
3

R0
3 D ZG ,

~68c!

d05

4rs0

r l0Res
S 12

a0
3

R0
3D 1Lg0 , ~68d!

and Z is given by ~57!. Note that Eq. ~67a! is simply a

damped harmonic oscillator equation for x1(t
*

) which is

forced by the right-hand side and is coupled to q1
(1)(t

*
),

which in turn accounts for viscoelastic behavior of the exte-

rior liquid through ~67b!. We seek the solution of ~67! in the

form

F x1~ t
*

!

q1
(1)~ t

*
!G5F x1 f~ t

*
!

q1 f~ t
*

!G1 1

2
F A1

Q1
Gexp~ ivt

*
!1c.c. ~69!

with the complex amplitudes A1 and Q1 that can be consid-

ered as functions of the dimensionless angular frequency v.

The solution ~69! contains the homogeneous term, or the

complementary function @x1 f(t
*

) q1 f(t
*

)#Á. This term de-

scribes free oscillations of the bubble which are exponen-

tially damped in time. We consider only forced oscillations

and take the complementary function to be zero: x1 f(t
*

)

5q1 f(t
*

)50. Equation ~67b! is then reduced to an algebraic

relationship between Q1 and A1

Q1

A1

5n~v !5

De~12l !v2
1iv~11lDe2v2!

11De2v2 . ~70!

Substitution of ~69! into Eq. ~67a! gives, in view of ~70!, the

formula for the first-harmonic amplitude A1 of bubble oscil-

lations

A1

P
[A1P~v !52i

11iLv

D~v !1ivd~v !
, ~71!

where

D~v !5g02S a01

4a0
3L

RelR0
3Dv2

1

4a0
3De~12l !~11LDev2!v2

RelR0
3~11De2v2!

, ~72a!

d~v !5d01

4a0
3

RelR0
3 F12

De~12l !~De2L !v2

11De2v2 G . ~72b!

As seen from ~72!, the smaller the difference between the

relaxation and retardation times ~larger l!, the smaller the

liquid elasticity effects on bubble oscillations will be.

The nonlinear component q2(t
*

) of the integral q(t
*

)

which can be represented as q2(t
*

)5«p
2 q2

(1)(t
*

)1o(«p
2),

should be included in the second-order equations. From the

second equation in ~60b! and solution ~69!, it follows that

q2
(1)~ t

*
!5

n~2v !

8
A1

2 exp~2ivt
*

!1c.c.

where the function n is given by ~70!. Making use of the

above results and expanding to O(«p
2), we then obtain the

following second-order equations:

a0

d2x2

dt
*
2 1d0

dx2

dt
*

1g0x21

4a0
3

RelR0
3 F11L

d

dt
*
Gq1

(2)~ t
*

!

5

P2

4
@f0~v !1f2~v !A1P

2 ~v !exp~2ivt
*

!1c.c.# , ~73a!

F11De
d

dt
*
Gq1

(2)~ t
*

!5F11lDe
d

dt
*
G dx2

dt
*

. ~73b!

The new coefficients in this system can be expressed as fol-

lows:

F1
(0)

5S 11

Dra0

R0
D 21S 11

Dra0
4

R0
4 D , ~74a!

f0~v !5

~11L2v2!

@D2~v !1v2d2~v !#
F2g12

rs0

r l0
S 11

Dra0
4

R0
4 Dv2

1

20a0
6De~12l !v2

RelR0
6~11De2v2!

G , ~74b!

f2~v !5g11id1v1a1v2
2

irs0

r l0
S 11

Dra0
4

R0
4 DLv3

2

2~112iLv !n~2v !a0
3

RelR0
3 S 22

a0
3

2R0
3D 1

4a0
3n~v !

RelR0
3

3F 5a0
3

2R0
3 22iLvS F1

(0)
2

5a0
3

2R0
3D G1

2LF1
(0)v

A1P~v !
, ~74c!

a15

rs0

r l0
F5

2
1

4Dra0

R0

2

3Dra0
4

2R0
4

2

8L

Res
S 12

a0
3

R0
3D S 11

3a0
3

R0
3 2F1

(0)D G , ~74d!
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g15

3k~3k11 !

2
2s1

*1

s2
*a0

4

R0
4 S 12

2a0
3

R0
3 D

14Gs
*S 12

a0
3

R0
3D F11

3a0
3

R0
3 1ZS 11

9a0
6

R0
6 D G , ~74e!

d15

4rs0

r l0Res
S 12

a0
3

R0
3D S 11

3a0
3

R0
3 D 12L~g12F1

(0)g0!. ~74f!

Evidently, the solution of ~73! is a sum of zeroth and second

harmonics

F x2~ t
*

!

q1
(2)~ t

*
!G5F A0

Q0
G1 1

2
F A2

Q2
Gexp~2ivt

*
!1c.c. ~75!

Again A0 , A2 , Q0 , Q2 are the amplitudes that may depend

on the angular frequency v. Substituting solution ~75! into

Eqs. ~73!, we obtain the relationships Q25n(2v)A2 and

Q050 and the formulas for the zeroth- and second-harmonic

amplitudes A0 and A2 of bubble oscillations:

A0

P2 5

f0~v !

4g0

,
A2

P2 [A2P~v !5

f2~v !A1P
2 ~v !

2@D~2v !12ivd~2v !#
.

~76!

B. Resonance frequency and scattering cross
sections

Many investigators on bubble dynamics neglect the ef-

fects of viscosity and other dissipative effects on the reso-

nance frequency of bubble oscillation. Most ~see for instance

Ref. 8! assume that this frequency is equal to the undamped

natural frequency f 0 despite the fact that the damped natural

frequency f n differs both from f 0 and from the resonance

frequency f res when damping is allowed for. ~Here, we define

f 0 as the frequency of undamped unforced oscillations, f n as

that for damped unforced oscillations, f res as the forcing fre-

quency which results in the maximum response amplitude

for the damped bubble.! Let us consider the first-harmonic

response function, i.e., the absolute value of the function

A1P(v)

UA1

P
U5uA1P~v !u5F 11L2v2

D2~v !1v2d2~v !
G1/2

. ~77!

If the liquid and the shell are inviscid, d~v! is equal to zero

and the amplitude of bubble oscillation goes to infinity ~i.e.,

resonance takes place! at v5v res0 such that D(v res0)50.

The same condition holds for free oscillations, i.e., the di-

mensional resonance frequency f res05Uv res0 /(2pa0) is

equal to the natural frequency f 05Uv0 /(2pa0) in the case

of undamped oscillation

f res05 f 05

1

2pa0
F p0g0

rs0~11Dra0 /R0!
G1/2

. ~78!

In a viscous liquid the bubble resonates at the frequency

f res5Uv res /(2pa0) that is always less than f res0 . The non-

dimensional angular resonance frequency v res is the point at

which the function uA1P(v)u has its maximal value. This

point is one of the roots of the equation ~the extremum con-

dition!

duA1P~v !u

dv
50. ~79!

If De.0 and 0,l,1, the left-hand side of Eq. ~79! reduces

to a polynomial of degree five in v2, and hence it does not

have analytical solutions. Thus, in the viscoelastic liquid case

the resonance frequency of bubble oscillations can only be

found by the numerical maximization of the function

uA1P(v)u ~see the next section!. However, it is possible to

find the roots of Eq. ~79! analytically if l51. We then have

a quadratic equation in v2

L2am
2 v4

12am
2 v2

2~2amg02dm
2

1L2g0
2!50,

am5a01

4a0
3L

RlR0
3 , dm5d01

4a0
3

RelR0
3 . ~80!

If

dm.dmc5~2amg01L2g0
2!1/2, ~81!

Eq. ~80! does not have real roots, and hence the bubble does

not resonate at all. Otherwise, v res is given by the positive

real root of ~80!. Upon neglecting the liquid compressibility

(L50), the dimensional resonance frequency is found to be

f res15H f 0
2
2

2p0

p2a0
2r l0

S 11

Dra0

R0
D 22

3F 1

Res
S 12

a0
3

R0
3D 1

r l0

rs0Rel

a0
3

R0
3G 2J 1/2

. ~82!

