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Abstract: We investigated compact stars consisting of cold quark matter and fermionic dark matter
treated as two admixed fluids. We computed the stellar structures and fundamental radial oscillation
frequencies of different masses of the dark fermion in the cases of weak and strong self-interacting
dark matter. We found that the fundamental frequency can be dramatically modified and, in some
cases, stable dark strange planets and dark strangelets with very low masses and radii can be formed.
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1. Introduction

Compact stars offer a variety of possibilities for probing the inner structure of matter
through astronomical observations. In particular, matter at extremely high densities can
only be probed, so far, by investigating unique objects that represent one of the possible
final stages of stellar evolution. The structure of compact stars can be determined by solving
the Tolman–Oppenheimer–Volkov (TOV) equations, given the equation of state (EoS) for
the matter under consideration [1,2].

For high enough central energy densities, one expects to find either hybrid stars, i.e.,
neutron stars with a quark matter (QM) core, or even more exotic objects, such as quark
stars. Quark stars [3] and their structure [4] have been considered for more than half a
century, even before the elaboration of quantum chromodynamics (QCD) in the 1970s.
Later, after a seminal work by Witten [5], a rich phenomenology of self-bound strange
stars [6,7] and quark (hybrid) stars emerged using the MIT bag model [8] as a framework
for the EoS at high densities. For a review on quark matter in neutron stars, see Ref. [9].

On the other hand, dark matter (DM) represents about a quarter of the total mass–
energy density content of the universe or, equivalently, ∼85% of its matter content. Apart
from this, it is needed to explain structure formations without modifying general relativity
in the current cosmological standard model [10–12]. Nevertheless, there is still no exper-
imental evidence of DM-constituent particles, and its nature remains one of the greatest
mysteries of particle physics. Over the years, many candidates have been proposed as
being DM-constituent particles, with masses ranging from 10−33 GeV to 1015 GeV, includ-
ing weakly interacting massive particles (WIMPs), axions and axion-like particles (ALPs),
sterile neutrinos, neutralinos, and so on [13]. In spite of their nature, if DM-constituent
particles do not self annihilate and are non-relativistic at freeze-out (cold dark matter
(CDM)), the probability of their interaction with ordinary baryonic matter will increase
within the extreme densities found in compact stars. In this case, DM can accumulate and
thermalize in a small radius. So, if quark stars are to be found in the universe, they have
most likely accumulated some amount of dark matter over the course of their lives.

In this paper, we investigate strange quark stars consisting of cold QM and non self-
annihilating fermionic cold DM treated as two admixed fluids, attracted only gravitationally.
As our main goal, we aim to compute the fundamental radial oscillation frequency of
admixed QM and DM two-fluid stars for a relevant range of masses of the dark fermion.
We consider the cases of weak and strong self-interacting DM and also study how the total
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mass and radius of quark and dark stars are modified by their mutual presence in the
admixed star.

We describe the QM component on the framework of the MIT bag model, which
represents a choice for simplicity, which was mainly motivated by the possibility of direct
comparison to previous work. Moreover, for analyses that depend on a range of values for
the dark fermion mass and the intensity of DM self-interaction, it is convenient to avoid
other bands in parameters that would come about naturally in more realistic descriptions
of the EoS, such as those relying on perturbative QCD [14–24].

Neutron stars and quark stars admixed with DM have previously been considered.
The effects of fermionic and bosonic DM on the equilibrium features and radial oscillations
of neutron stars (NS) have been discussed, e.g., in Refs. [25–31] (see Ref. [32] for a
more complete list of references). Reference [33] considers hybrid NSs with an EoS for
neutron star matter that uses perturbative QCD and effective field theory as high and low-
density descriptions, respectively, and polytropes as interpolating functions, as discussed
in Ref. [18]1, in addition to taking into account inner and outer crusts. The authors also
consider white dwarfs admixed with asymmetric DM and find dark, compact (Jupiter-like)
planets and limits on the DM content of the stars in order to satisfy the two-solar mass
observational constraint [34,35]. A stability analysis is also performed by solving the usual
Sturm–Liouville problem for one-fluid stars [36,37]. Reference [13] extends these results to
a wider range of dark fermion masses, from 1 GeV to 500 GeV, assuming different amounts
of DM at the stellar center. From this analysis, the authors inferred that the total mass
decreases with mD, putting constraints on mD and on DM capture.

