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Magnetic Resonance Imaging (MRI) is an important yet slow medical imaging modality. Compressed sensing (CS) theory has
enabled to accelerate the MRI acquisition process using some nonlinear reconstruction techniques from even 10% of the
Nyquist samples. In recent years, interpolated compressed sensing (iCS) has further reduced the scan time, as compared to CS,
by exploiting the strong interslice correlation of multislice MRI. In this paper, an improved efficient interpolated compressed
sensing (EiCS) technique is proposed using radial undersampling schemes. The proposed efficient interpolation technique uses
three consecutive slices to estimate the missing samples of the central target slice from its two neighboring slices. Seven different
evaluation metrics are used to analyze the performance of the proposed technique such as structural similarity index
measurement (SSIM), feature similarity index measurement (FSIM), mean square error (MSE), peak signal to noise ratio
(PSNR), correlation (CORR), sharpness index (SI), and perceptual image quality evaluator (PIQE) and compared with the latest
interpolation techniques. The simulation results show that the proposed EiCS technique has improved image quality and
performance using both golden angle and uniform angle radial sampling patterns, with an even lower sampling ratio and
maximum information content and using a more practical sampling scheme.

1. Introduction

The Shannon-Nyquist theorem [1] states that a signal can
only be reconstructed from its k-space data if it has a suffi-
cient number of samples, which are at minimum twice the
maximum frequency in that signal. But if in an imaging
modality the signal acquisition time is highly dependent on
the number of samples it has to acquire, like MRI, then the
Nyquist theorem becomes a real bottleneck. The slow image
acquisition process of MRI makes it inapplicable in emer-
gency and accidental cases. Secondly, this time-consuming
process also causes a claustrophobic feeling, particularly in
pediatric patients, and it is difficult for them to be motionless
and in the breath-held state for that long [2]. Although there
are many different approaches in MRI acquisition that can
accelerate this process like parallel imaging [3–6], CS can effi-
ciently reduce the average samples [7–9] and scan time to up

to 10 times by just increasing the computational complexity.
The 10% random samples acquired for CS reconstruction [8,
10–12] do not show aliasing artifacts rather they have a
noise-like effect [13–16]. MRI has got benefit from CS
because it fulfills their three fundamental constraints which
are (i) sparsity, (ii) incoherence, and (iii) nonlinear signal
recovery [10]. Unlike a normal MRI scan, where the acquired
k-space data only require inverse Fourier transform, com-
pressed sensing MRI (CSMRI) needs some nonlinear recon-
struction techniques [10, 11] which are an additional
computational overhead. But this computational load is just
a postacquisition process and does not bother a patient by
compelling it to stay with the MRI machine. CS has been
implemented using both Cartesian and non-Cartesian
undersampling schemes [12, 17, 18].

Non-Cartesian sampling in k-space has appeared in
many medical imaging modalities like MRI. Radial sampling
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has evolved since the beginning of MRI, with the limitation
that its nonuniformly spaced samples of the spatial frequency
domain are to be projected on uniformly spaced samples in
the image domain [19]. Figure 1 shows some polar radial
samples which are to be projected on a Cartesian grid. The
value of each Cartesian sample is to be determined from
the samples of the adjacent radial samples through gridding
reconstruction [20] which uses Nonuniform FFT (NUFFT)
[19] and a Density Compensation Function (DCF). The
DCF helps to mitigate the artifacts caused by the overrepre-
sentation of some spatial frequencies in non-Cartesian
acquisitions. Similarly, for converting uniformly sampled
Cartesian image data into nonuniform k-space data, inverse
gridding is used [19].

Image reconstruction using radial undersampling has
been rapidly evolved as it allows reduced scan time with
increased spatial resolution. The iterative reconstruction of
CS forms an undersampled radially encoded MRI dataset
that is helpful for artifact-free images [17, 18, 21–23]. These
artifacts are directly related to the number of samples avail-
able for reconstruction. Thus, if we first estimate the missing
samples in the highly undersampled radially encoded multi-
slice MRI datasets, before CS reconstruction, one can get an
alias-free reconstructed image from just a fraction of the total
samples.