As follows from ~80!, the encapsulated microbubble pulsates

in a compressible viscous liquid resonantly at the frequency

f res25

1

2pa0L
S p0

r l0
D 1/2

3H 11F11

L2

am
2 ~2g0am2dm

2
1L2g0

2!G 1/2J 1/2

.

~83!

At the same time, the natural frequency f n

5Uvn /(2pa0) of bubble oscillations is generally defined

from the condition D(v)1ivd(v)50 with v being a com-

plex variable: v5vn1iv i ~the imaginary part v i describes

attenuation of free bubble oscillations with time, the real part

vn is the nondimensional angular natural frequency!. Even if

the liquid is considered to be viscous and incompressible, f n

is not equal to the resonance frequency

f n5H f res1
2

1

p0

p2a0
2r l0

S 11

Dra0

R0
D 22

3F 1

Res
S 12

a0
3

R0
3D 1

r l0

rs0Rel

a0
3

R0
3G 2J 1/2

. ~84!

Of particular interest for ultrasound contrast imaging is

calculation of scattering cross sections ss1 and ss2 by the

encapsulated microbubble at the driving ~fundamental! fre-

quency f 5Uv/(2pa0) and at twice the driving frequency

2 f , respectively. These scattering cross sections ~which have

dimensions of area! are related to the ratio of the total acous-
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tic power scattered by the bubble at the first and second

harmonics to the intensity of the incident acoustic field5

ss15

4pa0
2r

*
2 I1

I0

, ss25

4pa0
2r

*
2 I2

I0

, ~85!

where I15uPs1u2/(2r lC l) and I25uPs2u2/(2r lC l) are the in-

tensities of the scattered acoustic wave at the first and second

harmonics, I05p0
2PA

2 /(2r lC l)5«p
2p0

2P2/(2r lC l) is the in-

tensity of the incident acoustic wave. Note that PA or P is

taken to be real. The Ps1 and Ps2 are the first- and second-

harmonic amplitudes of the scattered wave. As seen from

~46!, the scattered pressure field is ps(t
*

,r
*

)52p0Q8(t
*

2Mr
*

)/r
*

. Because the amplitude of bubble oscillation is

small, we can expand ps in powers of the small parameter «p

ps~ t
*

,r
*

!52

p0

3r
*

d2a
*
3 ~j !

dj2

'2«p

d2x1~j !

dj2

2«p
2

d2

dj2 @x2~j !1x1
2~j !#2O~«p

3!,

j5t
*

2Mr
*

. ~86!

Substituting ~69! and ~75! into ~86! yields

ps~ t
*

, r
*

!5

Ps1

2
exp ivt

*
1

Ps2

2
exp 2ivt

*
1c.c.,

where

Ps15«p v2p0A1

exp~2ikr
*

!

r
*

,

~87!
Ps254«p

2 v2p0S A21

A1
2

2
D exp~22ikr

*
!

r
*

, k5vM .

Finally, insertion of Eqs. ~87!, ~71! and the second equation

in ~76! into Eq. ~85! gives the following expressions for the

scattering cross sections at the first and second harmonics:

ss154pa0
2v4uA1P~v !u2,

ss2564pa0
2PA

2 v4UA2P~v !1

A1P
2 ~v !

2
U2

516pa0
2PA

2 v4uA1Pu4G , ~88!

where

G5U11

f2~v !

D~2v !12ivd~2v !
U2

. ~89!

The first expression of ~88! is consistent with Church’s deri-

vation @see formula ~26a! in Ref. 5#. However, the formula

for the second-harmonic scattering cross section @~26b! in

Ref. 5# was in error because it did not take into account the

nonlinear relationship between the pressure field scattered by

the bubble and radial oscillations of the bubble.

V. RESULTS AND DISCUSSIONS

In this section, we calculate the total damping coeffi-

cient, the resonance frequency, and the scattering cross sec-

tions for the air-filled encapsulated bubble in blood. In all

calculations the unperturbed liquid pressure p050.1 MPa,

the liquid and solid densities r l05998 kg m23 and rs0

51100 kg m23, the interfacial tensions s150.04 kg s22 and

s250.005 kg s22, the liquid viscosity is equal to the high-

shear-rate viscosity of blood: m l50.004 kg m21 s21 ~see

Ref. 40!, and the retardation time l250 s. The inner radius

of the microbubble a0 and the shell thickness d5R02a0 are

varied from 1 to 5 mm and from 15 to 200 nm, respectively.

The values of the speed of sound in the liquid, the relaxation

time, and the shell viscosity and elasticity are C l5` ~incom-

pressible case!, 1500, and 500 m s21, l150 ~Newtonian liq-

uid!, 0.01, 0.1, and 1 ms, ms50.5, 1.77, and 5 kg m21 s21,

Gs515, 88.8, and 150 MPa.

The values chosen for the parameters are in line with the

experimental data for ultrasound contrast agents. Specifi-

cally, such microbubbles are restricted to have a size between

1 and 10 mm.48 The larger bubbles cannot pass through the

pulmonary circulation. The scattered field from the smaller

bubbles is extremely small.48,49 This directly follows from

the formulas for scattering cross sections ~88!: ss1 and ss1

;a0
6V4, i.e., at given driving frequency the acoustic re-

sponse from a larger bubble is higher. The thickness of the

shell around the microbubbles depends on their size8 and the

type of surface-active material. Albunex® bubbles are cov-

ered by the shell of approximately 15 nm in thickness.5,50

Quantison™ bubbles have the thickest shell (d5200 nm).7

It should be noted that there are no direct measurements of

the shell viscosity and elasticity for ultrasound contrast

agents. The shell viscosity is estimated, for example, by fit-

ting the experimental data for the attenuation of acoustic

signals in the microbubble suspension to the predictions of

the simplistic theoretical model of de Jong.4,51 Also, these

parameters may depend on the shell thickness15 and other

factors. We therefore consider different values of the shell

viscosity and elasticity. Nevertheless, the second choice ~ms

51.77 kg m21 s21 and Gs588.8 MPa) corresponds to em-

pirical values for de Jong’s shell stiffness and shell damping

parameters.4,5 The values of the interfacial tensions and den-

sities are the same as in Ref. 5. Due to the presence of nucle-

ation agents and/or other microbubbles of contrast-agent sus-

pension, blood surrounding an encapsulated microbubble

provides a medium which is more compressible than blood

free of bubbles. This is the reason why we choose the value

500 m/s for the sound speed in the liquid.

Our expectation that the 4-constant Oldroyd constitutive

equation ~with the nonzero relaxation and retardation times!

can provide reasonable predictions for the radial ~diverging-

converging! flow of blood in large vessels ~and of dilute

polymer solutions! induced by high-frequency oscillations of

a gas microbubble is based on the following facts:

~i! Blood is a fluidized suspension of small elastic cells

~red cells, white cells, platelets! surrounded by blood

plasma. The cell deformability and aggregation result

in the stress relaxation and well-documented shear

thinning of blood at small and moderate shear

rates.12,52–55 Plasma by itself is a colloidal suspension

of proteins in an electrolyte solution, which shows

small deviation from the behavior of a pure liquid, at

least in some patients suffering from leukemia.56,57
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~ii! Due to complex structure, neither whole blood nor

blood plasma is a Newtonian liquid, even though vis-

cometric observations show negligible deviations

from the Newtonian law, as for instance, in the case of

blood flow in large vessels.40 The modern viscometric

techniques operate at the shear rates ~less than

30 000 s21) which are not enough to determine the

small elasticity, corresponding, for example, to the re-

laxation time of the order of a microsecond. The most

experimental data on blood viscosity have been ob-

tained at shear rates less than 12000 s21 ~see Refs.

