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A B S T R A C T

A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear

viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the

beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the

pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass,

luminosity and the effective adiabatic index is analysed. Our work is compared to the case of

a collapsing shearing fluid of a previous model, for a star with 6 M(.

Key words: gravitation ± relativity ± supernovae: general.

1 I N T R O D U C T I O N

Many of the previous works in gravitational collapse have considered only shear-free motion of the fluid (de Oliveira, Santos & Kolassis

1985; Bonnor, de Oliveira & Santos 1989; MartõÂnez & PavoÂn 1994). This simplification allows us to obtain exact solutions of the Einstein's

equations in some cases but it is somewhat unrealistic. It is also unrealistic to consider heat flow without viscosity but if viscosity is

introduced, it is desirable to allow shear in the fluid motion. Thus, it is interesting to study solutions that contain shear, because it plays a

very important role in the study of gravitational collapse, as shown in Chan (1997, 1998). In that paper we compared two collapsing models:

a shear-free and a shearing model. We were interested in studying the effect of the shear motion in the evolution of the collapse. It was

shown that the pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear the pressure becomes

more and more anisotropic. The anisotropy in self-gravitating systems has been reviewed and the causes for its appearance discussed in

Herrera & Santos (1997). As shown by Chan (1997, 1998) the simplest cause of the presence of anisotropy in a self-gravitating body is the

shearing motion of the fluid, because it appears without an imposition ad hoc (Chan 1993).

The physical justification for this type of study is evident (Chan, Herrera & Santos 1994). Dissipative processes are not considered in

most of the general relativistic calculations modelling gravitational collapses. This situation can be partially understood via the fact that, for

highly condensed matter, with important general relativistic effects, the Fermi energy is much larger than the thermal energy. The collapsing

configuration may then be considered to be essentially isentropic. This approximation is likely to fail in certain scenarios of the general

relativistic stellar evolution. One example of such a situation is neutrino trapping, which is expected to occur during a gravitational collapse

when the central density reaches values of the order of 1012 g cm23 (Arnett 1977). Besides, the long mean free path and high energy

density of these trapped neutrinos causes the viscosity in the fluid cores (Kazanas 1978).

The aim of this work is to generalize our previous model by introducing shear viscosity, besides the shear motion of the fluid, and

compare it to the non-viscous collapse.

This work is organized as follows. In Section 2 we present Einstein's field equations. In Section 3 we re-derive the junction conditions,

since Chan (1997, 1998) have obtained only results without shear viscosity. In Section 4 we present the proposed solution of the field

equations. In Section 5 we describe the model considered in this work for the initial configuration. In Section 6 we present the energy

conditions for a viscous anisotropic fluid. In Section 7 we show the time evolution of the total mass, luminosity and the effective adiabatic

index and in Section 8 we summarize the main results obtained in this work.

2 F I E L D E Q UAT I O N S

We assume a spherically symmetric distribution of fluid undergoing dissipation in the form of heat flow. While the dissipative fluid

collapses it produces radiation. The interior space±time is described by the most general spherically symmetric metric, using comoving
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coordinates,

ds2
2 � 2A2�r; t� dt2 � B2�r; t� dr2 � C2�r; t��du2 � sin2 u df2�: �1�

The exterior space±time is described by Vaidya's (1953) metric, which represents an outgoing radial flux of radiation,

ds2
� � 2 1 2

2m�v�
r

� �
dv2 2 2 dv dr� r2�du2 � sin2 u df2�; �2�

where m(v) represents the mass of the system inside the boundary surface S, function of the retarded time v.

We assume the interior energy±momentum tensor is given by

Gab � kTab � k��m� pt�uaub � ptgab � �p 2 pt�XaXb � qaub � qbua 2 2hsab�; �3�
where m is the energy density of the fluid, p is the radial pressure, pt is the tangential pressure, qa is the radial heat flux, Xa is an unit four-

vector along the radial direction, ua is the four-velocity, which have to satisfy uaqa � 0; XaXa � 1; Xaua � 0 and k � 8p (i.e., c �
G � 1�: The quantity h . 0 is the coefficient of shearing viscosity and the shearing tensor sab is defined as

sab � u�a;b� � _u�aub� 2 1
3
Q�gab � uaub�; �4�

with

_ua � ua;bub; �5�
Q � ua;a; �6�
where the semicolon denotes a covariant derivative and the parentheses in the indices mean symmetrizations. Here, we correct some

misprints in equation (36) of Chan (1997). The correct equation for sab is given here by equation (4).