Quark stars admixed with dark matter have been discussed in Ref. [38], where the
authors use the MIT bag model to describe the EoS for QM admixed with DM made of dark
fermions of mass mD = 100 GeV (on the typical WIMP mass scale). They considered two
cases: free and strongly self-interacting DM. Solving the TOV equations with two fluids
that interact only gravitationally, they found minor modifications to the maximum mass
and radius, of the order of a few percent, though with higher values of the central energy
density due to a greater gravitational pull.

So far, the stability against radial oscillations of quark stars admixed with dark matter
has been studied using one-fluid formalism, usually with simplified interaction terms
and unphysical dark-fermion masses [39,40]. A complete treatment of the stability of two-
fluid stars requires a non-trivial extension of the Chandrasekhar second-order differential
equation, where a coupled system of equations should be solved for the corresponding
Lagrangian displacements associated with each fluid, but which also depend on the dis-
placement of the other fluid [26,27,41,42], as will be discussed in the sequel.

The paper is organized as follows. In Section 2, we briefly describe the two-fluid
hydrostatic equilibrium equations together with the general-relativistic formalism used
to study radial pulsations of the admixed stars. Section 3 contains our main results and
discussion. Section 4 presents our summary and perspectives. We adopt natural units, i.e.,
h̄ = c = 1.

2. Framework

In this section we summarize the main features of the TOV equations for the admixture
of two fluids that interact only gravitationally. The one-fluid radial oscillation equations
are conveniently partitioned to analyze either the stability of the quark mater core or dark
matter core of the whole compact star. For the bag constant we use B1/4 = 145 MeV, which
implements the Bodmer–Witten–Terazawa hypothesis for strange quark matter [2]. This
choice yields a maximum mass of 2.01 M� and a radius of R = 11 km. As mentioned
previously, fermionic dark matter is considered as being either weakly (y = 0.1) or strongly
(y = 103) self interacting [43]. Here, y ≡ mD/mint, where mD is the dark fermion mass, and
mint is the scale of interaction. One can consider that mint ∼ 100 MeV for strong interactions
and mint ∼ 300 GeV for weak interactions. The values y = 0.1 and y = 103 are commonly
adopted as typical illustrations.
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2.1. Two-Fluid Hydrostatic Equilibrium Equations

Since the structure of spherically symmetric, static one-fluid compact stars is deter-
mined from the usual TOV equations, they can be separated in order to deal with two
fluids that only interact gravitationally. This can be performed as follows. The (perfect)
one-fluid energy-momentum tensor is divided into two parts, i.e., Tµν = Tµν

1 + Tµν
2 . This,

in turn, induces a separation of the total pressure and energy density in fluid components,
as p = p1 + p2 and ε = ε1 + ε2, respectively. Given that this separation does not affect
the temporal eν(r) or radial eλ(r) metric functions, the corresponding equations keep their
original forms, depending on the total pressure and energy densities. On the other hand,
one has a set of coupled TOV equations for each of the fluids.

In our case, i.e., quark and dark matter fluids, we have these two-fluid TOV equations
in its dimensionless form given by [33] (see Ref. [29] for a detailed variational derivation):

dp′QM

dr′
= −

(p′QM + ε′QM)

2
dν

dr′
,

dm′QM

dr′
= 4πr′2ε′QM,

dp′DM
dr′

= −
(p′DM + ε′DM)

2
dν

dr′
, (1)

dm′DM
dr′

= 4πr′2ε′DM,

dν

dr′
= 2

(m′QM + m′DM) + 4πr′3(p′QM + p′DM)

r′(r′ − 2(m′QM + m′DM))
,

where p′ and ε′ are the dimensionless pressure and energy density, respectively, and
m′QM,DM are the dimensionless gravitational masses enclosed inside the dimensionless
radial coordinate r′.