52, 58, and 59!. Blood viscosity has also been mea-

sured using oscillatory flow apparatus operated at the

frequency of several Hz.60–62 However, the character-

istic time for the radial flow around the resonantly

pulsating bubble of radius 1 mm is less than a micro-

second. In particular, if the equilibrium liquid pres-

sure p050.1 MPa, liquid density r l05103 kg/m3,

and bubble radius a051 mm, the characteristic time

t
*

5a0 /Ap0 /a050.1 ms. Even small elasticity may,

therefore, affect the bubble pulsations because the

Deborah number De5l1 /t
*

is of the order of unity,

if the relaxation time l150.1 ms. Incidentally, this

fact allows the use of a gas microbubble for the mea-

surement of very small elasticity of the liquid: the

acoustic field scattered by the bubble in a Newtonian

liquid will be different from that in a slightly vis-

coelastic liquid. It is worth noting that such ultrasonic

spectrometry is already used in food engineering.63

~iii! Rheological behavior of blood in large vessels has

been investigated using the Oldroyd constitutive

equations, among which are the 4-constant

Oldroyd,64,65 5-constant Oldroyd,66 and Oldroyd-B

models.67,68 As shown by Chmiel and Walitza,65 there

is a good agreement between the predictions of the

4-constant Oldroyd model and experimental data un-

der the assumption that the parameters of the model

are functions of invariants of the rate-of-strain tensor.

This model can also be used for blood-mimicking ma-

terials utilized to testing medical ultrasound

techniques69–71 and for suspensions of normal red

blood cells in albumin, in which the cell aggregates

are not formed and elasticity is only due to the cell

deformation.52

~iv! The fact that the relaxation and retardation times de-

crease with increasing shear rate directly follows from

the experimental data on the aggregation and disag-

gregation of red blood cells in shear flow.72 As noted

by Cokelet,53 the characteristic time for red cell ag-

gregation is of the order of 1 min in the absence of

superimposed shear but becomes of the order of 10 s

at a shear rate of about 10 s21. At high shear rates, the

relaxation time is expected to be determined by the

red cell deformation which gives the values below

0.06 s.

~v! Not only do blood viscosity and elasticity affect the

dynamics of microbubbles in blood vessels, but also

the viscoelastic properties of surrounding tissues ~in
particular, blood vessel walls! may have some impact

on microbubble oscillations. The tissue viscoelasticity

should be taken into account if the distance between

the microbubble center and the tissue does not exceed

the wavelength of acoustic waves. In that case, tissue

will be located in either the internal or intermediate

zones ~see Sec. III!. To calculate the shear stress ten-

sor t
(l) in these zones and the term q(t

*
) of Eqs. ~63!,

we then need to assume that the liquid surrounding

the microbubble is a medium consisting of both blood

and tissue. For the problem of bubble oscillation, the

4-constant Oldroyd model is a good first step in trying

to account for viscoelastic effects in such medium. It

should be noted that the radial oscillations of a gas

bubble in tissue by itself have already been investi-

gated using the Upper-Convective Maxwell and linear

Jeffreys models.46,74,73

At a shear rate of about 1500 s21, the apparent blood

viscosity is about 0.004 kg m21s21 ~see Ref. 52!. According

to existing experimental results, it does not change at further

increasing shear rate.40 However, modern viscometric tech-

niques are not capable of determining the small elasticity of

blood ~in large vessels!, which may affect the microbubble

pulsations. One can model this small elasticity as well as the

elasticity of surrounding tissue by adding elastic terms to the

Newtonian constitutive equation with the high-shear-rate vis-

cosity of 0.004 kg m21 s21. This should work if the charac-

teristic time for bubble pulsation is much less than the char-

acteristic time for shear flow at which the well-documented

shear thinning takes place ~from 1/1500 s to 10 s!, because

our purpose is not to consider elastic effects due to cell ag-

gregation. We would like only to understand how small

blood elasticity ~for example, plasma elasticity! or/and tissue

elasticity affects microbubble pulsations under the conditions

when blood is usually considered to be Newtonian. This is

why we analyze bubble oscillations assuming that the zeroth

order shear viscosity in the constitutive equation is equal to

0.004 kg m21 s21. We neglect the retardation term in the

constitutive equation (l250) for the sake of simplicity.

From Eqs. ~72! it follows that the only effect of the rate-of-

strain relaxation is a decrease in the contribution from liquid

elasticity to bubble pulsations.

A. Damping coefficients

In order to obtain the correct expressions for linear

damping coefficients, one needs to divide both the numerator

and denominator of ~71! by 11iLv and turn back to dimen-

sional variables. The formula for the first-harmonic ampli-

tude A1d5a0A1 then takes the form

A1d5a0PA1P~V !

52

ip0P

rs0a0~11Dra0 /R0!

3F 1

V0
2
2V2

1Sac~V !1Sel~V !12iVb~V !
G . ~90!

Here V5(a0
21Ap0 /r l0)v is the angular driving frequency,

V05(a0
21Ap0 /r l0)v052p f 0 is the angular undamped

natural frequency, Dr is given by ~42!, and
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Sac~V !5

r l0
2

rs0
2 S 11

Dra0

R0
D 22 V4a0

2

C l
2

3F11

r l0
2

rs0
2 S 11

Dra0

R0
D 22 V2a0

2

C l
2 G21

, ~91a!

Sel~V !5

4m la0

rs0R0
3 S 11

Dra0

R0
D 21 ~l12l2!V2

11l1
2V2 , ~91b!

are functions of V which can be interpreted as contributions

of acoustic radiation and elasticity of the liquid to the stiff-

ness of the bubble. The total damping coefficient b~V! that

also depends on the driving frequency is the sum of four

components: b(V)5bvis11bvis21bac(V)2Dbel(V),

where

bvis15

2m l

rs0a0
2 S 11

Dra0

R0
D 21 a0

3

R0
3 , ~92a!

bvis25

2ms

rs0a0
2 S 11

Dra0

R0
D 21S 12

a0
3

R0
3D , ~92b!

bac~V !5

r l0

rs0
S 11

Dra0

R0
D 21 V2a0

2C l

3F11

r l0
2

rs0
2 S 11

Dra0

R0
D 22 V2a0

2

C l
2 G21

, ~92c!

Dbel~V !5

2m la0

rs0R0
3 S 11

Dra0

R0
D 21 l1~l12l2!V2

11l1
2V2 , ~92d!

are the liquid and shell parts of the viscous damping coeffi-

cient, the acoustic radiation damping coefficient, and the

contribution of the liquid elasticity to b~V!, respectively.

Note that thermal effects were ignored upon deriving ~71!. In

the case of a free bubble ~r l05rs0 , a05R0), when Dr

5bvis250, the viscous and acoustic radiation damping coef-

ficients are identical to those derived by Prosperetti:28

bvis5bvis15

2m l

r l0a0
2 , bac~V !5

V2a0

2C l
F11S Va0

C l
D 2G21

,

~93!

and the acoustic contribution to the bubble stiffness, Sac(V),

is equal to the third term in the right-hand side of Eq. ~12! in

Ref. 28

Sac~V !5

V4a0
2

C l
2 F11

V2a0
2

C l
2 G21

. ~94!

It should be mentioned that the formulas for the viscous

damping coefficients ~92a! and ~92b! are equivalent to

Church’s expressions @~30a! and ~30b! in Ref. 5#. However,

if the shell and the liquid have different densities, as was

assumed by Church, the acoustic radiation damping coeffi-

cient bac differs from that for a free bubble and formula

~30d! of Ref. 5 is, therefore, inexact in that case. Note that

the liquid compressibility should be taken into account for

small bubbles at high ~natural! frequencies. The fact is that

both the acoustic contribution to the bubble stiffness Sac in

Eq. ~91a! and the acoustic radiation damping coefficient bac

in ~92c! increase with decreasing the bubble radius a0 under

the assumption that V5V0 , r l05rs0 , and the shell thick-

ness d5R02a0 is fixed.

From ~90! and the condition l1.l2 it follows that elas-

ticity of the liquid enhances the stiffness of the bubble and

reduces viscous damping of bubble oscillation. However,

Dbel(V) is always less than bvis1 , i.e., viscous damping

cannot be canceled even in the case of large relaxation times.

Hereafter, we consider bvis12Dbel(V) as a liquid viscous

damping coefficient and bvis2 as a shell viscous damping

coefficient. Elasticity of the shell raises the stiffness of the

bubble through an increase in the undamped natural fre-

quency, and yet it does not influence damping. Also, oscilla-

tions of encapsulated microbubbles highly depend on the dif-

ference in density between the shell and the liquid. If the

shell is more dense than the liquid (r l0 /rs0,1), the ampli-

tude and attenuation of encapsulated-microbubble oscilla-

tions are smaller than those of free-microbubble oscillations.

