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Abstract

Substantial uncertainty exists in daily and sub-daily gross primary production (GPP) estimation,

which dampens accuratemonitoring of the global carbon cycle.Here wefind that near-infrared

radiance of vegetation (NIRv,Rad), defined as the product of observedNIR radiance and normalized

difference vegetation index, can accurately estimate corn and soybeanGPP at daily and half-hourly

time scales, benchmarkedwithmulti-year tower-basedGPP at three sites with different environ-

mental and irrigation conditions. Overall, NIRv,Rad explains 84%and 78%variations of half-hourly

GPP for corn and soybean, respectively, outperformingNIR reflectance of vegetation (NIRv,Ref),

enhanced vegetation index (EVI), and far-red solar-induced fluorescence (SIF760). The strong linear

relationship betweenNIRv,Rad and absorbed photosynthetically active radiation by green leaves

(APARgreen), and that betweenAPARgreen andGPP, explain the goodNIRv,Rad-GPP relationship. The

NIRv,Rad-GPP relationship is robust and consistent across sites. The scalability and simplicity of

NIRv,Rad indicate a great potential to estimate daily or sub-daily GPP fromhigh-resolution and/or

long-term satellite remote sensing data.

1. Introduction

Monitoring and quantifying terrestrial photosynthesis

from satellite remote sensing is crucial for under-

standing the global carbon cycle. Either process-based

models (Jiang and Ryu 2016, Chen et al 2019) or more

empirical models (Running et al 2004, Jung et al 2011)

have been widely used for regional or global gross

primary production (GPP) estimations. Process-based

models employ complex model structure, while exist-

ing empirical models rely on various imposed

functions. Uncertainties in climate forcing and model

parametrization lead to largely diverged GPP estima-

tion regarding the total amount and spatio-temporal

patterns (Anav et al 2015, Ryu et al 2019). Particularly,

GPP estimation at short time scales (e.g. sub-daily and

daily) is still challenging (Bodesheim et al 2018, Wang

et al 2019). Effective and parsimonious ways to

estimate GPP with low dependence on climate forcing

andmodel parameterization are highly required.

Recent advances in satellite-based solar-induced

fluorescence (SIF) monitoring capabilities may
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provide a new opportunity for GPP estimation.

Although SIF has been reported as a better proxy for

photosynthesis at leaf (Baker 2008), landscape (Li et al

2018), and global (Guanter et al 2014) scales than tra-

ditional GPP proxies such as enhanced vegetation

index (EVI) (Sims et al 2006), divergent SIF-GPP rela-

tionships have been obtained from ground-based

observations (Damm et al 2015, Yang et al 2015, Miao

et al 2018). Such divergent SIF-GPP relationships may

stem from complex links between fluorescence emis-

sion efficiency and photosynthetic efficiency (Porcar-

Castell et al 2014) as well as impacts of canopy struc-

ture related to reabsorption and scattering processes

(Yang et al 2018b, van der Tol et al 2019). The coarse

resolution (Frankenberg et al 2011, Joiner et al 2013)

or short temporal coverage (Sun et al 2017, Köhler et al

2018, Li and Xiao 2019) of SIF datasets further restrict

the application of SIF forGPP estimation.

A new vegetation index, near-infrared reflectance

of vegetation (NIRv,Ref), could open up a new opportu-

nity to quantify GPP. NIRv,Ref, defined as the product

of normalized difference vegetation index (NDVI) and

NIR reflectance (NIRRef), is found accounting for

canopy structure well and photosynthetic capacity to

some extent (Badgley et al 2017). Without any other

auxiliary information, NIRv,Ref has been reported to

explain 68% of FLUXNET GPP variation at monthly

to annual time scales (Badgley et al 2019). However,

the relationship between NIRv,Ref and GPP at shorter

time scales (sub-daily to daily) has not been investi-

gated yet, and that relationship is expected to be

poorer than at monthly scale, as NIRv,Ref has much

smaller variations at short time scales. Considering

that radiances can be used in studies with variable light

(Badgley et al 2017), observed NIRRef in NIRv can be

replaced with observed NIR radiance (NIRRad) to

derive a new proxy NIRv,Rad , which takes the incom-

ing radiation into account (Zeng et al 2019) and has

the potential to be a better proxy for GPP at short time

scales. However, the relationship between NIRv,Rad

and GPP has not been investigated and its potential

awaits to be evaluated.