The set of equations above is solved simultaneously by specifying the (dimension-
less) EoSs for QM, i.e., p′QM = p′QM(ε′QM), and DM, i.e., p′DM = p′DM(ε′DM). As usual, the
conditions at the center should be given for QM and DM in the admixed star. The numerical
integration stops when one of the pressures reaches zero, i.e., p′QM/DM(R′QM/DM) = 0, char-
acterizing the QM or DM core surface, allowing us to obtain the corresponding gravitational
mass m′QM/DM(R′QM/DM) = M′QM/DM, where, in general, R′QM 6= R′DM. If R′QM > R′DM,
the admixed star has a DM core and, if R′QM < R′DM, it has a DM halo surrounding a

QM core.2

The boundary conditions for the metric function ν(r) come from ensuring that it
matches the Schwarzschild metric outside the QM or DM core in the admixed star, i.e.,:

ν(R′QM) = ln

(
1−

2(M′QM + m′DM(R′QM))

R′QM

)
(2)

or

ν(R′DM) = ln

(
1−

2(m′QM(R′DM) + M′DM)

R′DM

)
, (3)

respectively.

2.2. Pulsations of Quark and Dark Matter Cores

The equations that describe the radial pulsations of one-fluid compact stars were
obtained for the first time by S. Chandrasekhar [36]. He found that these equations could
be arranged as a Sturm–Liouville problem where the eigenvalues are the oscillation fre-
quencies squared, ω2 (the eigenfunctions being the radial Lagrangian displacements). For
numerical purposes, these equations can be conveniently modified to a pair of first-order



Universe 2022, 8, 34 4 of 24

differential equations for each of the Lagrangian variables with more intuitive boundary
conditions [44–48].

Strictly speaking, the dynamic stability of admixed stars must be studied using the
full two-fluid formalism3 of Refs. [27,41], which would produce unified oscillation frequen-
cies for the entire admixed star. However, since this calculation is computationally very
expensive and time consuming, we decided to solve the equivalent of the two-fluid TOV
equations, realized instead in the form of oscillation equations. In order to perform that
function, we used the formalism of Ref. [47], which deals with the relative radial displace-
ment ∆r′/r′ ≡ ξ ′ = ξ and the Lagrangian perturbation pressure ∆p′, both dimensionless.

Inspired by the previous separation for the total pressure and energy density, we
separated the total Lagrangian variables as ξ = ξQM + ξDM and ∆p′ = ∆p′QM + ∆p′DM
(omitting the term eiωt in both variables), obtaining the following system of equations:

dξQM/DM

dr′
≡ − 1

r′

(
3ξQM/DM +

∆p′QM

Γp′

)
− dp′

dr′
ξQM/DM

(p′ + ε′)
, (4)

d∆p′QM/DM

dr′
≡ ξQM/DM

{
ω′2eλ−ν(p′ + ε′)r′ − 4

dp′

dr′

}
+

ξQM/DM

{(
dp′

dr′

)2 r′

(p′ + ε′)
− 8πeλ(p′ + ε′)p′r′

}
+

∆p′QM/DM

{
dp′

dr′
1

p′ + ε′
− 4π(p′ + ε′)r′eλ

}
, (5)

where ω′ is the dimensionless oscillation frequency and Γ is the adiabatic index4

Γ = (1 + ε′/p′)(∂p′/∂ε′). The metric function λ(r′) is obtained from λ(r′) = − ln(1−
2(m′QM(r′) + m′DM(r′))/r′) with boundary conditions given by Equations (2) and (3), i.e.,
λ(R′QM) = −ν(R′QM) and λ(R′DM) = −ν(R′DM).

So far we have not mentioned whether ω′ corresponds to the pulsation of a QM core
or a DM core. Recall that these equations represent a Sturm–Liouville problem, which
defines its eigenvalues in terms of the associated boundary conditions. In this case, they are

(∆p′QM/DM)center ≡ −3(ξQM/DMΓp′QM/DM)center , (6)

demanding smoothness at the QM or DM stellar center, and

(∆p′QM/DM)surface ≡ 0 , (7)

since p′QM/DM(R′QM/DM) = 0, with eigenfunctions normalized to ξQM/DM(0) = 1 as usual.
Thus, Equations (6) and (7) lead us to define ω′2 → ω′2QM/DM if we are dealing with
a QM/DM oscillating core in the admixed star. In other words, only one of the cores
oscillates depending on the boundary conditions. The other fluid only affects its oscillation
indirectly, by the coupling of the total pressure and energy density.