A single multislice MRI scan acquires hundreds of slices.
Therefore, their consecutive slices have a very strong inter-
slice correlation, because of having very narrow interslice
gaps [24]. In recent years, many researchers have exploited
this correlation of multislice MRI for further reduction of
the scan time, through interpolation. This new concept is
termed as interpolated compressed sensing (iCS) in the liter-
ature [24, 25]. Through iCS, the average sampling ratio of
CSMRI has been reduced even beyond the CS limit. Interpo-
lated compressed sensing mainly works in three steps: (i)
undersampling the multislice MRI data, (ii) interpolation,
and (iii) CS reconstruction. For the first step, the desired
undersampling is done using a much lower undersampling
ratio compared to CS. In iCS undersampling, some of the
CS samples are missed intentionally to reduce the average
sampling ratio and scan time. The random undersampling
of iCS can be accomplished using one of the many undersam-
pling approaches like Cartesian, radial, spiral, and their com-
binations [17, 26–28]. Figure 2 shows the original k-space of
multislice MRI and some different undersampling approaches
that can be used in CSMRI. The second step of iCS approxi-
mates the missed samples of the highly undersampled slices
from the samples of their neighboring slices [24, 25, 29, 30].
The aim of this interpolation [24, 25, 30–32] is to get CS slices.
Finally, in the third step, CS reconstruction techniques [10, 17,
32–37] are applied on the interpolated slices to get recon-
structed multislice MRI datasets.

The concept of iCS has been introduced by Pang et al.
[24, 25] in 2012. His interpolation technique has later been
explored by Datta and Deka [31, 32], but their undersam-
pling approaches do not produce clinically acceptable
results by causing information loss in most (67%) of their
reconstructed slices [38]. Secondly, their interpolation tech-
niques are computationally inefficient with redundant Fou-

rier steps. Although their results look visually better, the
information content is not indigenous due to their nonuni-
form and a biased undersampling scheme [32]. Pang and
Zhang’s [25] work is on 2D-VRDU where 1D-VRDU is
explored by Datta and Deka [31, 32]. Their works on both
1D- and 2D-VRDU sampling schemes have inaccuracy
along with complex computational steps of convolution,
matrix division, Fourier, and inverse Fourier transforms.
Afterwards, Datta and Deka [39–42] have further explored
iCSMRI with different reconstruction strategies and inter-
polation approaches along with reduced computational cost
compared to their initial work [31, 32]. But their work has
reduced neither the average undersampling ratios nor the
undersampling strategies, rather they have increased the
average sampling ratio [39].

In a recent work [38], the authors proposed a new and
fast interpolation technique (FiCS) based on a 2D-VRDU
sampling scheme. Their outcome shows more clinically
acceptable results with less partial volume loss and lower
average sampling ratio and by using a computational efficient
interpolation technique. The interpolation approach of FiCS
is a simple two-step process utilizing two consecutive slices to
estimate the missing samples of each target slice (T slice)
from its corresponding left slice (L slice). FiCS has reduced
the average undersampling ratio to 5%, compared to the pre-
vious iCS techniques which have at minimum 9% average
samples. The results of FiCS also show improvement in terms
of information content and image quality with even half of
the sampling ratio compared to their previous interpolation
techniques. Moreover, the interpolation technique of FiCS
is very computational efficient with just a two-step process
having only set addition and difference operations. But the
basic limitation of FiCS is that their undersampling strategy
does not apply to current clinical scanners and their images
lack sharpness.

The recent trends of CSMRI can be classified as techniques
dedicated to improved reconstruction techniques [43–45]
and parallel CSMRI approaches [4, 5, 40, 42, 46, 47]. In
CSMRI, the sparse regularization has been accomplished

Cartesian samples

Radial samples

Figure 1: Gridding radial samples on the Cartesian grid [21].
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through a particular transform domain, such as the wavelet
[10] and curvelet [48], or through some dictionary learning
approaches [49–55]. The traditional CSMRI uses the fixed
sparsifying transforms [56, 57]. Similarly, with recent devel-
opment, many CNN-based deep learning methods [58–63]
have also been evolved.

In this paper, the authors proposed a new efficient
interpolated compressed sensing (EiCS) technique based
on different radial undersampling patterns. The proposed
sampling strategy reduces the undersampling ratio to even
3% by using a more practical undersampling approach. Sec-
ondly, the novel three-step interpolation approach ensures

(a)

(b) (c)

(d) (e)

Figure 2: (a) Original k-space and undersampled k-space slices using a (b) 1D-VRDU, (c) 2D-VRDU, (d) radial, and (e) spiral mask.
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that each interpolated slice gets maximum samples from
their respective target slice and the rest from their neighbor-
ing two slices, to have sufficient samples to be reconstructed
as a sharper and improved image. The main contributions
of this work are as follows:

(i) For the first time, iCS has been introduced with
radial undersampling scheme

(ii) Introducing an improved and novel three-step com-
putational efficient interpolation approach

(iii) Reduction in the scan time using the highest under-
sampling ratio

(iv) Improving image quality (IQ) by introducing a
new and practical undersampling strategy for
interpolation

(v) Better results with even increased interslice gap
datasets

The proposed algorithm is explained as Material and
Methods in Section 2, results and discussion are presented
in Section 3, Section 4 summarizes conclusion, and future
work is presented in Section 5.