The objective of this study is to evaluate whether

NIRv,Rad is a better proxy of GPP thanNIRv,Ref and SIF

for corn and soybean, twomajor crops in the US Corn

Belt. For a comprehensive assessment of the relation-

ships between GPP and those proxies, we integrated a

range of field observations including hyperspectral

radiance and reflectance, far-red SIF, GPP flux, and

canopy light absorption at half-hourly interval over

seven site-years. The overachieving questions that we

aim to address are: How is NIRv,Rad’s ability to esti-

mate GPP compared with other widely used recog-

nized proxies (NIRv,Ref, EVI and SIF) for corn and

soybean, and what factors may lead to a better perfor-

mance of NIRv,Rad?We propose the following three

hypotheses. First, we hypothesize that the relationship

between NIRv,Rad and GPP is the strongest compared

to three other widely recognized proxies (NIRv,Ref, EVI

and SIF), especially at short time scales. Second, we

hypothesize that the strong relationship between

NIRv,Rad and GPP can be explained by the fact that

NIRv,Rad better accounts for photosynthetically active

radiation (PAR) absorbed by green leaves (APARgreen).

Third, we hypothesize that the relationship between

NIRv,Rad and GPP for soybean (C3 crop) or corn (C4

crop) is site-independent. We suggest these features

might make NIRv,Rad a better proxy for estimating

GPP in theUSCorn Belt thanNIRv,Ref, EVI and SIF.

2.Materials andmethods

2.1. Study site

This study was conducted at three agricultural sites in

the US Corn Belt. One rainfed site was located at the

Energy Farm of University of Illinois at Urbana-

Champaign (UIUC, 40.0628 °N, 88.1959 °W).

Another two sites were located at the EasternNebraska

Research and Extension Center of University of

Nebraska-Lincoln, with one irrigated (UNL irrigated,

41.1649 °N, 96.4701 °W) and one rainfed (UNL

rainfed, 41.1797 °N, 96.4397 °W) site. The mean

annual temperature and precipitation over the period

of 1990–2018 were (11.5 °C, 1036 mm) and (10.1 °C,

770 mm) at UIUC (Willard Airport weather station)

and two UNL sites (National Climate Data Center,

Nebraska,Mead 6 S weather station), respectively. The

UIUC site had a corn-corn-soybean rotation, whereas

the two UNL sites were corn-soybean rotation. The

growing season (from planting to harvesting) was

generally May–October for both crops across all the

three sites. During 2016–2018, a total of four and three

site-year observations were made for corn and soy-

bean, respectively. Detailed site and observation infor-

mation are summarized in table 1.

Table 1. Site and observation information. GPPobservations are available year-round for all site-years.

Site Year Crop Growing season Hyperspectral SIF APARgreen

UIUC (rainfed) 2016 Soybean May 17–Oct 17 Aug 7–Sep 25 Aug 7–Sep 25 NA

2017 Corn May 16–Oct 30 Jun 6–Oct 2 Jun 6–Oct 2 NA

2018 Corn May 8–Oct 8 Jun 28–Oct 8 Jun 28–Oct 8 NA

UNL2 (irrigated) 2017 Corn May 8–Oct 30 Jul 15–Oct 15 Jul 15–Oct 15 Jun 2–Oct 15

2018 Soybean May 14–Oct 19 Jun 19–Oct 14 Jul 19–Oct 14 Jun 7–Oct 14

UNL3 (rainfed) 2017 Corn May 8–Oct 30 Jul 15–Sep 17 Jul 15–Oct 15 Jun 2–Oct 15

2018 Soybean May 14–Oct 19 Jul 8–Oct 14 Jul 8–Oct 14 Jun 7–Oct 14
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2.2. Fluospec2 system and derivation of vegetation

indices and SIF

Fluospec2 systems (Yang et al 2018a, Miao et al 2018)

were installed to acquire vegetation indices and SIF.