As noted above, the effects of heat conduction through

the microbubble walls can be incorporated in analysis of mi-

crobubble oscillation by considering the polytropic exponent

k instead of a ratio of specific heats for the gas gg and by

accounting for the thermal dissipation in the linear damping

coefficient. The b~V! is then equal to

b~V !5bvis11bvis21bac~V !1bT~V !2Dbel~V !, ~95!

where bT(V) is the frequency-dependent thermal damping

coefficient. We take into account thermal effects by reference

to the expressions for k and bT(V) given by Prosperetti29 for

small-amplitude oscillations of free gas bubbles. There are

no effects of encapsulation on the polytropic exponent if the

specific heats of the shell are very large compared with those

of the gas, and therefore,

k5

1

3
Real$F̃~ iPeg/2!%5

gg@113~gg21 !G2~APeg!#

@113~gg21 !G2~APeg!#2
19~gg21 !2@G1~APeg!22/Peg#2

. ~96!

Here gg is the ratio of constant-pressure to constant-volume specific heats for the gas, F̃(iPeg/2) is given in Eq. ~3.28! of Ref.

29,

Peg5

2Va0
2

ng

5

2Vrgcga0
2

kg

~97!
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is the Peclet number for the gas, ng the thermal diffusivity of the gas, kg the thermal conductivity of the gas, cg the specific

heat of the gas at constant pressure, and

G6~APeg!5

1

APeg

F sinhAPeg6sinAPeg

coshAPeg2cosAPeg

G .

As with the damping coefficient due to the liquid viscosity bvis1 , the thermal damping coefficient bT(V) for encapsulated

microbubble oscillations differs from that for free bubble oscillations by the factor r l0 /@rs0(11Dra0 /R0)#

bT~V !5

p0

2rs0a0
2 S 11

Dra0

R0
D 21 Im$F̃~ iPeg/2!%

V

5

9p0gg~11Dra0 /R0!21@G1~APeg!22/Peg#

2rs0a0
2~gg21 !V$@3G2~APeg!11/~gg21 !#2

19@G1~APeg!22/Peg#2%
. ~98!

Figure 3 illustrates the dependence of the total damping

coefficient b~V! as well as the liquid viscous, shell viscous,

acoustic radiation, and thermal damping coefficients @bvis1

2Dbel(V), bvis2 , bac(V), bT(V)# on the driving frequency

V for the encapsulated bubble of radius a051 mm in accor-

dance with Eqs. ~92!, ~95!, and ~98!. The liquid surrounding

the microbubble is considered to be viscoelastic with the

relaxation time l150.1 ms. The shell around the mi-

crobubble is thin (d515 nm) and very viscous @ms

51.77 kg/(m•s)# . The total damping of such microbubbles,

as discussed by Church,5 is dominated by viscous effects.

Indeed, in the range of medical ultrasound frequencies ( f

51 – 10 MHz) thermal damping is three orders of magnitude

less than viscous damping due to the shell. While radiation

damping rises with increasing the driving frequency, it

comes into play only at frequencies above 10 MHz. When

comparing the liquid and shell contributions to viscous

damping, one can see that bvis1@bvis2 if

ms@m lS R0
3

a0
3 21 D 21

.

This gives ms@22m l for a microbubble of radius 1 mm with

a 15 nm thick shell. For the above values of viscosities

(ms /m l5442.5) the total damping of microbubble oscilla-

tions is determined practically by the shell parameters even if

the liquid is Newtonian. Obviously, the bvis1 and the differ-

ence between bvis1 and bvis2 become greater with increasing

the shell thickness, i.e., one can neglect liquid viscous, ther-

mal, and radiation effects when considering the attenuation

of oscillations for ultrasound contrast agents with thicker

shells ~Fig. 4!. Moreover, if the liquid is viscoelastic, the

liquid viscous damping drops sharply as the driving fre-

quency increases ~Fig. 3!. This happens even at small relax-

ation times (l1>0.1 ms) when elastic effects seem to be

negligible ~Fig. 5!. From ~92d! it follows that the liquid elas-

ticity has a minor effect on viscous damping if l1

!1/(2p f ). This gives l1,0.01 ms for the frequencies be-

FIG. 3. Damping coefficients versus driving frequency for an encapsulated

air bubble of radius 1 mm. The solid line is the total damping coefficient b.

The dashed and dash–dot lines correspond to the acoustic radiation and

thermal damping coefficients bac and bT , the thick and thin dotted lines are

the shell and liquid viscous damping coefficients bvis12Dbel and bvis2 .

Parameters: p050.1 MPa, d5R02a0515 nm, m l50.004 kg/(m•s), ms

51.77 kg/(m•s), l150.1 ms, l250 s, r l05998 kg/m3, rs0

51100 kg/m3, C l51500 m/s, s150.04 kg/s2, s250.005 kg/s2.

FIG. 4. Total damping coefficient as a function of driving frequency for an

encapsulated microbubble of radius 1 mm. The curves labeled 1–3 are for

values of shell thickness d515, 100, and 200 nm, respectively. The total

damping coefficient for a free microbubble of the same radius is marked off

by the dashed line.
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tween 1 and 10 MHz. All these suggest that viscosity of the

shell is the most important parameter for defining the attenu-

ation of microbubble oscillation.

B. Resonance frequency

In view of Eq. ~90!, the amplitude-frequency response

function uA1Pu can be written as

uA1P~V !u

5

p0

rs0a0
2~11Dra0 /R0!

3H 1

@V0
2
2V2

1Sac~V !1Sel~V !#2
14V2b2~V !

J 1/2

,

~99!

where b~V! takes into account the thermal dissipation and is

given by ~95!. Also, V052p f 0 is calculated according to the

formula ~78! wherein the polytropic exponent k is given by

Eq. ~96!. We perform the numerical maximization of the

amplitude-frequency response function in order to find the

resonance frequency f res of bubble oscillation. The numerical

results are shown in Figs. 6–8.

Previously, the resonance frequency f res for the encapsu-

lated microbubbles was taken to be equal to the undamped

natural frequency f 0 ~see Refs. 8 and 15!. However, this

works only for reasonably large bubbles, when the viscous

damping coefficients are much less than the undamped natu-

ral frequency. The ratio of bvis11bvis2 to f 0 , and hence the

difference between f res and f 0 rise as the bubble size de-

creases. Numerical analysis confirms this. The resonance and

undamped natural frequencies ~solid and dotted lines! for the

encapsulated microbubble in an incompressible Newtonian

liquid ~C l5` , l15l250 s), as functions of the inner

bubble radius, are depicted in Fig. 6. First, this figure shows

that the assumption f res5 f 0 does not work for the encapsu-

lated microbubble having a radius below 5 mm. Second,

there exists a critical radius a0c such that any microbubble of

radius a0,a0c does not resonate at all. The critical radius for

the air-filled microbubble surrounded by blood and encapsu-

lated by a 15 nm thick shell with elasticity of 15 MPa and

viscosity of 1.77 kg m21 s21 is 2.6 mm. This value is above

a mean bubble radius for many commercial contrast-agent

suspensions.48 Third, unlike the undamped natural frequency,

the dependence of the resonance frequency on the bubble

radius is not monotonic. There exists a maximal value of the

resonance frequency. If the driving frequency exceeds this

value, no bubbles oscillate resonantly. It immediately follows

that for each value of the driving frequency below the maxi-

mal one there are two resonant bubble sizes ~not one as be-

fore!. It should be noted that the resonance frequency of

bubble oscillation is not the frequency at which the scattering

cross section has a local maximum ~see the next section!.

The latter frequency is a monotonic function of the bubble

radius which goes to infinity at the critical value of the ra-

dius.

Because the thermal damping coefficient is nearly con-

stant and very small ~compared with the viscous damping

coefficients! for micron bubbles at medical ultrasound fre-

quencies ~Fig. 3!, the resonance frequency is scarcely af-

fected by the thermal dissipation. The analytical solution

~82! with k51.1, which is marked off by the dashed line in

Fig. 6, differs from the numerical result only slightly. Note

that if the liquid is considered to be incompressible and

Newtonian, the only reason why the numerical solution may

be different from the formula ~82! is the thermal dissipation.