2. Materials and Methods

The proposed EiCS algorithm has three steps. Every step is
elaborated in the following subsections.

2.1. Radial Undersampling Scheme. The fully sampled k
-space multislice MRI data greatly resembles 2D-VRDU
and radial masks, as shown in Figure 2. The radial undersam-
pling approach is more suitable as it is practical from the
present hardware point of view compared to the 2D-VRDU
undersampling schemes. Most importantly, the radial masks
oversample the central region using overlapping spokes and
thus detect and correct any movement in the k-space center
for changes in between views. Thus, the motion artifacts in
radial undersampling are averaged out because of the inherent
oversampling of the k-space center. Therefore, the recon-
structed images using the radial undersampling masks are less
motion sensitive with higher SNR [18], compared to 1D- and
2D-VRDU schemes. When the radial data are acquired using

the golden angle ratio [64], the k-space data are undersampled
using high temporal incoherence [27]. Therefore, the sam-
pling patterns explored in this research are uniform angle
and golden angle radial as shown in Figure 3.

Unlike 1D- and 2D-VRDU, the radial samples are
acquired on a polar grid. Therefore, the distance between
the sampling points of the neighboring spokes is nonuni-
form. This distance is smaller in the k-space center and larger
in the periphery. Thus, the radial readouts require regridding
from the polar k-space data into pixel domain through a
Density Compensation Function (DCF) and Nonuniform
FFT (NUFFT) [19]. In uniform angle radial, all spokes are
uniformly spaced while in golden angle radial every two
spokes are spaced nonuniformly depending upon the golden
angle ratio. The golden angle ratio ð180°/ðð1+√5Þ/2Þ ≈
111:246°Þ of radial sampling acquires the spokes such that
they are self-interleaving and no spoke is acquired twice
[64]. The number of spokes that is needed to meet the Nyquist
sampling criteria is 402 uniformly spaced spokes, with 256
samples on each spoke for a 256 × 256 pixel image [22, 65].
Therefore, for acquiring 3%, 5%, 7%, and 9% of samples, we
have to acquire 12, 20, 28, and 36 spokes, respectively.

The undersampling approach adopted with the proposed
interpolation technique takes only 3%, radial samples, from
every slice of the multislice MRI sequence. The proposed
undersampling scheme is slice-wise uniform like CS, which
means every slice is undersampled with the same undersam-
pling ratio but using different nonoverlapping spokes. In the
proposed EiCS technique, first, three different undersampled
radial masks with the same sampling ratios are generated, as
shown in Figure 4. These masks are then used to undersam-
ple three consecutive slices and repeated after every three
slices for the whole multislice MRI sequence. Let R1, R2,
and R3 be the three desired nonoverlapping undersampling
radial masks. The three consecutive undersampling radial
masks are such that they have the same number of spokes
but have different sampling locations as shown in Figure 4.

Two fully sampled, original multislice MRI datasets of the
knee are used for this research. But first, the multislice MRI
datasets are undersampled into k-space data, and then, the
proposed iCS technique is applied. For the undersampling
of three consecutive slices Si, Si+1, and Si+2 first three down-
sampling NUFFT operators of the proposed sampling pat-
terns are generated. The three downsampling NUFFT
operators are termed as NUFFT1, NUFFT2, and NUFFT3,
where each NUFFT operator is generated using its respective
radial undersampling mask R and a DCF. To interpolate the
k-space data from the non-Cartesian trajectories, the NUFFT
by Fessler and Sutton [66] and the NUFFT wrapper by Lustig
et al. [10] are implemented, which are available online [67,
68]. The NUFFT operators are then applied on three consec-
utive slices, resulting in an undersampled k-space slice
sequence as represented in

U i = NUFFT1 ∗ Si,

U i+1 = NUFFT2 ∗ Si+1,

U i+2 = NUFFT3 ∗ Si+2,

ð1Þ

Uniform angle radial Golden angle radial

Figure 3: Two different radial sampling approaches used in this
research.
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where U i, U i+1, and U i+2 represent the three consecutive
undersampled slices. This undersampling step for three con-
secutive slices is repeated after every three slices for the whole
multislice MRI dataset. Thus, the result will be an under-
sampled dataset in which every three consecutive slices have
the same sampling patterns and undersampling ratios but
different sampling locations because of using different non-
overlapping spokes, as represented in Figure 4. All the sam-
ples that are in different positions can be exploited for the
proposed interpolation technique in the next step.