Each Fluospec2 system included two subsystems for SIF

and hyperspectral data collection separately. The SIF

subsystem employed a QE Pro spectrometer (Ocean

Optics Inc., USA) covering 730–780 nm with a spectral

resolution of 0.15 nm. The hyperspectral subsystem

employed a HR2000+spectrometer (Ocean Optics

Inc., USA) covering 400–1100 nm with a spectral

resolution of 1.1 nm. Each subsystem had two fibers

collecting downwelling irradiance and upwelling radi-

ance. Details of Fluospec2 system and data acquisition

can be found in supplementary methods which is

available online at stacks.iop.org/ERL/15/034009/

mmedia.

NIRv,Ref, NIRv,Rad and EVI were calculated from

the Fluospec2 system:

=
-

+
NDVI

NIR Red

NIR Red
1

Ref Ref

Ref Ref

( )

= ´NIR NIR NDVI 2v Ref Ref, ( )
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-

+ ´ - ´ +
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where the average of 770–780 nm, 650–660 nm, and

460–470 nm were used for NIR, Red and Blue band,

respectively. SIF at 760 nm (SIF760)was retrieved from

the SIF subsystemusing the improved Fraunhofer Line

Depth method (Alonso et al 2008, Cendrero-mateo

et al 2019), which used the whole downwelling

irradiance (E) and upwelling radiance (L) spectrum

information from 745 to 780 nm to extract the SIF

signal.
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where aR and aF are correction factors to account for

the non-linear variation of reflectance (R) and fluores-

cence (F) inside (λin) and outside (λout) the O2-A

absorption band at wavelength λ, respectively.

Detailed SIF data processing can be found in supple-

mentarymethods.

2.3. Eddy covariance (EC) system andderivation

ofGPP

EC systems were installed to acquire net ecosystem

exchange (NEE), and GPP was estimated based on

standard night-time partitioning algorithms (Reich-

stein et al 2005). Each EC system consisted of a sonic

anemometer (81000VRE, R.M. Young Inc., USA for

the UIUC site; R3, Gill Instruments Inc., UK for the

two UNL sites) and a CO2/H2O infrared gas analyzer

(LI-7500 andLI-7200, LI-COR Inc., USA for theUIUC

site and the two UNL sites, respectively). Raw 10 Hz

Carbon fluxes data collected from EC systems were

processed to derive half-hourly NEE. Detailed infor-

mation on site instrumentation can be found in (Zeri

et al 2011) for UIUC site, and in (Suyker and

Verma 2012) for UNL sites. Detailed EC data proces-

sing can be found in supplementarymethods.

2.4. Ancillary data

Downwelling and upwelling PAR were measured

above and below canopy by multiple point or line

quantum sensors (LI-COR Inc., USA), fromwhich the

fraction of absorbed PAR (FPAR)were derived at half-

hourly interval. Leaf area index (LAI) were measured

from destructive samples at an interval of 10–14 d, and

green leaves were separated from yellow leaves to

provide green area index (GAI) measurements. The

ratio of GAI to LAI were linearly interpolated and half-

hourly APARgreen, light use efficiency of green leaves

(LUEgreen) (Gitelson and Gamon 2015) and fluores-

cence yield (LUEf)were then calculated as:

= ´ ´APAR PAR FPAR
GAI

LAI
6green ( )

=LUE
GPP

APAR
7green

green

( )

=LUE
SIF

APAR
. 8f

green

760
( )

These data were only acquired at the two UNL

sites.

2.5.Data analysis

To test the first hypothesis, the relationships between

GPP and its four proxies, NIRv,Ref, EVI, NIRv,Rad, and

SIF760 were investigated. All site-year data for each

species were combined in this analysis. Investigations

were conducted at three time scales (half-hourly, daily,

and monthly). Because of uncertainties under low light

conditions in the early morning and late afternoon, only

data from 8:00 am to 6:00 pm (local standard time)were

used. Therefore, daily data averaged from half-hourly

data were daytime means in the strict sense. Only days

with data gaps less than 25% were used. Monthly mean

data were calculated for months with at least 10 days of

available data. Linear regression of GPP-NIRv,Rad and

GPP-SIF760 were established with zero intercepts, con-

sidering the fact that there is no photosynthesis when

radiation is zero. For linear regression of GPP-NIRv,Ref

and GPP-EVI, the intercept term was employed because

these twoproxies donot reach zero.