For the parameters as in Fig. 6, the inclusion of thermal

damping leads to an increase in the critical bubble radius

from 2.55 to 2.6 mm ~less than 2%!. Upon neglecting thermal

damping and elasticity of the liquid, the critical radius a0c

can be found analytically from ~81! which, in view of ~90!,

can be rewritten as follows:

FIG. 5. Liquid viscous damping coefficient as a function of driving fre-

quency for an encapsulated microbubble in a viscoelastic liquid with differ-

ent values of the relaxation time. The curves labeled 1–3 are for values of

the relaxation time l150.01 ms, 0.1, and 1 ms, respectively. The remaining

parameters are the same as in Fig. 3.

FIG. 6. Resonance frequency ~solid! for an encapsulated microbubble in an

incompressible Newtonian liquid, as a function of bubble radius, compared

with the undamped natural frequency ~dotted!. The dashed line is the ana-

lytical solution ~82!. The shell elasticity is 15 MPa, C l5` , l15l250 s.

Other parameters are as in Fig. 3.
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2

rs0a0c
2 S 11

Dr

11d/a0c
D 21Fms2

ms2m l

~11d/a0c!3G5

V0

&
,

~100!

where V0 is also a function of a0c .

The existence of resonant peaks in the experimental scat-

tering cross section curves ~at the driving frequency! for

contrast-agent suspensions with a mean radius below 2.6 mm

indicates that the value of the shell elasticity is more than 15

MPa and/or the value of the shell viscosity is less than

1.77 kg m21 s21. As seen in Figs. 7~a! and 7~b!, the critical

bubble radius and the maximal value of the resonance fre-

quency increase with increasing the shell elasticity and de-

creasing the shell viscosity. Also, the critical radius is larger

for the microbubbles with thicker shells @Fig. 7~c!#. The fact

that the critical bubble radius depends on the shell param-

eters gives us a possibility to evaluate one of them. For ex-

ample, we can measure the shell thickness by atomic force

microscopy5 and the shell viscosity by fitting the experimen-

tal data for the ultrasound attenuation in the contrast-agent

suspension to the theoretical calculations based on ~95!. Of

course, we should sum b~V! over all available bubble sizes

for this. Note that ~95! includes the contribution of liquid

elasticity to the total damping coefficient, which was not

taken into account previously. Having these data and know-

ing the values of the gas and liquid parameters, we only need

FIG. 7. Resonance frequency versus bubble radius for an encapsulated mi-

crobubble in a compressible Newtonian liquid (C l51500 m/s) for different

values of ~a! shell elasticity, ~b! shell viscosity, and ~c! shell thickness. For

plots ~a! and ~c! ms51.77 kg/(m•s); for ~b! and ~c! Gs588.8 MPa; for ~a!

and ~b! d515 nm. Other parameters are given above.

FIG. 8. Effects of liquid compressibility and viscoelasticity on the reso-

nance frequency of microbubble oscillation. Plots ~a! and ~b! are resonance

frequency as a function of bubble radius for different values of C l at l1

5l250 s and of l1 at C l51500 m/s and l250 s, respectively. The shell

elasticity is 88.8 MPa, other parameters are as in Fig. 6.
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to find the critical bubble radius in order to evaluate the shell

elasticity.

The effects of the liquid compressibility on the reso-

nance frequency are small as compared to the shell effects.

There is a decrease in the maximal resonance frequency and

no change in the critical bubble radius with decreasing the

speed of sound in the liquid @Fig. 8~a!#. Figure 8~a! shows

that the resonance frequency of a 2-micron bubble equals

about 4.15 MHz if the liquid is considered to be incompress-

ible and equals about 4.11 MHz if the speed of sound C l

51500 m/s. Nonetheless, the difference 0.04 MHz cannot

be considered very small ~relative to experimental measure-

ment sensitivity!. The elasticity of the liquid influences the

resonance frequency, though its effects are much smaller

than the effects of the shell elasticity because m l!ms . In a

viscoelastic liquid the maximal resonance frequency is al-

ways larger than in a Newtonian liquid @Fig. 8~b!#. The criti-

cal bubble size deviates slightly from the value obtained in

the case of a Newtonian liquid. It is necessary to say that the

liquid elasticity has the greatest impact on the resonance fre-

quency at l1;0.1 ms @the dotted line in Fig. 8~c!#. The ef-

fects of the liquid elasticity are diminished with a further

increase in l1 ~compare the dotted and dash–dot lines!.

C. Scattering cross sections

In order to incorporate thermal damping into the formula

for the second-harmonic amplitude, we rewrite the second

equation in ~76! in the form

A2P~V !5

f2
*~V !A1P

2 ~V !

V0
2
24V2

1Sac~2V !1Sel~2V !14iVb~2V !
,

~101!

where

f2
*~V !5

p0

rs0a0
2 S 11

Dra0

R0
D 21@122i~La0 /U !V#f2~V !

114~La0 /U !2V2 .

The thermal damping coefficient bT is inside A1P(V) and

b(2V). The first- and second-harmonic scattering cross sec-

tions ss1 and ss2 are then given by the following expres-

sions:

ss15

4pr l0
2 a0

6

p0
2 V4uA1P~V !u2, ~102a!

ss25

16pr l0
2 a0

6PA
2

p0
2 V4uA1P~V !u4G , ~102b!

with

G5U11

f2
*~V !

V0
2
24V2

1Sac~2V !1Sel~2V !14iVb~2V !
U2

.

~103!

Note that PA is nondimensional.

The resonance frequency of bubble oscillation is usually

evaluated from the curves for the scattering cross section at

the driving frequency. It is taken to be equal to the frequency

f max at which ss1 has a local maximum. However, the fre-

quency f max differs from the resonance frequency due to the

presence of V4 in the numerator of Eq. ~102a!. In the case of

an incompressible Newtonian liquid, when thermal effects

are neglected, it is easy to obtain that

f max5 f max15

f 0
2

f res

. ~104!

If viscous damping is small ~large bubbles!, we can neglect

the difference between f res and f 0 and then f max is approxi-

mately equal to the undamped natural frequency. This is not

true for microbubbles with the radius less than 5 mm for

which f res greatly differs from f 0 ~see above!. From Eq.

~104! and the existence of the critical bubble radius a0c at

which f res50 it follows that the frequency f max tends to in-

finity as the bubble radius approaches a0c , though the un-

damped natural frequency goes to infinity at a050. The re-

sult is practically unaffected if thermal effects are allowed

for. Figure 9 shows the dependence of the maximum fre-

quency f max on the bubble radius a0 for the encapsulated

microbubble in an incompressible Newtonian liquid, as ob-

tained from the numerical maximization of the scattering

cross section ss1 . The frequency goes to infinity at the point

a052.52 mm which is very close to the critical value for the

resonance frequency ~2.6 mm!. Experimentalists define the

resonance radius of the bubble from the resonant peaks in the

scattering cross-section curves. However, it is difficult to

construct the dependence of ss1 on a0 because of polydis-

persity of real microbubble suspensions. However, there is

no problem to measure the scattered pressure field for a par-

ticular value of the driving frequency. Therefore, specialists

in acoustic scattering make use of the plots of scattering

cross section versus frequency for defining the maximum

frequency f max ~which is considered as the resonance fre-

quency!. The resonance radius of the bubble can then be

found from the f max2a0 curves.75 Previously, the assumption

f max5f0 was used for calculating the resonance bubble ra-

dius, i.e., the undamped natural frequency was considered to

be the frequency at which the scattering cross section had a

local maximum. As seen in Fig. 9, this assumption, which

works only for large bubbles, leads to underestimating the

FIG. 9. Maximum frequency f max ~solid! for an encapsulated microbubble

in an incompressible Newtonian liquid, as a function of bubble radius, com-

pared with the undamped natural frequency f 0 ~dashed!. The same param-

eters as in Fig. 6.
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resonant size of microbubbles. For the parameters of this

figure, the undamped natural frequency gives the resonant

radius of 1.945 mm at the driving frequency f 53.5 MHz.