2.2. Proposed Efficient Interpolation Scheme. The proposed
efficient interpolation scheme approximates the missing
sampling points of each undersampled slice from their two
neighboring slices. This approach works by considering any
three consecutive downsampled slices, out of which the cen-
tral one is termed as the target slice (T slice) which has to be
interpolated from its left slice (L slice) and right slice (R slice).
The proposed interpolation scheme has three steps. The first
step is to find the set difference between the L and T slices as
represented in

LTnew = L ⊖ T: ð2Þ

The resultant set difference is called LTnew , having the
new information of the L slice with respect to the T slice,
where the ⊖ sign represents the set difference operator. Sec-
ondly, the same step of L slice is repeated with the R slice, get-
ting RTnew , as shown in

RTnew = R ⊖ T , ð3Þ

where RTnew contains the new sampling information in R
slice with respect to the T slice. In the third and last step,
the T slice samples are combined with the samples of LTnew
and RTnew to get the interpolated T slice termed as T int as rep-
resented in Equation (4), where the ⊕ sign is the set addition
operator.

T int = LTnew ⊕ T ⊕ RTnew: ð4Þ

This three-step interpolation approach of EiCS is applied
on each slice of the undersampled multislice MRI sequence,
considering every slice as a T slice and its two neighboring
as L and R slices, to acquire an interpolated slice T int. The
three-step process of the proposed efficient interpolation
scheme is represented in Figure 5.

2.3. CS Reconstruction. After the interpolation step, the
interpolated multislice datasets have almost three times
of the samples initially undersampled or acquired. The
third and final step of EiCS is the CS reconstruction which
gives the reconstructed images. The CS reconstruction
technique used in this research is the nonlinear conjugate
gradient (NCG) with ℓ1-norm and total variance (TV) [10]
as represented in

x̂ = arg min
x

Fux − yj j 2
2 + λ1
�

�

�

� Ψxj j 1 + λ2j j xj j
�

�

�

�

TV
, ð5Þ

where y is the k-space measurement, Fu is a downsampled
Fourier operator, and Ψ is the wavelet operator. Thus, the
cost function isminimized with the given constraints to recon-
struct the image x. Similarly, ℓ1-norm is the objective function
as represented in Equation (6), and minimizing kΨxk1 pro-
motes sparsity. Similarly, the constraint kFux − yk2/2 enforces
data consistency, where λ1 and λ2 are the thresholding param-
eters for ℓ1 wavelet and TV penalty, respectively. TV is
expressed discretely in Equation (7).

xk k1 =〠
i

xij j, ð6Þ

xk kTV =〠
i,j

∇1xij
� �2

+ ∇2xij
� �2

h i

, ð7Þ

where ∇1 and ∇2 are the forward finite difference operators on
the first and second coordinates. The complete EiCS technique
is expressed in Figure 6.

3. Results and Discussion

The proposed EiCS technique is evaluated using two different
knee datasets, taken from an online database, http://mridata
.org. The knee datasets are fully sampled, acquired using a
GE HD 3T scanner having 256 slices, number of channels:
8, 160 × 160 × 153:6mm field of view, slice thickness
0.6mm, matrix size: 320 × 320, TR/TE: 1150/25msec, band-
width 50 kHz, and flip angle 90°. The proposed EiCS algo-
rithm is simulated using MATLAB 2016-a, with 16GB
RAM, 64-bit operating system, and 2.6GHz Intel Core i7
processor.

3.1. Evaluation Criteria. To evaluate the quality of the recon-
structed images, two approaches are used, full reference (FR)
and nonreference (NR). In the FR approach, the quality of

�ree consecutive under-sampling, golden angle radial masks

Figure 4: Three consecutive undersampling radial masks with nonoverlapping spokes.
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the reconstructed images is evaluated with respect to the
original image where for the NR approach no original image
is required. For the FR approach, five assessment parameters
are used which are structural similarity index measurement
(SSIM) [69], feature similarity index measurement (FSIM)
[70], mean square error (MSE) [71], peak signal to noise ratio

(PSNR) [71], and correlation (CORR) [72]. For the NR
approach, two assessment parameters are used which are
sharpness index (SI) [73] and perceptual image quality eval-
uator (PIQE) [74].

SSIM and FSIM give normalized mean values of struc-
tural similarity and feature similarity between the original

MRI scanner
Under-sampled k-
space multi-slice

data
E�cient interpolation scheme

CS reconstructed
slices

Figure 6: The proposed EiCS technique.

T slice

T slice

Step: 01

LTnew

R sliceL slice

L slice

T slice

Step: 02

RTnewR slice

LTnew

Step: 03

RTnew TintT slice

Figure 5: The proposed efficient interpolation scheme.
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and reconstructed images as represented in Equations (8)
and (9).