A word of caution should be added at this point. Usually, two ways of dealing with
the radial oscillations of two-fluid compact stars have been explored. In the simplest one,
only the radial oscillation of the whole admixed star, i.e., treated as one fluid, is studied
without explicitly considering the gravitational coupling between the QM and DM cores
(see e.g., Refs. [33,39,40]). In the second, a consistent general-relativistic formalism to
deal with the couplings between oscillation amplitudes and Lagrangian perturbations for
each fluid is developed [41,42]. Unfortunately, dealing with a system of highly coupled
and non-linear differential equations requires very time-consuming numerical calculations
which we consider unnecessary when independently solving the oscillation equations for
each DM or QM core while keeping the other fluid at rest but still coupled through the
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coefficients entering in the equations. In this sense, the formalism built in this work occurs
more in the line of Ref. [27], which considers the independent oscillations of each fluid,
thus forming an Sturm–Liouville-like problem. Notice that our reasoning agrees with the
fact that each of the two-fluid TOV equations can be considered an independent ’one-fluid’
star only, coupled through ν(r′) to the other ’one-fluid’ star. Thus, radial oscillations of
each ’one-fluid’ star can be associated with a set of one-fluid5 oscillation equations coupled
now by the total pressures, energy densities, and polytropic indices and metric functions,
ν(r′) and λ(r′). For consistency, we have verified that our formalism agrees with the results
of Ref. [38] when a delay of the maximal central density is reached at higher densities for
increasing amounts of DM when the zero frequencies are reached. We stress that, in this
case, fn=0 → 0 coincides with ∂M/∂εc → 0, since few amounts of DM were considered,
whereas in this work we explore all the available DM densities which notoriously modifies
the stability of the admixed stars, so that ∂M/∂εc must be used with caution.

In following sections, we focus on the fundamental mode frequency, ωn=0. It vanishes
at the maximal stable QM or DM mass configuration, marking the onset of the instability
of the corresponding oscillating core which, in turn, induces the gravitational collapse of
the whole admixed star.

3. Results and Discussion

The parameter space for quark stars admixed with weakly or strongly self-interacting
DM is large. In this section we show only results where the effects on observables are
relevant. As mentioned before, we considered dark fermion masses mD =1, 10, 50, 100, 200,
500 GeV in order to include all possible dark fermion candidates.

Regarding the numerical values we chose for εQM/DM
c in our calculations and showed

in our plots: (i) for QM, the three values of εQM
c correspond to somewhat above, twice,

and nearly twice the value of the maximal central energy density of pure quark stars with
B = (145 MeV)4, i.e., ∼ 1 GeV/fm3. The reason for this is that higher values of εQM

c are
required when DM is present in the admixed star; (ii) the three values of εDM

c (for strongly
or weakly interacting DM) correspond to near the minimum, intermediate, and near the
maximal-mass central densities for corresponding pure DM stars. In Tables 1 and 2 the
maximal-mass values of central energy density for each mD are listed. This choice was
made to quantify the full dependence of the stellar structure on the amounts of DM. We
will show that, in some cases with a huge amount of DM, only very small objects with
strangelet-like and planet-like masses are allowed. This was expected from the results of
Ref. [38].

Although the usual criterion for static stability, ∂M/∂εc ≥ 0, consistently works for
one-fluid stars, it should not be taken for granted in two-fluid stars; only the frequency
analysis can decide on their stability. Our results for the oscillation frequency of the
fundamental mode for QM and DM cores in the admixed stars are written in terms of the
linear frequency f QM/DM

n=0 = ωQM/DM
n=0 /(2π).

Table 1. Maximum masses Mmax (M�) and their corresponding minimum radii Rmin (km) and
maximum central energy densities εmax

c (GeV/fm3) obtained for weakly interacting (wDM) pure
dark matter stars.

EoSs εmax
c (wDM) Mmax(wDM) Rmin(wDM)

DM (mD/GeV = 1) ∼3 ∼0.63 ∼8.1
10 ∼3× 104 ∼6.27× 10−3 ∼7.8× 10−2

50 ∼1.97× 107 ∼2.50× 10−4 ∼3.2× 10−3

100 ∼3× 108 ∼6.27× 10−5 ∼8.1× 10−4

200 ∼4.99× 109 ∼1.56× 10−5 ∼2× 10−4

500 ∼1.97× 1011 ∼2.50× 10−6 ∼3× 10−5
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Table 2. Same notation as in Table 1 but now for strongly interacting (sDM) pure dark matter stars.