However, the actual resonant radius is 2.945 mm ~Fig. 9!.
Indeed, for a microbubble with the radius of 2.945 mm the

scattering cross section ss1 has a maximum at the driving

frequency of 3.5 MHz. However, there is no resonant peak in

ss1 at 3.5 MHz for a 1.945 mm bubble ~Fig. 10!. Moreover,

the scattering cross section never reaches a local maximum

for such a microbubble because its radius is below the criti-

cal value.

Figures 11 and 12 show the effects of the shell param-

eters ~elasticity, viscosity, and thickness! and of the com-

pressibility and viscoelasticity of the surrounding liquid on

the second-harmonic scattering cross section ss2 . First, an

increase in the shell elasticity results in increasing the mag-

nitude of the resonant peak in ss2 @Fig. 11~a!#. This contra-

dicts one of Church’s conclusions that ‘‘the magnitude and

the sharpness of the peaks in the cross section curves tend to

decrease as the shell rigidity increases.’’ 5 It is easy to check

that the derivative of ss1 or ss2 with respect to Gs is always

positive, i.e., the scattering cross sections increase with in-

creasing shell elasticity. Of course, the scattering is weaker

for microbubbles with more viscous shells @Fig. 11~b!#.
Therefore, viscosity of the shell is the main reason why the

encapsulated microbubbles scatter more poorly than free mi-

crobubbles. It should be noted that the second-harmonic

resonance, which takes place if the driving frequency is

equal to f max/2, appears only for reasonably small values of

the shell viscosity @see the dashed line in Fig. 11~b!#. As seen

in Fig. 11~c!, the microbubbles with thick shells are poor

scatterers in comparison with those with thin shells. This is

because an increase in the shell thickness leads to the in-

creased impact of the shell viscosity on microbubble oscilla-

tions.

The liquid parameters weakly affect the scattering by the

encapsulated microbubbles as compared to the shell param-

eters. The magnitude of the resonant peak in the scattering

cross section curves tends to decrease with decreasing the

speed of sound in the liquid because of acoustic radiation

damping @Fig. 12~a!#. The resonant scattering by the mi-

crobubbles is higher in a viscoelastic liquid than in a New-

tonian liquid. The larger the relaxation time, the higher the

resonant peak @Fig. 12~b!#. It is worth noting that the mag-

nitude of the resonance peak at C l5` differs from that at

FIG. 10. First-harmonic scattering cross section versus driving frequency.

The solid line is for a052.945 mm, the dashed line for a051.945 mm. The

surrounding liquid is incompressible and Newtonian.

FIG. 11. Second-harmonic scattering cross section versus bubble radius for

an encapsulated microbubble in a compressible Newtonian liquid for differ-

ent values of ~a! shell elasticity, ~b! shell viscosity, and ~c! shell thickness.

PA50.3, other parameters are given in Fig. 7.
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C l51500 m/s by a factor of about 1.5. The same difference

is seen between a Newtonian liquid and a viscoelastic liquid

with the relaxation time 1026 s. Moreover, the relaxation

time for blood may be higher. For example, the characteristic

time for red cell deformation may reach 0.06 s ~see Ref. 53!.
The effects of liquid compressibility and elasticity are there-

fore detectable by current experimental technique.76

VI. CONCLUSIONS

In this study, the equation for radial oscillations of an

encapsulated gas bubble in a compressible viscoelastic liquid

has been derived using the method of matched asymptotic

expansions. The Kelvin–Voigt and 4-constant Oldroyd mod-

els were adopted to describe the viscoelastic properties of the

encapsulating layer and of the liquid, respectively. Based on

this equation, the small-amplitude forced oscillations of the

encapsulated microbubble were analyzed. The formulas for

the first- and second-harmonic amplitudes of bubble oscilla-

tion and the expressions for the scattering cross sections at

the driving frequency and at twice that frequency were pre-

sented.

We have shown that if the bubble is small ~;2 mm in

size! and is covered by a shell 15 nm ~or more! in thickness,

the total damping of its radial oscillation is determined by

the shell viscosity. In the viscoelastic liquid case, the contri-

bution of the liquid viscosity to the total damping coefficient

is below that for a Newtonian liquid and sharply decreases

with frequency even at small values of the relaxation time.

The numerical maximization of the amplitude-frequency re-

sponse function reveals that the resonance frequency for the

encapsulated bubble of radius a0,5 mm highly depends on

the shell and liquid viscosities, and therefore, significantly

differs from the undamped natural frequency. Hence, the

presently accepted assumption f res5 f 0 fails over a range of

ultrasound contrast agents. Moreover, at given values for the

shell and liquid parameters there exists a critical value of the

bubble radius such that any smaller microbubble does not

resonate. This critical radius is about 1.5 mm for the mi-

crobubble surrounded by blood and encapsulated by 15 nm

thick shell having elasticity Gs588.8 MPa and viscosity

ms51.77 kg m21 s21. Recall that these values correspond to

those obtained by fitting the de Jong theory with experimen-

tal data for Albunex® bubbles ~see Refs. 6 and 5!.
Usually, experimentalists consider the frequency at

which the first-harmonic scattering cross section is maximal

as the resonance frequency of bubble oscillation. This is not

true for micron bubbles. Upon neglecting thermal effects and

considering the liquid to be Newtonian and incompressible,

this maximum frequency f max can be expressed in terms of

the undamped natural and resonance frequencies as f max

5f0
2/fres . When the bubble radius approaches the critical

value, this maximum frequency tends to infinity, whereas the

resonance frequency tends to zero. Also, the assumption

f max5f0 , which is used for evaluating the resonance bubble

size from the experimental data on the scattering cross sec-

tion ~vs the driving frequency!, is no longer valid for the

encapsulated microbubbles. In the range of medical ultra-

sound frequencies it leads to significant underestimation of

the resonance bubble size.

The resonant peaks in the scattering cross section curves

are very sensitive to the shell parameters but not to the liquid

parameters. The effects of liquid compressibility and vis-

coelasticity on the scattering by the encapsulated mi-

crobubbles are, therefore, small. There is a slight increase in

the magnitude of the peaks with decreasing the liquid viscos-

ity or the speed of sound in the liquid and with increasing the

relaxation time. But these effects are detectable based on the

sensitivity of current experiments. The experimental results,

which indicate that the encapsulated microbubbles scatter ul-

trasound more poorly than free ones, are due to the shell

viscosity. It is not true that the shell elasticity is responsible

for that. The scattering cross sections increase with increas-

ing the shell elasticity. If the shell becomes thicker, the scat-

tering deteriorates. This can also be explained by the in-

creased impact of the shell viscosity on microbubble

oscillations.
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APPENDIX: SMALL-AMPLITUDE ANALYSIS OF THE
CONSTITUTIVE EQUATION

The effects of liquid compressibility are negligible near

the bubble surface. In that case, the 4-constant Olrdroyd con-

stitutive model is reduced to the system of equations @see

Eqs. ~36!#:
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where the function

Q~ t
*

!5a
*
2 ~ t

*
!

da
*

dt
*

. ~A2!

If the amplitude of the incident acoustic field is small, i.e.,

the bubble undergoes small-amplitude oscillations

a
*

~ t
*

!511x1~ t
*

!,

~A3!
x1~ t

*
!5«px1~ t

*
!1«p
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*
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we can seek the solution of Eqs. ~A1! as expansion in powers

of a small parameter «p

t
*rr
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2 Y 21O~«p
3!.

~A4!

To obtain the equations for stress perturbations we substitute

~A3! and ~A4! into the system ~A1! and separate the resulting

expressions in the orders of «p . The first-order equations

look as follows:
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From the second equation of ~A5! it follows that the trace of

the shear stress tensor tr@t
*
(l)# is a quadratic nonlinear term

~of order «p
2). The second-order equations then have the

form
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These equations are uncoupled because the only interaction

term in Eq. ~A1a!