To test the second hypothesis, the relationships

between the four proxies and APARgreen were also

evaluated at the three time scales at the two UNL sites,

where APARgreen data were available. Similar to

LUEgreen and LUEf, we divided NIRv,Rad by APARgreen

and then examined the relationship between LUEgreen
and NIRv,Ref, EVI, LUEf, NIRv,Rad/APARgreen at half-

hourly, daily and monthly scales. Coefficient of deter-

mination (R2
)was used to quantify their relationships.
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To test the third hypothesis, site-specific

GPP-NIRv,Rad relationship was investigated separately

for corn and soybean. Half-hourly data were used for

this analysis. For each crop type and each site, the lin-

ear relationship between GPP and NIRv,Rad was estab-

lished, and the slopes across sites were compared.

Subsequently, linear models calibrated from one site

were applied to the remaining two sites to predict

GPP, i.e. NIRv,Rad-derived GPP. The NIRv,Rad-derived

GPP was compared with EC-derived GPP. Root mean

square error (RMSE) was used to evaluate the perfor-

mance of theGPP prediction.

3. Results

3.1. Relationship betweenGPP and its proxies

Overall, GPP, NIRv,Ref, EVI, NIRv,Rad and SIF760
followed similar seasonal trajectories (figure 1). Peak

GPP was higher for corn than for soybean. NIRv,Ref,

EVI, and APARgreen were similar between corn and

soybean, but SIF760 and NIRv,Rad were lower for corn

than soybean. LUEgreen, LUEf andNIRv,Rad/APARgreen

displayed weak seasonal variation, especially after

excluding the senescence period (e.g. from late Sep-

tember to October)when the derivations of FPARgreen

and subsequently LUEgreenwere prone to uncertainties

(Gitelson et al 2018).

NIRv,Ref-GPP relationship varied with time scales

for both corn and soybean, and it tended to be stronger

scaled with temporal aggregation (figure 2). From

half-hourly to monthly, R2 of NIRv,Ref-GPP increased

from 0.37 to 0.80 for corn and from 0.48 to 0.83 for

soybean. The EVI-GPP relationship also showed a

similar time scale-dependent pattern. In contrast,

both NIRv,Rad and SIF760 showedmore consistent per-

formance at different time scales. R2 differences of

NIRv,Rad-GPP relationship betweenmonthly scale and

Figure 1.Example of time series of GPP (μmolm−2 s−1), NIRv,Ref, EVI, NIRv,Rad (mWm−2nm−1 sr−1), SIF760 (mWm−2nm−1 sr−1),
APARgreen (μmolm−2 s−1), LUEgreen (μmolCO2μmol absorbed photon−1), NIRv,Rad/APARgreen (mWsnm−1 sr−1μmol−1) and
LUEf (mWsnm−1 sr−1μmol−1) at 2017UNL irrigated corn site (left column) and 2018UNL irrigated soybean site (right column). All
data are at half-hourly intervals from8:00 am to 6:00 pm.
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half-hourly scale were only 0.06 and 0.08 for corn and

soybean, respectively.

Among the four GPP proxies, NIRv,Rad exhibited

the strongest relationship with GPP at short time

scales (half-hourly and daily) for both corn and soy-

bean (figure 2), which confirmed our first hypothesis.

Overall, NIRv,Rad explained 84%, 86% and 89% of the

variation of corn GPP at half-hourly, daily and

monthly scales, respectively. Slightly lower values were

achieved for soybean GPP, with 78%, 79% and 86% of

the variation explained at half-hourly, daily and

monthly scales, respectively. In particular, at daily

scale which is of concern for crop growth monitoring,

NIRv,Rad better explained the variation of GPP com-

pared to other three proxies. For corn, the portion of

GPP variation explained by NIRv,Rad was 19%, 16%

and 10% higher than NIRv,Ref, EVI and SIF760, respec-

tively. For soybean, this portion was 10%, 9% and 9%

higher thanNIRv,Ref, EVI and SIF760, respectively.

3.2. Relationship betweenAPARgreen, LUEgreen and

GPPproxies

Strong correlations were observed between APARgreen

and NIRv,Rad (figures 3(a) and (b)). The relationship

between APARgreen and GPP proxies (figure 3) fol-

lowed similar time scale patterns as the relationship

between GPP and GPP proxies (figure 2). NIRv,Rad

showed the strongest correlation with APARgreen at all

time scales for both corn and soybean. Specifically, for

corn, R2 values of APARgreen-NIRv,Rad were 0.94, 0.96

and 0.98 at half-hourly, daily and monthly scale,

respectively (figure 3(a)), and for soybean, they were

Figure 2.R2 between ECbased towerGPP and its proxies (NIRv,Ref, EVI,NIRv,Rad and SIF760) for corn (a) and soybean (b). All half-
hourly data at the three sites were used.