SSIM x, yð Þ =
2μxμy + c1

� �

2σxy + c2
� �

μ2x + μ2y + c1

� �

σ2x + σ2y + c2

� � , ð8Þ

where x and y are the original and reconstructed images with
size m × n. Similarly, μx and μy are the mean, σ2x and σ2y are

the variances, and σxy is the covariance of x and y. Similarly,

c1 = ðk1LÞ
2 and c2 = ðk2LÞ

2 are the variables used to stabilize
the division, where L represents the dynamic range of the
image and k1 and k2 are small constants.

FSIM x, yð Þ =
∑i,j SPC:SG½ �: max PCx, PCy

� �� �

∑i,jmax PCx, PCy

� � , ð9Þ

where PCx and PCy are the phase congruency of original and

reconstructed images and SPC is the similarity measure for
PCx and PCy. Similarly, SG is the similarity measure for gradi-

ent magnitude values for original and reconstructed images.
MSE is the most common FR estimator of image quality

with values near to zero are better. The MSE between the
original and reconstructed images can be calculated as in

MSE =
1

mn
〠
m−1

i=0

〠
n−1

j=0

x i, jð Þ − y i, jð Þ½ �2 ð10Þ

PSNR is the ratio between the maximum possible power
of the original image with MSE, and because of the dynamic
range of the signals, it is calculated as the logarithm term of
the decibel scale [75] as given in

PSNR in dBð Þ = 10 log10
MAXxð Þ2

MSE
ð11Þ

CORR between the original and reconstructed images is
defined in Equation (12), having a normalized value and is
better when close to one.

CORR =
∑i,j x i, jð Þ − μx½ � y i, jð Þ − μy

h in o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i,j x i, jð Þ − μx½ �2

 �

∑i,j y i, jð Þ − μy

h i2n o

r : ð12Þ

SI is the NR IQ assessment parameter and is derived from
the intensity distribution in an image; its mathematical
description is given in

SI xð Þ = − log10
μTV xð Þ − TV xð Þ

σTV xð Þ

" #

, ð13Þ

where μTVðxÞ and σ2TVðxÞ are the mean and variance of TVðxÞ.

TVðxÞ is the total variance of the input image as shown in
Equation (7).

PIQE is also a NR image quality score, as shown in Equa-
tion (14), lies in the range (0-100), and is inversely related to
the perceptual quality of an image, which means the lower
the value the higher the quality of the image.

PIQE =
∑

NSA

k=1Dsk

� �

+ C1

NSA + C1

, ð14Þ

where NSA indicated the number of spatially active blocks in
a given image, Dsk is the amount of distortion in a given
block, and C1 is a positive constant.

The proposed EiCS technique is evaluated using all the
seven assessment parameters and compared with recent
interpolation techniques [32, 38] and CS [10]. The proposed
technique is also evaluated on whole datasets for different
undersampling ratios and compared. Finally, the proposed
technique is evaluated for three different interslice gaps.

3.2. Evaluation of the Proposed Undersampling Scheme. Like
FiCS and CS, the proposed radial undersampling strategy of
EiCS equally undersamples the k-space multislice MRI
sequence but using a much lower undersampling ratio.
Table 1 shows a comparison of the proposed radial under-
sampling schemes with the 2D-VRDU undersampling
scheme of FiCS [38], 1D-VRDU scheme of iCS [32], and
CS [10]. The assessment has been performed using all the
seven assessment parameters for three successive slices and
averaged. It is clarified from the comparison of the different
undersampling strategies in the table that the proposed radial
undersampling scheme has more improved results, for both
uniform angle and golden angle strategy, compared to 1D-
and 2D-VRDU schemes. The radial sampling strategy has
also an edge in that it is more practical from the current hard-
ware point of view. In Table 1, the results of the interpolation
approach of EiCS have not been included because in this sec-
tion the proposed undersampling scheme of EiCS is evalu-
ated. The interpolation technique of EiCS is evaluated and
discussed in the next section.