EoSs εmax
c (sDM) Mmax(sDM) Rmin(sDM)

DM (mD/GeV = 1) ∼4.9× 10−5 ∼2.67× 102 ∼1.87× 103

10 ∼0.6 ∼2.67 ∼18.5
50 ∼4× 102 ∼1.07× 10−1 ∼ 7.4× 10−1

100 ∼4.9× 103 ∼2.67× 10−2 ∼18.7× 10−2

200 ∼8× 104 ∼6.68× 10−3 ∼4.7× 10−2

500 ∼4× 106 ∼1.07× 10−3 ∼7.5× 10−3

3.1. Admixtures of Quark Matter and Weakly (y = 0.1) Interacting Dark Matter
3.1.1. Solving the Two-Fluid TOV Equations

In Figure 1, we display the results obtained from solving the two-fluid TOV
Equation (2) with the condition pQM(RQM) = 0 for different central energy densities
of weakly interacting DM. One can easily see that only the solutions for mD = 1500 GeV
display sizable modifications on the QM stellar masses and radii. In particular, the case
of mD = 500 GeV suffers a marked reduction of 1.2 M� due to the very high DM central
energy densities (∼1011 GeV/fm3). Additionally, the central QM densities increased con-
siderably, by a factor ∼7. Normally such QM densities would generate unstable pure quark
stars with central energy densities at most ∼1 GeV/fm3 without the DM component.
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Figure 1. Cont.
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Figure 1. Each pair of panels with the same color for the plots displays the mass–radius relation
and the mass as a function of the energy density for quark matter cores, i.e., pQM(RQM) = 0, with
different amounts of weakly (y = 0.1) interacting dark matter (wDM) for dark fermion masses of
mD = 1, 10, 50, 100, 200, 500 GeV.

On the other hand, solutions for other values of the dark fermion mass show negligible
effects. Again, these QM stars require higher central energy densities in order to compensate
for the extra gravitational pull from the DM. Furthermore, solutions for all the dark fermion
masses, except mD = 1 and 500 GeV, develop a plateau at low QM stellar masses in
the mass vs. central energy density plots, which became wider for higher DM central
energy densities. Our calculations show that these QM cores have masses between 10−18

to 10−4 M� with radii between 10−4 and 10−2 km, depending on the value of the dark
fermion mass. For example, mD ∼ 10 GeV mostly commonly produces stellar masses
around 10−5 M� with radii of 10−3 km. As we increase the mass of the dark fermion, the
values of MQM and RQM are reduced by many orders of magnitude. We note that all these
stars satisfy the criterion ∂MQM/∂εQM

c > 0 and can be tentatively considered stable objects,
“dark strange planets” in analogy to the results of Ref. [33], and “dark strangelets”.

Figure 2 shows our results from the two-fluid TOV Equation (2) with the condition
pDM(RDM) = 0 for different values of QM central energy densities. The DM stars that are
most affected by the presence of QM are the ones with mD = 1 and 10 GeV. For stars with
mD = 1 GeV, the central QM energy densities are high enough to convert the usual behavior
of pure DM stars in the mass–radius diagram into a self-bound-like behavior, making them
more compact. To see this more quantitatively, Table 1 shows values of masses and radii
for pure y = 0.1 DM stars for the whole range of dark fermion masses considered. One can
see that the stellar masses and radii are slightly affected by the presence of QM near the
maximum mass, but the radii of less massive DM stars are significantly modified. The same
is true in the case of mD = 10 GeV. For mD = 50, 100, 200, 500 GeV, the DM high central
energy densities completely dominate the QM contribution.