Figure 3.R2 betweenAPARgreen andGPPproxies (NIRv,Ref, EVI,NIRv,Rad and SIF760) (a) and (b), andR2 between LUEgreen andNIRv,

Ref, EVI,NIRv,Rad/APARgreen and LUEf (c) and (d) for corn (a) and (c) and soybean (b) and (d), respectively. All half-hourly data at the
twoUNL sites were used.NoAPARgreen and LUEgreen data was available at theUIUC site.R2 between LUEgreen andNIRv,Ref, EVI, and
LUEfwere almost zero at half-hourly and daily scale for corn (c).
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0.85, 0.83 and 0.91, respectively (figure 3(b)). SIF760
also showed similar correlation with APARgreen across

the three time scales. In contrast, such relationship

between APARgreen and the two proxies without

radiation information (NIRv,Ref and EVI) varied sub-

stantially with time scales, following the order of half-

hourly<daily<monthly.

We further investigated the relationship between

LUEgreen and NIRv,Ref, EVI, LUEf, NIRv,Rad/APARgreen

and LUEf . For corn,NIRv,Rad/APARgreenhadweak cor-

relation with LUEgreen at half-hourly and daily scales,

whereas NIRv,Ref, EVI, LUEf showed no correlation

(figure 3(c)). This was probably due to the small seaso-

nal variability of corn LUEgreen in most of the growing

season (figure 1). R2 values of proxies-LUEgreen at half-

hourly and daily scales were much higher for soybean

than for corn (figure 3(d)), and they all increased with

time scales, i.e. half-hourly<daily<monthly.

The relationship between GPP and GPP proxies at

two UNL sites showed similar time scale patterns

(figure S1) as the pattern observed in figures 2(a) and

(b)when all site data were used. The above results suf-

ficiently proved that our second hypothesis is correct.

3.3. Relationship betweenNIRv,Rad andGPPat

different sites

The slopes of NIRv,Rad-GPP relationship were signifi-

cantly different between corn and soybean (figure S2).

The overall slope was 0.582 (μmol s−1mW−1 nm sr) for

corn, almost two times of 0.312 (μmol s−1mW−1nm sr)

for soybean. There was little variation in slopes of

NIRv,Rad-GPP relationship for the same crop type across

different sites. The cross-site standard deviations of

slopes were 0.039 for corn and 0.041 for soybean, with

coefficients of variation of 6.6% and 12.9% for corn and

soybean, respectively.

The prediction performance of the NIRv,Rad-GPP

linearmodel was relatively stable (table 2), largely con-

firming our third hypothesis. When the model was

calibrated at one site and validated at each of the three

sites, the RMSE values were in general within a rela-

tively small range: 6.14<RMSE<10.96 for corn,

and 4.40<RMSE<10.85 for soybean, respectively.

Similar small rangeswere also observed forR2 (figure S3)

and bias (figure S4), with 0.78<R2<0.91and

−5.32<bias<4.32 for corn, and 0.69<R2<0.88

and −6.10<bias<5.97 for soybean, respectively.

Furthermore, when models calibrated at different sites

were applied to a specific site, the performance of those

models were similar. This was indicated by small RMSE

differences (~1 for corn and~2 for soybean) between

differentmodelswithin each column.

