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. RADIAL SYMMETRY OFPOSITIVE SOLUTIONS OF NONLINEARELLIPTIC EQUATIONS IN RnyYi Li Wei-Ming NiDepartment of Mathematics and School of MathematicsUniversity of Rochester University of MinnesotaRochester, NY 14627 Minneapolis, MN 55455x1. Introduction.In 1981 the method of \moving plane" (which goes back to A.D. Alexan-dro�; see [H]) was employed by [GNN] to study symmetry properties ofpositive solutions of the following problem( �u+ f(u) = 0 in Rn; n � 2 ;limjxj!1u(x) = 0 : (1.1)Since then there have been lots of works published in this direction treatinga variety of symmetry problems. (See e.g. [BN1,2,3], [CGS], [CL], [CN], [CS],[FL], [L], [LN1,2,3].) Generally speaking, in applying the \moving plane"device it is important to �rst obtain the asymptotic behavior of solutions near1 in order to get the device started near 1. In case f(u) � 0 and f(u) =o(u) near u = 0, the situation is quite involved since in this case solutions dohave di�erent asymptotic behavior at1. Thus symmetry conclusion usuallycan only be obtained for certain class of solutions with fast decay near 1.(See e.g. [GNN], [LN1,2,3].) However, in the case where f(0) = 0 andf 0(0) < 0, since solutions of (1.1) must decay exponentially at 1, it followsthat all positive solutions of (1.1) are radially symmetric as the followingtheorem shows.yResearch supported in part by the National Science Foundation. .Typeset by AMS-TEX



2Theorem A. ([GNN]). Let u be a positive C2 solution of (1.1) with f(u) =�u + g(u) where g is continuous and g(u) = O(u�) near u = 0 for some� > 1. On the interval 0 � s � u0 = maxu, assume g(s) = g1(s) + g2(s)with g2 nondecreasing and g1 2 C1 satisfying, for some C > 0; p > 1jg1(s)� g1(t)j � Cjs� tj=j logmin(s; t)jpfor all 0 � s; t � u0: Then u is radially symmetric about some point x0 inRn and ur < 0 for r = jx� x0j > 0: Furthermore,limr!1 r n�22 eru(r) = � > 0 :This result covers the well-known scalar �eld equation�u� u+ up = 0 in Rn; p > 1 ;which has received much attention over the past several decades. Recently,Theorem A was generalized and improved by [L] with a di�erent proof. (SeeTheorem C below.)On the other hand it seems natural to consider (1.1) with f(0) = f 0(0) = 0and f(s) � 0 for su�ciently small s > 0. In this case, (1.1) does have positivesolutions with slow decay (say, power decay or even logarithmic decay; seeExample 1 below) at 1, and it seems that new ideas are needed to handlethis case.The purpose of this paper is to establish the following result which makesno assumption on the asymptotic behavior of solution and answers the ques-tion just posed above.Theorem 1. . Suppose that f 0(s) � 0 for su�ciently small s > 0: Then allpositive solutions of (1.1) must be radially symmetric about the origin (up totranslation) and ur < 0 for r = jxj > 0:



3The novelty of Theorem 1 lies in the fact that no assumption is imposedon the decay rate of the solution u at 1 . In general it seems very di�cultto obtain a priori estimates for positive solutions of (1.1) with polynomialdecay. The following example shows that one can even have solutions thatgo to zero slower than logarithic decay at 1.Example 1. Let m be a positive integer andvm(x) = log[log[� � � [log(M + jxj2)] � � � ]where vm is the m-th iterated log function, and M is a positive numbersuch that vm(0) = 1. Then vm(x) is an increasing function of jxj withlimx!1 vm(x) = 1. Let um(x) = 1=vm(x) and x 2 R2. Then um satis�esthe following semilinear equation in R2�um(x) + fm(um(x)) = 0 in R2; (1.2)wherefm(t) = �4t2exp0@� mXj=1 exp[j�1] �1t�1A��1�Mexp��exp[m�1]�1t��� ��0@2texp0@�m�1Xj=1 exp[j�1]�1t�1A+ m�1Xi=1 exp0@�m�1Xj=i exp[j�1]�1t�1A1A�� Mexp��exp[m�1] �1t��� ;and exp[i] is the i-th iterated exponential function; i.e. exp[i](s) = exp(exp(� � � (exp(s)) � � � ) with exp[0] = identity. It can be easily veri�ed that fm(0) =0 and there exists rm > 0 such that f 0m(t) < 0 in (0; rm). Therefore (1.2)satis�es our hypotheses in Theorem 1. However, as m increases, the rate ofdecay of um gets slower and slower.In a di�erent direction, Franchi and Lanconelli [FL] generalized TheoremA to quasilinear equations.