2S h2
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3
D De Q~ t

*
!

r
*
3 tr@t

*
(l)# ,

is of order «p
3 . Therefore, this term should be taken into

account only in the equations for the third- and higher-order

stress perturbations. This means that the trace of the shear

stress tensor affects neither the first harmonic nor the second

harmonic of bubble oscillation. Indeed, the integral

q~ t
*

!53E
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*
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` t
* r̃ r̃
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dr̃ ,

the contribution of liquid viscoelasticity to bubble oscilla-

tions, does not depend on the third-order stress perturbation

T3 if we restrict our attention to the quadratic nonlinear

terms. This is because r
*

is of order of unity and the integral

is not singular at any value of t
*

, at least, in the case of

small-amplitude oscillations. Using Eqs. ~A3! and ~A4!, we

can write this integral in the form
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The first- and second-order stress perturbations T1 and T2 ,

which are the solutions of the first equation of ~A5! and Eq.

~A6a!, can be represented as
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where the functions h1(t
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) are solutions

of the following ordinary differential equations:

S 11De
d

dt
D h1~ t

*
!52

4

Rel
S 11lDe

d

dt
D dx1

dt
*

, ~A9!

S 11De
d

dt
D h2~ t

*
!52

4

Rel
S 11lDe

d

dt
D

3S dx2

dt
*

12x1

dx1

dt
*
D , ~A10!

S 11De
d

dt
D g2~ t

*
!5De

dx1

dt
*

h1~ t
*

!1

4lDe

Rel
S dx1

dt
*
D 2

.

~A11!

3555Phys. Fluids, Vol. 14, No. 10, October 2002 Radial oscillations of encapsulated microbubbles

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 20:13:33



Substitution of ~A8! into ~A7! and further integration of the

result yield

q~ t
*
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Expression ~A12! takes the form of Eq. ~60! after some re-

arrangement and reverting to the variable x(t
*

).

1F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga,

‘‘Ultrasound contrast agents. Basic principles,’’ Eur. J. Radiol. 27, S157

~1998!.
2P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong,

‘‘Ultrasound contrast imaging: current and new potential methods,’’ Ultra-

sound Med. Biol. 26, 965 ~2000!.
3P. N. T. Wells, ‘‘Ultrasonic imaging of the human body,’’ Rep. Prog. Phys.

62, 671 ~1999!.
4N. de Jong, ‘‘Acoustic properties of ultrasound contrast agents,’’ Ph.D.

thesis, Erasmus University, Rotterdam, The Netherlands ~1993!.
5C. C. Church, ‘‘The effects of an elastic solid surface layer on the radial

pulsations of gas bubbles,’’ J. Acoust. Soc. Am. 97, 1510 ~1995!.
6N. de Jong and L. Hoff, ‘‘Ultrasound scattering of Albunex® micro-

spheres,’’ Ultrasonics 31, 175 ~1993!.
7P. J. A. Frinking and N. de Jong, ‘‘Acoustic modeling of shell-

encapsulated gas bubbles,’’ Ultrasound Med. Biol. 24, 523 ~1998!.
8L. Hoff, P. C. Sontum, and J. M. Hovem, ‘‘Oscillations of polymeric

microbubbles: Effect of the encapsulating shell,’’ J. Acoust. Soc. Am. 107,

2272 ~2000!.
9Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue

~Springer-Verlag, New York, 1993!.
10Y. C. Fung, Biomechanics: Circulation ~Springer-Verlag, New York,

1996!.
11B. A. J. Angelsen, Ultrasound Imaging—Waves, Signals, and Signal Pro-

cessing, Vols. 1 and 2 ~Emantec, Trondheim, 2000!.
12G. B. Thurston, ‘‘Viscoelastic properties of blood and blood analogs’’ in

Advances in Hemodynamics and Hemorheology, edited by T. V. How ~JAI,

Greenwich, 1996!, pp. 1–30.
13C. T. Chin and P. N. Burns, ‘‘Predicting the acoustic response of a mi-

crobubble population for contrast imaging in medical ultrasound,’’ Ultra-

sound Med. Biol. 26, 1293 ~2000!.
14N. G. Page, A. Cowley, and A. M. Campbell, ‘‘Short pulse acoustic exci-

tation of microbubbles,’’ J. Acoust. Soc. Am. 102, 1474 ~1997!.
15D. L. Miller, ‘‘Frequency relationships for ultrasonic activation of free

microbubbles, encapsulated microbubbles, and gas-filled micropores,’’ J.

Acoust. Soc. Am. 104, 2498 ~1998!.
16W. Lauterborn, ‘‘Numerical investigation of nonlinear oscillations of gas

bubbles in liquids,’’ J. Acoust. Soc. Am. 59, 283 ~1976!.
17L. A. Crum and A. Prosperetti, ‘‘Nonlinear oscillations of gas bubbles in

liquids: An interpretation of some experimental results,’’ J. Acoust. Soc.

Am. 73, 121 ~1982!.
18P. N. Burns, D. H. Simpson, and M. A. Averkiou, ‘‘Nonlinear imaging,’’

Ultrasound Med. Biol. 26, S19 ~2000!.
19P. J. A. Frinking, A. Bouakaz, N. de Jong, F. J. Ten Cate, and S. Keating,

‘‘Effect of ultrasound on the release of micro-encapsulated drugs,’’ Ultra-

sonics 36, 709 ~1998!.
20M. W. Miller, ‘‘Gene transfection and drug delivery,’’ Ultrasound Med.

Biol. 26, S59 ~2000!.
21A. L. Klibanov, ‘‘Targeted delivery of gas-filled microspheres, contrast

agents for ultrasound imaging,’’ Adv. Drug Delivery Rev. 37, 139 ~1999!.
22E. C. Unger, T. A. Fritz, T. Matsunaga, V. R. Ramaswami, D. Yellowhair,

and G. Wu, ‘‘Therapeutic drug delivery systems,’’ US Patent No. 5770222

~1998!.
23P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. H. Brandenburger, and K.

W. Ferrara, ‘‘Optical and acoustical observations of the effects of ultra-

sound on contrast agents,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Con-

trol 46, 220 ~1999!.
24P. Jauregi and J. Varley, ‘‘Colloidal gas aphrons: potential applications in

biotechnology,’’ Trends Biotechnol. 17, 389 ~1999!.

25R. I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 ~Hemisphere,

Washington, 1990!.
26M. S. Plesset and A. Prosperetti, ‘‘Bubble dynamics and cavitation,’’

Annu. Rev. Fluid Mech. 9, 145 ~1977!.
27I. Sh. Akhatov, N. K. Vakhitova, G. Ya. Galeyeva, R. I. Nigmatulin, and D.

B. Khismatullin, ‘‘Weak oscillations of a gas bubble in a spherical volume

of compressible liquid,’’ J. Appl. Math. Mech. 61, 921 ~1997!.
28A. Prosperetti, ‘‘Thermal effects and damping mechanisms in the forced

radial oscillations of gas bubbles in liquids,’’ J. Acoust. Soc. Am. 61, 17

~1977!.
29A. Prosperetti, ‘‘The thermal behavior of oscillating gas bubbles,’’ J. Fluid

Mech. 222, 587 ~1991!.
30R. B. Chapman and M. S. Plesset, ‘‘Thermal effects in the free oscillation

of gas bubbles,’’ J. Basic Eng. 93, 373 ~1971!.
31I. M. Ward, Mechanical Properties of Solid Polymers ~Wiley, Chichester,

1983!.
32E. A. Evans and R. M. Hochmuth, ‘‘Membrane viscoelasticity,’’ Biophys.

J. 16, 1 ~1976!.
33L. D. Landau and E. M. Lifshitz, Fluid Mechanics ~Pergamon, Oxford,

1987!.
34C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dy-

namics ~Oxford University Press, New York, 1997!.
35R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric

Liquids, Vol. 1: Fluid Mechanics ~Wiley, New York, 1987!.
36P. J. Oliveira, ‘‘A traceless stress tensor formulation for viscoelastic fluid

flow,’’ J. Non-Newtonian Fluid Mech. 95, 55 ~2000!.
37A. Prosperetti and A. Lezzi, ‘‘Bubble dynamics in a compressible liquid.

Part 1. First-order theory,’’ J. Fluid Mech. 168, 457 ~1986!.
38A. Lezzi and A. Prosperetti, ‘‘Bubble dynamics in a compressible liquid.