3.1.2. Solving the Coupled Radial Oscillation Equations

The solutions to the coupled radial pulsation Equations (4) and (5), assuming an
oscillating QM core with fixed DM central energy density with boundary conditions (6)
and (7), are shown in Figure 3. We show the zero-mode frequency as a function of central
energy density and stellar mass.
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Figure 2. Same notation as in Figure 1 but now for dark matter cores satisfying pDM(RDM) = 0.
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Figure 3. Fundamental-mode frequencies, fn=0, versus gravitational masses, M, and central energy
densities, εc, all for the oscillating QM cores with different values of central wDM and dark fermion
masses mD. Panels with the same color belong to the same class of admixed stars. Notice that the
behavior in the planes fn=0(M) is highly dependent on the value of εwDM

c , especially for the low-mass
QM cores. In a marked contrast, the changes are more modest in the fn=0(εc) planes.
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One can see in Figure 3 that the increments in the DM central energy density tend to
delay the onset of radial instability (except in the case of mD = 10 GeV), which happens
when f QM

n=0 = 0. At the same time, this results in the maximum QM stellar masses in
the admixed star becoming smaller (in some cases by a factor of 10). This opens a new
stability window of ultra-low QM masses (when surrounded by DM) in the range between
10−18 and 10−4 M�, depending on mD, which correspond to the dark strange planets and
strangelets discussed above.

In the same way, Figure 4 shows the results for the coupled radial pulsation Equations (4)
and (5) assuming an oscillating DM core with boundary conditions (6) and (7) for different
fixed central energy densities of QM. Clearly, the general behavior is qualitatively different,
resembling the behavior of nucleonic stars. However, frequencies are very large, reaching
∼3× 105 kHz, in contrast with the few and tens of kHz for hadronic and quark stars,
respectively [50]. In almost all cases, the DM core is essentially unaffected by QM due to
its very large central density, the exception being the case with mD = 1 GeV. On the other
hand, non-trivial effects show up in the f DM

n=0 vs. M diagrams: the maximum stable masses
do not correspond to the the ones in the mass–radius diagram of Figure 2; they are smaller.
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Figure 4. Same notation as in Figure 3 but now for oscillating wDM cores and different central QM
energy densities. Notice that, although the frequencies still reach high values, e.g., ∼3× 105 KHz for
mD = 1 GeV, the qualitative behavior in the fn=0(M) and fn=0(εc) planes is markedly different and
characteristic of dominating wDM in the admixed star for any amount of central QM.
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Furthermore, in Figure 4 one sees that, for the case of εQM
c = 1.5 GeV/fm3 with

mD = 1 GeV, zero frequencies are not reached in the corresponding DM stars. After some
point, the solutions become mechanically unstable in the sense of having negative QM
pressure profiles inside the DM star. A similar phenomenon occurs for larger mD, though it
is much less visible. Systems exhibiting negative pressures, e.g., dark energy inducing an
accelerated expansion of the universe, are not strictly prohibited but should be carefully
interpreted. For instance, fluids develop negative-pressure states when stresses are applied
for long periods. In the case of hybrid neutron stars with a first-order hadron–quark
transition, oscillations to negative-pressure states may accelerate the nucleation of bubbles
around the transition region, which, in the limit of large amplitudes, induce mechanical
instabilities [51]. In our case of oscillating QM and DM cores with small amplitudes
having negative-pressure profiles, the two-fluid TOV equations allows for their existence as
hydrostatically-equilibrated configurations that are potentially unstable when disturbed by
radial perturbations leading to the automatic collapse of the whole admixed star. In other
words, negative-pressure interiors lead immediately to complex oscillation frequencies.
Only by increasing εQM/DM

c do the instabilities disappear and one is able to find only real
frequencies.

3.2. Admixtures of Quark Matter and Strongly (y = 103) Interacting Dark Matter
3.2.1. Solving the Two-Fluid TOV Equations

Similar to the case of weakly self-interacting DM, we solved the two-fluid TOV
Equation (2) with the condition pQM(RQM) = 0 for different central energy densities of
strongly self-interacting DM. We present our results in Figure 5. As in the weak limit for
DM, in most of the cases stellar masses, radii and central energy densities of the QM core
are not appreciably affected. However, for increasing DM central energy densities, some
relevant variations occur. In particular, when mD = 1, 100, 200 GeV, the maximum QM
central energy densities are increased by a factor of ∼20. The cases with mD = 10, 50 GeV
show sizable variations of the masses and radii, especially near the maximum mass, where
the presence of DM reduces the QM core masses down to ∼0.4 M�. Interestingly, in the
case of mD = 10 GeV, the central QM energy density is almost unaffected by DM, whereas,
for mD = 50 GeV, it is dramatically increased. In the case with mD = 500 GeV, the QM
masses and radii increase by any amount of DM, and the QM central energy density is
augmented by a factor of 10. Analogously to what we have seen before, in the cases with
mD = 50 to 500 GeV, there are plateaus whose widths increase with mD.
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Figure 5. Mass–radius and mass–energy density relationships for QM cores with different amounts of
strongly (y = 103) interacting dark matter (sDM) at the center of the admixed stars. Different values
for the dark fermion masses mD are considered and results characterized by the same color. Notice
that the effects of sDM are mainly for high-mass stars and especially marked for mD = 10 GeV.