4Theorem B. ([FL]). Let u be a positive C2 solution ofdiv  Dup1 + jDuj2!+ f(u) = 0 in Rn; n � 2 ;with u(x)! 0 as jxj ! 1. Assume that f(u) = �u+g(u) near zero, where gis a C1;�-function such that g(0) = g0(0) = 0. Then u is radially symmetricabout some point in Rn.More recently, C. Li [L] extended Theorem A further to fully nonlinearequations; that is,( F [u] = F (x; u(x); Du(x); D2u(x)) = 0 in Rn; n � 2 ;limjxj!1u(x) = 0 : (1.3)To state his result, we �rst introduce the following assumptions on F .F1. F is continuous in all of its variables, C1 in pij and Lipschitz in s andpi where pij 's are position variables for @2u@xi@xj , pi for @u@xi and s for u.F2. Fpij (x; s; pi; pij)�i�j � �(x; s; pi; pij)j�j2; � 2 Rn where � > 0 in Rn �R�Rn �Rn2 .F3. F (x; s; pi; pij) = F (jxj; s; pi; pij), and F is nonincreasing in jxj.F4. F (x; s; p1; p2; : : : ; pi0�1, �pi0 ; pi0+1; : : : , pn; p11; : : : ;�pi0j0 ; : : : ;�pj0i0 ; : : :; pnn) = F (x; s; pi; pij) for 1 � i0 � n, 1 � j0 � n, and i0 6= j0.Theorem C. ([L]). Suppose that F satis�es (F1-4) andlimjxj!1jsj+jpij+jpijj!0 Fs(x; s; pi; pij) < �C < 0for some positive constant C. Let u be a positive C2 solution of (1.3) suchthat limx!1(u(x) + jDu(x)j+ jD2u(x)j) = 0 :



5Then u must be radially symmetric about some point x0 in Rn and ur < 0for r = jx� x0j > 0.Since our proof of Theorem 1 above rests on a simple observation thatthe usual maximum principle can be applied here to take care of the possibledi�culties which might arise in getting the \moving plane" device startednear 1, our proof of Theorem 1 does generalize to cover the fully nonlinearequation (1.3) above.Our main result of this paper is the following theorem which clearly con-tains Theorem 1 as a special case.Theorem 2. Suppose that F satis�es (F1-4) andFs � 0 for jxj large, and for s small and positive. (1.4)Let u be a positive C2 solution of (1.3). Then u must be radially symmetricabout some point x0 in Rn and ur < 0 for r = jx� x0j > 0.Remark. We would like to point out if F is strictly decreasing in jxj, then itfollows from the proof of Theorem 2 that a positive solution u of (1.3) mustbe radially symmetric about the origin. On the other hand if F dependson jxj and is only nonincreasing in jxj as in the assumption of Theorem 2,then the symmetric point needs not to be the origin as the following exampleshows.Example 2. Let u0 be the unique positive radial solution of the well-knownscalar �eld equation( �u� u+ up = 0 in Rn; n > 2 and 1 < p < n+2n�2 ;limjxj!1u(x) = 0 :



6 De�nef(jxj; u) = � �u+ up if u � u0((jxj � 1)+) ;�u+ u0p((jxj � 1)+) if u > u0((jxj � 1)+) ;where (jxj � 1)+ = max(jxj � 1; 0). Then obviously u(x) = u0(jx� yj) is asolution of F [u] � �u+ f(jxj; u) = 0 in Rn for every jyj � 1, and F satis�es(F1� 4) and (1.4).x2. Proof of Theorem 2.Let x = (x1; x2; : : : ; xn) be a point in Rn, we denote its reection withrespect to the hyperplane T� = fy 2 Rnjy1 = �g by x�; i.e. x� = (2� �x1; x2; : : : ; xn). Observe that if � > x1 and � > 0jx�j � jxj = 4�(�� x1)jxj+ jx�j > 0 : (2.1)Let u be a positive solution of (1.3). First, we de�ne� = f� 2 Rju(x) > u(x�) for all x 2 Rn with x1 < � and @u@x1 < 0 on T�g :By condition (1.4), there exists a r0 > 0 such thatFs(x; s; pi; pij) � 0 for jxj � r0�1 and 0 � s � r0 : (2.2)Since u goes to 0 at 1, there exist r0�1 < R0 < R1 such that8>>>><>>>>: maxRnnBR0 (0)u < r0andmaxRnnBR1 (0)u < minBR0 (0)u � m0 : (2.3)