3.3. Evaluation of the Proposed Efficient Interpolation
Scheme. The proposed three-step interpolation scheme of
EiCS is evaluated by comparing its reconstructed images with
that of iCS [32], FiCS [38], and CS [10]. Figure 7 shows a
comparison of the original image with the reconstructed
images using different interpolation techniques with different
undersampling ratios. It is clear from the figure that although
iCS shows visually improved results it represents information
of the neighboring slices as iCS used a biased undersampling
scheme [38]. FiCS using 2D-VRDU undersampling shows
improved results and has no loss of information but their
sampling pattern is nonrealistic with some blurring effect.
CS reconstruction is performed using the proposed radial
sampling pattern, but their images look even more blur with
some streaking artifacts. The reconstructed images of the
proposed radial sampling pattern show improved results for
both FiCS and EiCS techniques. But EiCS, due to its three-
slice interpolation approach, has better results compared to
FiCS, using the same radial sampling strategy. This proves

7BioMed Research International



that the three-step EiCS technique is better compared to its
preceding two-step FiCS technique. The edge information
pointed by the red arrow in Figure 7 shows that although
FiCS-radial has improved results, for 3% samples, it has a
blurring effect, while EiCS has no blurring effect with sharper
and clear details. Although FiCS 2D-VRDU also shows better
results, its undersampling approach is nonrealistic with a bit
blurred edges. In short, EiCS has got the benefits of all the
other techniques as its reconstructed images have no blurring
effect with sharper details and original information with a
more realistic sampling approach using only 3% samples.

In the proposed EiCS technique, the acquired under-
sampled T slices when interpolated as T int have 34% samples
from T slices and 33% from each L and R slices. These per-
centages are calculated from the interpolated slices with ref-
erence to the original undersampled slices. In FiCS [38],
every T int slice has 60% samples from T slice and the rest
40% from its respective L slice. In FiCS, although a greater
percentage of samples were taken from the original slices
but because of their two-step interpolation approach, when
the sampling ratio further reduces, the interpolated slices
got insufficient samples to be reconstructed as a clear and

Table 1: Comparison of the proposed radial undersampling schemes with 1D- and 2D-VRDU schemes, along with CS. The assessment has
been done on 3 consecutive slices and averaged (slices 165-167 of the knee dataset).

Assessment parameter
1D-VRDU
CS-9%

1D-VRDU
iCS-9%

2D-VRDU
CS-5%

2D-VRDU
FiCS-5%

UA radial
CS-5%

UA radial
FiCS-5%

GA radial
CS-5%

GA radial
FiCS-5%

SSIM 0.5596 0.7226 0.7834 0.8008 0.7995 0.8388 0.7669 0.8339

FSIM 0.9387 0.9733 0.9713 0.9463 0.9201 0.9593 0.9150 0.9516

MSE 0.0398 0.0058 0.0056 0.0023 0.0008 0.0004 0.0010 0.0005

PSNR 14.002 23.779 22.636 26.367 30.738 33.221 29.797 32.778

CORR 0.9317 0.9522 0.9762 0.9647 0.9476 0.9703 0.9358 0.9671

SI 48.88 501.64 374.46 275.61 175.06 267.63 46.07 276.44

PIQE 65.791 30.915 62.121 73.850 72.577 54.582 79.574 65.978

Original image iCS 1D-VRDU CS-radial EiCS-radialFiCS 2D-VRDU FiCS-radial

Figure 7: Comparison of (a) original image with (b–f) reconstructed images using different reconstruction strategies and sampling ratios. (b)
iCS reconstructed image has sharper details but with loss of information. (c) FiCS 2D-VRDU has preserved the original information but has a
blurring effect which becomes more prominent when the undersampling ratio is reduced. (d) CS reconstruction using the proposed radial
undersampling also shows severe degradation when the sampling ratio reduces. (e) FiCS-radial and (f) EiCS-radial has improved results
compared to CS-radial but the sharpness degrades for (e) FiCS with 3% samples while the proposed (f) EiCS has improved results with
clear and sharp details as pointed by the red arrow.
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sharper image. In iCS [25, 32], each interpolated slice has
only 4% samples from its original undersampled slice and
the remaining 96% from its corresponding neighboring
slices. The reconstructed images of iCS show sharp details
due to more samples in their interpolated slices but with the
limitation that their resultant three consecutive reconstructed
images show repeated information because of their biased
undersampling strategy, as discussed in [38]. Although the
1D sampling scheme of iCS is also practical from the current
hardware point of view, it has three times higher undersam-
pling ratio, with a biased undersampling strategy.

Table 2 shows the total percentage of the original and
interpolated samples for different reconstruction techniques.
It is clear from the table that our proposed sampling strategy
has the lowest percentage of samples from the neighboring
slices and still has the highest percentage of interpolated sam-
ples, which give us the benefit that information content is
original and the reconstructed images are sharper.

The proposed efficient interpolation scheme (EiCS) is
also evaluated by comparing the seven assessment parame-
ters of EiCS with iCS [32] and CS [10]. For more fair compar-

ison, FiCS using the proposed radial sampling strategy is also
performed. The proposed EiCS technique has not only
improved performance with the same average undersam-
pling ratio (5%) of FiCS but also outperforms with even a
3% sampling ratio as shown in Table 3. The assessment has
been done on 3 consecutive slices and averaged. Table 3 rep-
resents a detailed evaluation where Figure 8 shows a brief
summary of it.