In order to study the structure of the opposite case, we solved the two-fluid TOV
Equations (2) with the condition pDM(RDM) = 0 for different central energy densities of
QM, as displayed in Figure 6. Pure y = 103 DM stars display the same qualitative behavior
as in the case of mD = 500 GeV, since, in this case, their masses and radii are almost
unaffected by any amount of QM due to very large DM central energy densities. The same
is true for mD = 200 GeV. See also Table 1.

Although not noticeable in Figure 6, when mD = 1 GeV, our calculations show that the
QM in the DM core yields higher masses (not shown in the figure) that are in contradiction
with the negative gradient of pressure required by the TOV equations. This happens,
because we are considering unstable QM central energy densities for the DM star, as can be
seen in Figure 5, which are manifested by producing increasing profiles of pressure then
leading to mechanical instabilities associated with complex frequencies, thus destabilizing
the whole admixed star. When mD = 10 GeV, we find a self-bound-like behavior for the
DM star. This occurs since the DM and QM central energy densities are almost equal in the
admixed star, and, in this case, the QM component dominates, modifying the behavior in
the mass–radius diagram. As before, the central DM densities are increased by a factor of
10. The cases with mD = 50, 100 GeV display a behavior that is a mixture of dark and quark
matter, where QM mainly affects the sector of lower DM stellar masses, and the structure
remains almost the same near the maximum mass. There, the central DM energy densities
are almost the same since the DM energy densities are enormous compared the QM ones.
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Figure 6. Mass–radius and mass–energy density relations obtained for sDM cores for different
fermion masses mD (indicated by different colors) with increasing amounts of QM at the centers
of the admixed stars. Notice that the competition between sDM and QM densities in some cases
allows for the presence of very small stars, which are not present in the one-fluid case, producing
qualitatively different behavior in the mass–radius relations of sDM stars, especially for low mD.

3.2.2. Solving the Coupled Radial Oscillation Equations

Finally, we solved the coupled radial pulsation Equations (4) and (5) assuming an
oscillating QM core in the admixed star with the boundary conditions (6) and (7) for
different fixed central energy densities of strongly interacting DM. The results are displayed
in Figure 7. We found that only the case of mD = 1 GeV was unaffected by strongly self-
interacting DM. As we increased mD, the fundamental frequency was strongly affected.
In fact, as occurred in the QM cases with weakly self-interacting DM, only low-mass QM
stars survived radial oscillations and behaved as strange quark planets and strangelets.
The oscillation frequencies of these objects can reach ∼105 kHz for mD = 500 GeV.
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Figure 7. Fundamental-mode frequency, fn=0, versus QM core masses and central energy densities
with different amounts of sDM for increasing values of the dark fermion masses, mD, denoted by
different colors. It can be seen that the densities of sDM for mD = 1 GeV have almost no effect on
the stability of the corresponding QM cores. Nevertheless, as one increases mD, the stable QM core
masses are reduced to lower and lower values and require higher QM central densities.

In Figure 8, we show our results6 after solving the coupled radial pulsation Equations (4)
and (5), assuming an oscillating DM core with boundary conditions (6) and (7) for different
central energy densities of QM. In correspondence with the results of Figure 6 for the cases
mD = 1, 10 GeV, only a small family of DM stars survived the radial oscillation analysis
for low mass stars. These DM stars increase their stability as long as one increases the
QM component. The qualitative behavior resembles that of a strange star. This occurs
due to the high QM central energy densities compared to the DM ones, with the QM
component dominating the stability of the admixed star. On the other hand, the cases
with mD = 50, 100, 200, 500 GeV display the standard behavior of pure y = 103 DM stars
due to the very high DM central energy densities. Interestingly, the same phenomenon of
increasing stability for higher central QM energy densities occurs in all these cases. The
physical picture indicates that low QM central energy densities support a small subset of
DM stars against gravitational collapse. As we increase the central energy densities, the
admixed star supports higher and higher central DM energy densities.
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Figure 8. Same notation as in Figure 7, but now for the oscillating core composed of sDM correspond-
ing to increasing mD (with different colors) and increasing values of central QM densities. Notice the
changing qualitative behavior when QM densities dominate over sDM for low mD = 1, 10 GeV but
the opposite happening for larger mD, where QM only allows for more stable sDM cores.