7Step 1. [R1;1) � �.For each � � R1, let w(x) = u(x) � u(x�) in �� � fx 2 Rnjx1 < �g:ThenF (x; u(x); Du(x); D2u(x))� F (x; u(x�); Du(x�); D2u(x�))� F (x; u(x); Du(x); D2u(x))� F (x�; u(x�); Du(x�); D2u(x�)) (2.4)= F (x; u(x); Du(x); D2u(x))� F (x�; u(x�); (Du)(x�); (D2u)(x�)) = 0by (F3-4) and (2.1).Therefore, it follows from the assumptions on F that� Lw � 0 in �� ;w = 0 on T� ;where L = aijDij + biDi + c withaij(x) = Z 10 Fpij (x; u(x); Du(x); D2u(x�) + t(D2u(x)�D2u(x�)))dt ;bi(x) = Z 10 Fpi(x; u(x); Du(x�) + t(Du(x)�Du(x�)); D2u(x�))dt ;and c(x) = Z 10 Fs(x; u(x�) + t(u(x)� u(x�)); Du(x�); D2u(x�))dt :Since � � R1 and (2.3), w > 0 on BR0(0) � �� . On the other hand,from (2.2), (2.3) and the de�nition of c(x), we havec(x) � 0 in �� nBR0(0) : (2.5)Therefore w satis�es8><>: aijDijw + biDiw + cw � 0 in �� nBR0(0) ;w � 0 on @(�� nBR0(0)) and limx!1x2��nBR0 (0)w(x) = 0 :Since w(x) 6� 0 and c(x) � 0 in ��nBR0(0), the strong maximum principleand the Hopf boundary lemma (see, e.g. [PW]) imply that� w(x) > 0 in �� nBR0(0) ;@w@x1 < 0 on T�which, together with the fact that w > 0 on BR0(0) proves that [R1;1) � �.



8Step 2. � is open in (0;1).Let �0 2 � \ (0;1). We claim that there exists an � > 0 such that(�0 � �; �0 + �) � � \ (0;1). Without loss of generality, we may assume0 < �0 � R1.It follows from the assumption �0 2 � \ (0;1) that� u(x)� u(x�0) > 0 in ��0 ;@u@x1 < 0 on T�0 : (2.6)On T�0 , since @u@x1 < 0, we can �nd an �1 2 (0; 1) such that@u@x1 < 0 in ��0;�1 � fx = (x1; x0) 2 Rnj�0�4�1 � x1 � �0+4�1; jx0j � R1+1g(2.7)where x0 = (x2; : : : ; xn). Therefore we conclude that� u(x)� u(x�) > 0 in fx 2 BR1+1(0)j�0 � 2�1 � x1 < �g ;@u@x1 < 0 on T� \ BR1+1(0) (2.8)for any � 2 (�0 � �1; �0 + �1).LetM = 2maxn��� @u@x1 ��� j jx1j � 2(R1 + 1); jx0j � R1 + 1o and � = minfu(x)�u(x�0)j jx0j � R1 + 1;�(R1 + 1) � x1 � �0 � 2�1g. Then (2.6) implies that� > 0, and henceu(x)� u(x�) > 0 in fx 2 BR1+1(0)j � (R1 + 1) � x1 � �0 � 2�1g (2.9)for any � 2 (�0 � �; �0 + �) where � = min(�1; �M ; �0). Combining (2.8) and(2.9), we obtain� u(x)� u(x�) > 0 in BR1+1(0) \ �� for � 2 (�0 � �; �0 + �) ;@u@x1 < 0 on BR1+1(0) \ T� : (2.10)Now for any � 2 (�0 � �; �0 + �), let w(x) = u(x) � u(x�). Then w 6� 0 in�� nBR1+1(0) and, similar to the proof of Step 1, w satis�es8<: aijDijw + biDiw + cw � 0 in �� nBR1+1(0) ;w � 0 on @(�� nBR1+1(0)) and limx!1w(x) = 0 :



9Once again, from the choice of R1 (see (2.2) and (2.3)) and the de�nition forc(x), we have c(x) � 0 in �� nBR1+1(0) :Hence the strong maximum principle implies that for � 2 (�0 � �; �0 + �)8<:w(x) > 0 in �� nBR1+1(0) ;@w@x1 < 0 on T� nBR1+1(0) ;i.e. 8<:u(x)� u(x�) > 0 in �� nBR1+1(0) ;@u@x1 < 0 on T� nBR1+1(0) ; (2.11)for any � 2 (�0��; �0+�). This, combined with (2.10), proves our assertion.Step 3. � \ (0;1) = (0;1) or u(x) � u(x�1) for some �1 � 0.Now we have shown that � is open and contains all large � in (0;1). Let(�1;1) be the component of � \ (0;1) containing (R1;1) with �1 � 0.From the continuity of u, we havew(x) = u(x)� u(x�1) � 0 in ��1 ;and it follows as in Step 1 that8>>><>>>: aijDijw + biDiw + cw � 0 in ��1 ;w � 0 in ��1 and w = 0 on T�1 ;limx!1w(x) = 0 :Hence, we have that eitherw � 0 in ��1 ; i.e. u(x) � u(x�1) for x1 < �1 ; (2.12)or � w > 0 in ��1 ; i.e. u(x) > u(x�1) in ��1 ;@w@x1 < 0 on T�1 : (2.13)