The graphs of Figure 8 clearly show that FiCS-radial has
improved performance with even 3% samples which proves
that the radial undersampling strategy is better than 2D-
VRDU. Secondly, the proposed EiCS-radial outperforms
FiCS-radial which proves that the three-step interpolation
technique of EiCS is better than the two-step approach of
FiCS. EiCS-radial is also better than iCS 1D-VRDU with
even one-third of the samples, but in three out of the seven
assessment parameters (FSIM, SI, and PIQE), iCS looks bet-
ter. The reason is that, firstly, iCS has 9% samples and, sec-
ondly, iCS has a biased sampling strategy, by taking 96% of
samples from neighboring slices. Therefore, iCS shows bet-
ter feature similarity, sharpness, and perceptual image quality

Table 2: Comparison of %age number of samples acquired from the original slices for different interpolation techniques along with CS.

Reconstruction techniques
Samples taken from
original slices (%)

Samples interpolated from
neighboring slices (%)

Total samples for reconstruction
with 9% average sampling

CS 100% 0% 9%

iCS 4% 96% from L slice 25%

FiCS 60% 40% from L slice 16%

EiCS 34% 33% from each L and R slice 26%

Table 3: Comparison of the proposed EiCS technique with CS, FiCS, and iCS for different undersampling ratios.

Average undersampling ratio
Interpolation
technique

Undersampling
technique

SSIM FSIM MSE PSNR CORR SI PIQE

9% iCS 1D-VRDU 0.7226 0.9733 0.0058 23.779 0.9522 501.64 30.91

7%

CS
Uniform angle radial 0.8377 0.9464 0.00056 32.532 0.9653 303.48 68.65

Golden angle radial 0.8322 0.9433 0.0006 32.174 0.963 220.62 76.48

FiCS
Uniform angle radial 0.86 0.9705 0.00038 34.208 0.9764 449.19 54.5

Golden angle radial 0.8608 0.9649 0.00039 34.057 0.9756 516.65 61.76

EiCS
Uniform angle radial 0.8559 0.9764 0.00034 34.658 0.9787 462.52 49.15

Golden angle radial 0.8627 0.9733 0.00033 34.806 0.9795 442.74 50.82

5%

CS
Uniform angle radial 0.7995 0.9201 0.00084 30.738 0.9476 175.06 72.57

Golden angle radial 0.7669 0.915 0.00104 29.797 0.9358 46.07 79.57

FiCS
Uniform angle radial 0.8388 0.9593 0.00047 33.221 0.9703 267.63 54.58

Golden angle radial 0.8339 0.9516 0.00052 32.778 0.9671 276.44 65.97

EiCS
Uniform angle radial 0.8495 0.9681 0.00037 34.232 0.9765 476.98 45.33

Golden angle radial 0.845 0.9673 0.0004 33.913 0.9748 338.01 50.94

3%

CS
Uniform angle radial 0.7003 0.8768 0.00176 27.537 0.8887 20.607 80.9

Golden angle radial 0.6922 0.8794 0.00171 27.665 0.895 19.44 87.34

FiCS
Uniform angle radial 0.8164 0.9437 0.00063 32.003 0.9606 229.16 70.39

Golden angle radial 0.8027 0.9318 0.00072 31.397 0.9546 183.73 77.5

EiCS
Uniform angle radial 0.8222 0.9512 0.00053 32.758 0.9671 251.05 56.84

Golden angle radial 0.8235 0.9452 0.00053 32.684 0.9666 305.48 66.56
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but represents neighboring slice information. Thus, EiCS-
radial beats all other techniques by taking only 3% samples.

Figure 9 represents a comparison of the original image
with that of the reconstructed images using FiCS 2D-VRDU,
FiCS-radial, and EiCS-radial with 3% samples by considering
a zoomed edge. It is clear from the figure that EiCS-radial is
better than both FiCS 2D-VRDU and FiCS-radial by showing
clearer and sharper results.

3.4. Evaluation of EiCS. The detailed evaluation of the pro-
posed EiCS technique is done on central 150 slices of the
knee dataset (slices # 51 to 200) as shown in Figure 10.
The evaluation is done using GA-radial undersampling
scheme for all the seven assessment parameters. It is clear
from the figure that when we increase the undersampling
ratio the performance improves, but while increasing the
sampling ratio from 7% to 9%, the total number of interpo-
lated samples saturates and is oversufficient for CS recon-

struction. Thus, as clear from the figure, when the
sampling ratio increases from 7% to 9%, the proposed EiCS
technique shows lesser improvement. This is because the
three-step EiCS technique collects sufficient samples from
reduced undersampling ratios that give improved results,
with even 3% samples. Secondly, Figure 10 shows that EiCS
has consistency in its results like FiCS where iCS shows
inconsistent results as discussed in [38].