4. Summary and Outlook

We have studied the stability and main global features of strange quark stars admixed
with fermionic dark matter in a large parameter space, allowing dark fermion masses from 1
to 500 GeV and considering weakly and strongly self-interacting dark matter. For simplicity,
cold quark matter was described within the MIT bag model with B1/4 = 145 MeV which,
in the one-fluid case, produces strange quark stars.

After solving the two-fluid TOV equations, we computed the associated stellar struc-
ture. We found that, depending on mD and the interaction parameter y, some of the
obtained QM and DM stars display significant modifications of their stellar masses and
radii, whereas others show no change at all. Furthermore, some of the DM stars display a
self-bound-like behavior in the mass–radius diagram. In most situations, the central QM
and DM densities are increased by the presence of the other component in the admixed star.

For the radial pulsation analysis, a full general-relativistic two-fluid Sturm–Liouville-
like problem should, in principle, be solved. Instead, inspired by the way one usually solves
the two-fluid TOV equations by separating the total pressure and energy density into QM
and DM components, we developed a framework where we separate the total Lagrangian
variables entering the oscillation equations into QM and DM contributions. This method
allowed us to solve the problem, assuming that we disturb only one component and the
other is affected only indirectly.

Our calculations indicate that the static stability criterion ∂MQM/DM/∂εQM/DM
c ≥ 0

alone might produce misleading and incomplete results when applied to two-fluid stars.
We found that, in the case of QM stars admixed with DM, predominantly in the case of
y = 0.1, only very small QM stellar masses are dynamically stable leading to dark strange
planets and dark strangelets. On the other hand, DM stars are mainly affected when small
values of mD are considered, since larger dark fermion masses induce ultra-dense cores for
which the QM contribution is almost negligible.

Although our results are still very sensitive, both to the dark fermion mass mD and
the kind of self-interaction involved in the dark sector, whose scale is encoded in the
dimensionless variable y, there is hope that the parameter space can be dramatically
constrained by gravitational wave events, as discussed recently in Ref. [52].

In a future publications, we plan to refine our description using an equation of state
obtained from perturbative QCD [17]. It would also be interesting to explore the effects of
adding a nuclear mantle to our dark strange planets.
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Notes
1 In fact, the EoS considered corresponds to the most compact of three cases presented in tabulated format in Ref. [18].
2 Equivalently, the total radius R and total mass M of the whole admixed star can be determined by the condition of the total

pressure p(R) = 0 and M = m(R), where m(r) = mQM(r) + mDM(r). In any case, our code for the two-fluid TOV equations
matches the results of Ref. [38] very well.

3 This general-relativistic formalism was studied many years ago in different papers (see e.g. Ref. [49] and references therein) when
investigating matter with different properties in compact-star interiors, e.g. one fluid being a proton (neutron) superconductor
(superfluid) and the other being normal nuclear matter.

4 The physical and dimensionless definitions have the same mathematical form after being rescaled by an arbitrary factor.
5 In the limit of one-fluid stars, our code for radial oscillations agrees very well with previous works, see e.g., Ref. [48].
6 Some results in this figure display a non-smooth behavior associated only with numerical limitations when using standard root-

finding routines to obtain the frequencies for dimensionless central sDM (∼10−8) and QM (reaching ∼10−14 for mD = 500 GeV)
values, i.e., being different by many orders of magnitude, very small, and sensitive to different numerical methods. For these
reasons, systematic differences are introduced and manifest as non-smooth curves due to variations in numerical precision
when obtaining the dimensionless frequencies with values around 10−4 for large mD, which otherwise would require very
time-consuming computations. It should be noted that the same root-finding routines work very well when obtaining the other
results shown in this work. In future studies, we propose to use improved theoretical and numerical approaches.
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