4.Discussion

Our results support all three hypotheses on theNIRv,Rad

as a proxy for GPP of corn and soybean. At half-hourly

and daily time scales, NIRv,Rad shows considerably

higher correlations with GPP than NIRv,Refand EVI,

but they have similar performance at monthly scale

(figure 2). Atmonthly scale, plants adjust their structure

and functions to acclimate to environmental changes

(Hikosaka and Hirose 1997, Yamori et al 2010). As a

result, structure and function co-vary with environ-

mental variables, and the reflectance itself is able to

capture long-term variability of GPP. In contrast, day-

to-day and diurnal variations are strongly affected by

high-frequency changes of PAR due to varying solar

angle and sky conditions (Peng and Gitelson 2011),

which does not cause much changes in bi-directional

reflectance (Kim et al 2019). Therefore, NIRv,Rad

containing the information of PAR in addition to

biophysical and biochemical information contained in

reflectance-based vegetation indices better captures

short-term variability of GPP. SIF760 containing con-

siderable PAR information (Miao et al 2018) also shows

stronger relationship with GPP compared to NIRv,Ref

and EVI at half-hourly scale for both species. Though

there is a strong link between SIF and GPP at

photosystem scale (Porcar-Castell et al 2014), SIF760
does not show better correlation with GPP than

NIRv,Rad. A possible reason is the larger uncertainty in

SIF observations than reflectance (Meroni et al 2009),

but more studies are needed to better understand the

potential of SIF for estimatingGPP.

The strong relationship betweenNIRv,Rad and GPP is

mainly attributed to their strong links with APARgreen
(figures 3 and S5). A previous study has reported the lin-

ear relationship between daily GPP and APARgreen for

corn and soybean from 2001 through 2008 at the UNL

sites (Gitelson et al 2015), and we further demonstrate

Table 2.RMSE (μmolm2 s−1) between tower-basedGPP andGPPpredicted byNIRv,Rad-GPP linearmodels. Each row refers to amodel
calibrated at a specific site, and each column refers to differentmodels applied to a specific site.

Calibration sites
Evaluation sites

UIUC

(rainfed)

UNL

(irrigated)

UNL

(rainfed) All sites

UIUC

(rainfed)

UNL

(irrigated)

UNL

(rainfed) All sites

Corn Soybean

UIUC (rainfed) 9.45 5.94 6.56 8.50 7.20 8.53 4.40 7.29

UNL (irrigated) 10.96 6.89 7.60 9.86 6.90 8.17 4.21 6.98

UNL (rainfed) 9.78 6.14 6.78 8.80 9.16 10.85 5.59 9.27

All sites 9.84 6.18 6.83 8.85 7.70 9.12 4.70 7.79
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that such linearity is strong at all time scales (figure3). The

dominant role of APARgreen in determining GPP varia-

tions lies in the fact that LUEgreen displays small variations

during the growth season for both corn and soybean

(figure 1). Similar stable LUE values have also been repor-

ted at other corn (Campbell et al 2019), rice (Yang et al

2018a), and wheat sites (Wienforth et al 2018). Gitelson

et al (2018) suggested that crops tend to respond to stress

through changes in leaf inclination/leaf rolling which

result in decrease of APARgreen instead of LUEgreen.

Consequently, NIRv,Rad which captures a majority of

APARgreen variations serves as a strongproxy forGPP. It is

worth mentioning that NIRv,Radalso captures a portion

of LUEgreen variations, whereas SIF does not at half-

hourly and daily scales (figure 3). This is due to a negative

correlation between LUEf and LUEgreen at the early-

middle growing season (figure S6). The difference

between NIRv,Rad/APARgreen-LUEgreen and LUEf-LUEgreen
explains higher correlation of NIRv,Rad-GPP than

SIF760-GPP even though NIRv,Rad and SIF760 have similar

correlationwithAPARgreen (figure3).

The strong relationship of NIRv,Rad-GPP may be

further explained by the dominant role of canopy

structure. Although LUE is usually considered as a

function of leaf physiology which relates to heat and

water stress (Running et al 2000, Xiao et al 2005), its

concept is originally based on the functional conv-

ergence theory (Monteith 1972, 1977, Field 1991)

hypothesizing that plants scale canopy leaf area and

light harvesting by the availability of resources as a

result of evolutionary processes in order to optimize

their carbon fixation (Goetz et al 1999). Simulations by

sophisticated radiative transfer model also indicate

that LUE is a function of canopy structure

(Medlyn 1998). A recent ground observation study has

provided direct evidence that LUE has a significantly

positive correlation with escape ratio of SIF (Dechant

et al 2019), which captures the effects of canopy struc-

ture on observed SIF and can be quantified as the ratio

of NIRv,Ref to FPAR (Zeng et al 2019). Therefore, it is

reasonable that NIRv,Ref accounts for variations of

both FPAR and LUE, and NIRv,Rad agrees well with

GPP, given that GPP can be expressed as PAR×F-

PAR×LUE and NIRv,Rad can be reformed as NIR

incoming irradiance×NIRv,Ref under the assump-

tion of Lambertian surface (Schaepman-Strub et al

2006)which is similar to PAR×NIRv,Ref.