3.5. Evaluation of EiCS. The proposed EiCS technique also
outperforms for increased interslice gap datasets. The zero
interslice gap means considering all the slices of the original
dataset. One and two interslice gaps mean to skip one and
two slices from consecutive slices, while taking two slices.
Increasing the gap helps to further reduce the average
undersampling ratio from 3% to 1.5% and 1%. Skipping
one and two slices means that we are considering 128 and
85 slices from the 256-slice dataset. Figure 11 shows the
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Figure 8: Comparison of the proposed EiCS averaged assessment parameters with iCS, FiCS, and CS. iCS 1D-VRDU has 9% and FiCS 2D-
VRDU has 5% while CS-radial, FiCS-radial, and EiCS-radial have 3% samples. The proposed EiCS-radial technique outperforms all with even
3% average samples.
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Reconstructed image
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Figure 9: Comparison of the original image with reconstructed images using FiCS 2D-VRDU 3%, FiCS-radial 3%, and EiCS-radial 3%. It is
clear from the comparison of the selected zoomed portions that the proposed EiCS technique outperforms FiCS by retaining sharper details.
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evaluation of CS, FiCS, and EiCS on radial sampling for
3%, 5%, and 7% undersampling ratios with zero, one, and
two interslice gaps.

It is clear from the graphs of Figure 11 that both FiCS and
EiCS have improved performance compared to CS for even
increased interslice gaps. While comparing the performance
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Figure 10: Evaluation of EiCS using the seven assessment parameters with GA-radial undersampling for 3%, 5%, 7%, and 9% samples. The
evaluation has been done on central 150 slices of the knee dataset and compared slice-wise.
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of FiCS and EiCS, for higher interslice gaps, EiCS is better for
lower undersampling ratios, but for 7% and higher ratios,
FiCS is better on some assessment parameters. The reason
is that for lower undersampling ratios, when the interslice
gap is increased, EiCS, because of its three-slice approach, col-
lects sufficient samples for improved reconstruction. There-
fore, for higher undersampling ratios, when we increase the
gap, FiCS performs better because of having sufficient samples
using its two-slice approach, while for lower undersampling
ratios, EiCS is better.

4. Conclusion

In this research, for the first time, interpolation has been pro-
posed using radial undersampling schemes. The radial sam-
pling pattern used with EiCS is more practical from the
current hardware point of view compared to the 2D-VRDU
sampling pattern adopted in FiCS. Secondly, the radial sam-
pling strategy is also lesser motion sensitive compared to
other sampling techniques. EiCS exploits the radial sampling
pattern in its three-step interpolation process to get
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interpolated slices with the maximum number of samples
from lower undersampling ratios, which ensures sharper
reconstructed images compared to FiCS. The proposed EiCS
technique not only preserves the original information in
every slice but also shows sharper IQ with improved results
both qualitatively and quantitatively. The improved interpo-
lation technique adopted in EiCS is computationally efficient
with only a set difference and addition operations like FiCS.
Thus, the computational complexity of the proposed interpo-
lation algorithm is OðnÞ like FiCS, compared to Oðn log nÞ
of iCS [32]. The key findings of this paper are as follows:

(i) Improved three-step interpolation scheme com-
pared to its preceding two-step approach of FiCS

(ii) Interpolation has never been explored using radial
sampling schemes

(iii) Computationally efficient like FiCS

(iv) Reduced scan time, by further reducing the under-
sampling ratios compared to FiCS

(v) Improved IQ, by collecting maximum samples for
sharper reconstruction

(vi) The uniform undersampling pattern gives a consis-
tent slice-wise image quality

(vii) More realistic sampling scheme

(viii) Improved result using seven different assessment
parameters

(ix) No blurring like FiCS

(x) No information loss and contrast change like iCS

(xi) Best suitable for dynamic data as radial sampling
can also handle motion artifacts

5. Future Work

The proposed EiCS technique can also be applied to dynamic
MRI datasets to get even more benefits from radial sampling
schemes. The proposed technique can be combined with the
latest CS reconstruction strategies for more prominent
results with reduced reconstruction time.

Data Availability

The proposed EiCS technique is evaluated using different
knee datasets, taken from an online database, http://mridata
.org. Similarly, to interpolate the k-space data from the
non-Cartesian trajectories, the NUFFT by Fessler and Sutton
[66] and the NUFFT wrapper by Lustig et al. [10] are imple-
mented, which are available online [67, 68].
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