Part 2. Second-order theory,’’ J. Fluid Mech. 185, 289 ~1987!.
39E. A. Brujan, ‘‘A first-order model for bubble dynamics in a compressible

viscoelastic liquid,’’ J. Non-Newtonian Fluid Mech. 84, 83 ~1999!.
40D. N. Ku, ‘‘Blood flow in arteries,’’ Annu. Rev. Fluid Mech. 29, 399

~1997!.
41T. G. Pedley, The Fluid Mechanics of Large Blood Vessels ~Cambridge

University Press, Cambridge, 1980!.
42G. Gormley and J. Wu, ‘‘Observation of acoustic streaming near Al-

bunex® spheres,’’ J. Acoust. Soc. Am. 104, 3115 ~1998!.
43W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, ‘‘Hydrodynamic

simulations of bubble collapse and picosecond sonoluminecence,’’ Phys.

Fluids 6, 2979 ~1994!.
44W. C. Moss, ‘‘Understanding the periodic driving pressure in the

Rayleigh–Plesset equation,’’ J. Acoust. Soc. Am. 101, 1187 ~1997!.
45R. I. Nigmatulin, I. Sh. Akhatov, N. K. Vakhitova, and R. T. Lahey, Jr.,

‘‘On the forced oscillations of a small gas bubble in a spherical liquid-

filled flask,’’ J. Fluid Mech. 414, 47 ~2000!.
46J. S. Allen and R. A. Roy, ‘‘Dynamics of gas bubbles in viscoelastic fluids.

II. Nonlinear viscoelasticity,’’ J. Acoust. Soc. Am. 108, 1640 ~2000!.
47J. B. Keller and M. Miksis, ‘‘Bubble oscillations of large amplitude,’’ J.

Acoust. Soc. Am. 68, 628 ~1980!.
48D. Cosgrove, ‘‘Echo enhancers and ultrasound imaging,’’ Eur. J. Radiol.

26, 64 ~1997!.
49T. G. Leighton, The Acoustic Bubble ~Academic, London, 1994!.
50C. Christiansen, H. Kryvi, P. C. Sontum, and T. Skotland, ‘‘Physical and

biochemical characterization of Albunex, a new ultrasound contrast agent

consisting of air-filled albumin microspheres suspended in a solution of

human albumin,’’ Biotechnol. Appl. Biochem. 19, 307 ~1994!.
51J. N. Marsh, C. S. Hall, M. S. Hughes, J. Mobley, J. G. Miller, and G. H.

Brandenburger, ‘‘Broadband through-transmission signal loss measure-

ments of Albunex suspensions at concentrations approaching in vivo

doses,’’ J. Acoust. Soc. Am. 101, 1155 ~1997!.
52S. Chien, ‘‘Shear dependence of effective cell volume as a determinant of

blood viscosity,’’ Science 168, 977 ~1970!.
53G. R. Cokelet, ‘‘The rheology and tube flow of blood,’’ in Handbook of

Bioengineering, edited by R. Skalak and S. Chien ~McGraw-Hill, New

York, 1986!, pp. 14.1–14.17.
54C. M. Rodkiewicz, P. Sinha, and J. S. Kennedy, ‘‘On the application of a

constitutive equation for whole blood,’’ J. Biomech. Eng. 112, 198 ~1990!.
55W. W. Nichols and M. F. O’Rourke, McDonald’s Blood Flow in Arteries

~Lea & Febiger, Philadelphia, 1990!.
56D. A. McDonald, Blood Flow in Arteries ~Edward Arnold, London, 1974!.
57H. Schmid-Schönbein, ‘‘The clinical significance of hemorheology,’’ in

The Rheology of Blood, Blood Vessels and Associated Tissues, edited by

3556 Phys. Fluids, Vol. 14, No. 10, October 2002 D. B. Khismatullin and A. Nadim

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 20:13:33



D. R. Gross and N. H. C. Hwang ~Sijthoff & Noordhoff, Alphen aan den

Rijn, 1981!, pp. 1–21.
58D. E. Brooks, T. W. Goodwin, and G. V. F. Seaman, ‘‘Interactions among

erythrocytes under shear,’’ J. Appl. Physiol. 28, 172 ~1970!.
59S. Goto, N. Tamura, M. Sakakibara, Y. Ikeda, and S. Handa, ‘‘Effects of

ticlopidine on von Willebrand factor-mediated shear-induced platelet acti-

vation and aggregation,’’ Platelets 12, 406 ~2001!.
60G. B. Thurston, ‘‘Erythrocyte rigidity as a factor in blood rheology: Vis-

coelastic dilatancy,’’ J. Rheol. 23, 703 ~1979!.
61G. B. Thurston, ‘‘Significance and methods of measurement of viscoelas-

tic behavior of blood,’’ in The Rheology of Blood, Blood Vessels and

Associated Tissues, edited by D. R. Gross and N. H. C. Hwang ~Sijthoff &

Noordhoff, Alphen aan den Rijn, 1981!, pp. 236–256.
62D. Schneditz, F. Rainer, and T. Kenner, ‘‘Viscoelastic properties of whole

blood: Influence of fast sedimenting red blood cell aggregates,’’ Biorheol-

ogy 24, 13 ~1987!.
63A. Kulmyrzaev and D. J. McClements, ‘‘High frequency dynamic shear

rheology of honey,’’ J. Food. Eng. 45, 219 ~2000!.
64W. M. Phillips and S. Deutsch, ‘‘Toward a constitutive equation for

blood,’’ Biorheology 12, 383 ~1975!.
65H. Chmiel and E. Walitza, On the Rheology of Blood and Synovial Fluids

~Research Studies, New York, 1980!.
66S. Deutsch and W. M. Phillips, ‘‘The use of the Taylor–Couette stability

problem to validate a constitutive equation for blood,’’ Biorheology 14,

253 ~1977!.
67G. Pontrelli, ‘‘Pulsatile blood flow in a pipe,’’ Comput. Fluids 27, 367

~1998!.

68A. Leuprecht and K. Perktold, ‘‘Computer simulation of non-newtonian

effects on blood flow in large arteries,’’ Comput. Methods Biomech.

Biomed. Engin. 4, 149 ~2001!.
69J. Lubbers, K. Ramnarine, and P. R. Hoskins, ‘‘Blood mimicking fluid for

flow Doppler test object,’’ Eur. J. Ultrasound 7, S16 ~1998!.
70C. J. P. M. Teirlinck, R. A. Bezemer, C. Kollmann, J. Lubbers, P. R.

Hoskins, P. Fish, K.-E. Fredfeldt, and U. G. Schaarschmidt, ‘‘Develop-

ment of an example flow test object and comparison of five of these test

objects, constructed in various laboratories,’’ Ultrasonics 36, 653 ~1998!.
71V. Sboros, C. M. Moran, T. Anderson, S. D. Pye, I. C. Macleod, A. M.

Millar, and W. N. McDicken, ‘‘Evaluation of an experimental system for

the in vitro assessment of ultrasonic contrast agents,’’ Ultrasound Med.

Biol. 26, 105 ~2000!.
72G. R. Cokelet, ‘‘Rheology and hemodynamics,’’ Annu. Rev. Physiol. 42,

311 ~1980!.
73V. N. Alekseev and S. A. Rybak, ‘‘The behavior of gas bubbles in in-

sonated biological tissues,’’ Acoust. Phys. 44, 243 ~1998!.
74J. S. Allen and R. A. Roy, ‘‘Dynamics of gas bubbles in viscoelastic fluids.

I. Linear viscoelasticity,’’ J. Acoust. Soc. Am. 107, 3167 ~2000!.
75V. L. Newhouse and P. M. Shankar, ‘‘Bubble size measurements using the

nonlinear mixing of two frequencies,’’ J. Acoust. Soc. Am. 75, 1473

~1984!.
76R. A. Roy and R. E. Apfel, ‘‘Mechanical characterization of microparticles

by scattered ultrasound,’’ J. Acoust. Soc. Am. 87, 2332 ~1990!.

3557Phys. Fluids, Vol. 14, No. 10, October 2002 Radial oscillations of encapsulated microbubbles

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 20:13:33