The NIRv,Rad-GPP relationship for corn and soy-

bean is site-independent in the US Corn Belt, and the

slope of NIRv,Rad-GPP is significantly higher for corn

than for soybean. The site-independence of

NIRv,Rad-GPP relationship is revealed from the fol-

lowing two aspects: (1) the slopes between NIRv,Rad

and GPP are similar among different sites, though

some variations are observed (figure 4); (2) the linear

model built at one site can be applied to other sites

without significantly losing accuracy (table 2). This is

also consistent with a recent study which found a gen-

eral NIRv,Ref-GPP relationship for a wide range of crop

sites around the world (Badgley et al 2019). The higher

slope of NIRv,Rad-GPP for corn over soybean is similar

as the results from SIF-GPP relationship (Liu et al

2017a, Li et al 2018) and NIRv,Ref-GPP relationship

(Badgley et al 2019). This is reasonable, as C4 plants

tend to have much higher GPP than C3 plants even

though they have similar density/greenness. It is

worth mentioning that observational factors could

influence the generality of the NIRv,Rad-GPP relation-

ship. The first one is that the hyperspectral data of this

study cover different time periods across sites (table 1).

It has been reported that even for a strong proxy-GPP

relationship, slope can differ between vegetative and

reproductive stages to some degree (Gitelson et al

2014). The second one is that Fluospec2 footprint cov-

ers less than 2% of EC footprint (Liu et al 2017b). Such

mismatch between sensor footprints varies across sites

and the spatial heterogeneity of underlying surface can

further contribute to uncertainties of GPP prediction

(Wang et al 2019). Further comprehensive studies are

Figure 4.Density scatter plot of theNIRv,Rad-GPP relationship at the half-hourly scale at different sites for corn and soybean,
respectively. The red color indicatesmore data points.
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needed to address whether the NIRv,Rad-GPP relation-

ship is robust.

The strong and robust NIRv,Rad-GPP relationship

has a great implication as we can easily apply this rela-

tionship at satellite observations to scale up to globe

for long-term record or at high resolution. NIRv,Rad is

the product of field observed NIRRad and NDVI.

NIRv,Rad can be reformed as:

p= ´ ´ ´NIR NIR NDVI NIR1 ,

9

v Rad Irra Ref,

( )

/

where NIRirra is incoming radiation in NIR region and

can be derived as the difference between incoming

shortwave radiation and PAR, both of which are

available from high-resolution satellite data (Ryu et al

2018, Hao et al 2019) and long-term (>35 year)

satellite data (Stackhouse et al 2000, Karlsson et al

2017). Further, considering bothNDVI andNIRRef are

the most fundamental products provided by a large

range of satellite platforms (Franch et al 2017, Claverie

et al 2018, Houborg and McCabe 2018), we highlight

that the NIRv,Rad-GPP relationship has a great poten-

tial to be applied to global croplands at a daily interval

with spatial resolution up to 3 m (e.g. commercial

Planet Labs data) and temporal coverage as far back as

1982 (by the Advanced Very High Resolution Radio-

meter, AVHRR) with minimum computational cost.

Given the understanding of ecosystem’s ability to

sequestrate carbon becomesmore urgent (Keenan et al

2016, Ciais et al 2019), such scalability opens up huge

potentials for real-world applications too (National

Academies of Sciences andMedicine E 2019).

5. Conclusion

We investigated the performance of radiance-based

NIRv (NIRv,Rad) in estimating GPP of corn and

soybean based on field observations across multiple

site-years. NIRv,Rad outperformed NIRv,Ref, EVI and

SIF760 for GPP estimation at short timescales (half-

hourly and daily), mainly because NIRv,Rad strongly

correlated with APARgreen which determined GPP

variation for both corn and soybean. TheNIRv,Rad-GPP

relationship showed robust performance across sites,

indicating that the NIRv,Rad-based simple models have

a great potential to estimate crop GPP at short time-

scales with high-resolution or long-term satellite

remote sensingdata.
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