10(Note that here we do not need the sign condition of c(x) in applying themaximum principle.) But if the latter happens, and if �1 > 0, it would implythat �1 2 � \ (0;1), which contradicts the fact that � \ (0;1) is open and(�1;1) is a component of it. Hence �1 = 0, and (2.13) becomesu(x1; x2; x3; : : : ; xn) > u(�x1; x2; x3; : : : ; xn) for x1 < 0which completes the proof of Step 3.Finally if (2.12) occurs, then we have already shown that u is symmetricin the x1 direction about the hyperplane T�1 and @u@x1 < 0 for x1 > �1. Onthe other hand, if (2.13) occurs with �1 = 0, then we can repeat the previousSteps 1-3 for the negative x1-direction for u to conclude that eitheru(x) � u(x�2) and @u@x1 > 0 for x1 < �2 with �2 � 0 ; (2:120)or u(x1; x2; x3; : : : ; xn) < u(�x1; x2; x3; : : : ; xn) for x1 < 0 : (2:130)But (2.13) and (2:130) can not occur simultaneously. Therefore u must besymmetric in x1 direction about some hyperplane T� and strictly decreasingaway from T�. Since the equation (1.3) is invariant under rotation, we maytake any direction as the x1-direction and conclude that u is symmetricin every direction about some hyperplane which is perpendicular to thatdirection and strictly decreasing away from that hyperplane. Hence u mustbe radially symmetric about some point x0 in Rn and ur < 0 for r =jx� x0j > 0. REFERENCES[BN1] H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti-symmetry of solutions of semilinear elliptic equations, J. Geometryand Physics 5 (1988), 237{275.



11[BN2] H. Berestycki and L. Nirenberg, Some qualitative properties of solu-tions of semilinear elliptic equations in cylindrical domains, Analy-sis, et Cetera: Research papers published in honor of Jurgen Moser( P.H. Rabinowitz and E. Zehnder, Eds. ) (1990), 115{164, AcademicPress, Boston.[BN3] H. Berestycki and L. Nirenberg, On the method of moving planesand the sliding method, preprint.[CGS] L. Ca�arelli, B. Gidas and J. Spruck, Asymptotic symmetry and localbehavior of semilinear elliptic equations with critical Sobolev growth,Comm. Pure Appl. Math. 42 (1989), 271{297.[CL] W. Chen and C. Li, Classi�cation of solutions of some nonlinearelliptic equations, Duke Math. J. 63 (1991), 615{622.[CN] K-S. Cheng and W.-M. Ni, On the structure of the conformal Gauss-ian curvature equation on R2, Duke Math. J. 62 (1991), 721{737.[CS] W. Craig and P. Sternberg, Symmetry of solitary waves, Comm.P.D.E. 13 (1988), 603{633.[FL] B. Franchi and E. Lanconelli, Radial symmetry of the ground statesfor a class of quasilinear elliptic equations, Nonlinear Di�usion Equa-tions and their equilibrium states (W.-M. Ni, L.A. Peletier and J.Serrin, Eds.) Vol. 1 (1988), 287{292.[GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutionsof nonlinear elliptic equations in Rn, Math. Anal. and Applications,Part A, Advances in Math. Suppl. Studies 7A, (Ed. L. Nachbin),Academic Press, (1981), 369{402.[H] H. Hopf, Di�erential Geometry in the Large, Lecture Notes in Math-ematics, Vol. 1000, Springer-Verlag 1983.[L] C. Li, Monotonicity and symmetry of solutions of fully nonlinearelliptic equations on unbounded domains, Comm. P.D.E. 16 (1991),



12 585{615.[LN1] Y. Li and W.-M. Ni, On the existence of symmetry properties of�nite total mass solutions of the Matukuma equation, the Eddingtonequation and their generalizations, Arch. Rat. Mech. Anal. 108(1989), 175-194.[LN2] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symme-try of positive solutions of semilinear elliptic equations in Rn , Part I.Asymptotic behavior, Arch. Rat. Mech. Anal. 118 (1992), 195-222.[LN3] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symme-try of positive solutions of semilinear elliptic equations in Rn , PartII. Radial symmetry , Arch. Rat. Mech. Anal. 118 (1992), 223-244.[PW] M. Protter and H. Weinberger, Maximum Principles in Di�erentialEquations, Prentice-Hall, 1967.
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