Since we utilize comoving coordinates we have,

ua � A21da0 ; �7�
and since the heat flux is radial

qa � qda1 : �8�
Thus the non-zero components of the shearing tensor are given by

s11 � 2B2

3A

_B

B
2

_C

C

� �
; �9�

s22 � 2
C2

3A

_B

B
2

_C

C

� �
; �10�

s33 � s22 sin2 u: �11�
A simple calculation shows that

sabs
ab � 2

3A2

_B

B
2

_C

C

� �2

: �12�

Thus, if we define the scalar s as

s � 2
1

3A

_B

B
2

_C

C

� �
; �13�

we can write that

s11 � 22B2s; �14�
s22 � C2s; �15�
s33 � C2s sin2 u: �16�

The non-vanishing components of the field equations, using (1), (3), (7), (8) and (14)±(16), interior of the boundary surface S are

G2
00 � 2

A

B

� �2

2
C 00

C
� C 0

C

� �2

22
C 0

C

B 0

B

" #
� A

C

� �2

�
_C

C

_C

C
� 2

_B

B

� �
� kA2m; �17�

G2
11 �

C 0

C

C 0

C
� 2

A 0

A

� �
2

B

C

� �2

2
B

A

� �2

2
�C

C
�

_C

C

� �2

22
_A

A

_C

C

� �
� kB2�p� 4hs�; �18�
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G2
22 �

C

B

� �2
C 00

C
� A 00

A
� C 0

C

A 0

A
2

A 0

A

B 0

B
2

B 0

B

C 0

C

� �
� C

A

� �2

2
�B

B
2

�C

C
2

_C

C

_B

B
�

_A

A

_C

C
�

_A

A

_B

B

h i
� kC2�pt 2 2hs�; �19�

G2
33 � G2

22 sin2 u; �20�

G2
01 � 22

_C 0

C
� 2

C 0

C

_B

B
� 2

A 0

A

_C

C
� 2kAB2q: �21�

The dot and the prime stand for differentiation with respect to t and r, respectively.

3 J U N C T I O N C O N D I T I O N S

We consider a spherical surface with its motion described by a time-like three-space S, which divides space±times into interior and exterior

manifolds. For the junction conditions we follow the approach given by Israel (1966a,b). Hence we have to demand

�ds2
2�S � �ds2

��S; �22�
K2

ij � K�ij ; �23�

where K^
ij is the extrinsic curvature to S, given by

K^
ij � 2n^a

2xa

jijj
2 n^a G

a
bg

xb

ji

xg

jj
; �24�

and where Ga
bg are the Christoffel symbols, n�a the unit normal vectors to S, xa are the coordinates of interior and exterior space±times and

j i are the coordinates that define the surface S.

From the junction condition (22) we obtain

dt

dt
� A�rS; t�21; �25�

C�rS; t� � rS�v�; �26�
dv

dt

� �22

S

� 1 2
2m

r
� 2

dr

dv

� �
S

; �27�

where t is a time coordinate defined only on S.

The unit normal vectors to S (for details see Santos 1985) are given by

n2
a � B�rS; t�d1

a; �28�

n�a � 1 2
2m

r
� 2

dr

dv

� �21=2

S

2
dr

dv
d0
a � d1

a

� �
S

: �29�

The non-vanishing extrinsic curvature are given by

K2
tt � 2

dt

dt

� �2
A 0A
B

" #
S

; �30�

K2
uu �

C 0C
B

� �
S

; �31�

K2
ff � K2

uu sin2 u; �32�

K�tt �
d2v

dt2

dv

dt

� �21

2
dv

dt

� �
m

r2

" #
S

; �33�

K�uu �
dv

dt

� �
1 2

2m

r

� �
r� dr

dt
r

� �
S

; �34�

K�ff � K�uu sin2 u: �35�

From the equations (31) and (34) we have

dv

dt

� �
1 2

2m

r

� �
r� dr

dt
r

� �
S

� C 0C
B

� �
S

: �36�
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With the help of equations (25), (26) and (27), we can write (36) as

m � C

2
1�

_C

A

� �2

2
C 0

B

� �2
" #( )

S

; �37�

which is the total energy entrapped inside the surface S (Cahill & Mcvittie 1970).

From the equations (30) and (33), using (25), we have

d2v

dt2

dv

dt

� �21

2
dv

dt

� �
m

r2

" #
S

� 2
A 0

AB

� �
S

: �38�

Substituting equations (25), (26) and (37) into (36) we can write

dv

dt

� �
S

� C 0

B
�

_C

A

� �21

S

: �39�

Differentiating (39) with respect to t and using equations (37) and (39), we can rewrite (38) as

C

2AB

� �
S

2
C 0

C
2 2

C 0

C

_B

B
2 2

A 0

A

_C

C
� B

A

� �
2
�C

C
2 2

_C

C

_A

A
� A

C

� �2

�
_C

C

� �2

2
A

B

� �2
C 0

C

� �2

2
A

B

� �2

2
A 0

A

C 0

C

� �" #( )
S

� 0: �40�

Comparing (40) with (18) and (21), we can finally write

�p� 4hs�S � �qB�S: �41�
This result is analogous to the one obtained by Chan (1997, 1998) for a shearing fluid motion but now we have generalized for an interior

fluid with shear viscosity.

The total luminosity for an observer at rest at infinity is

L1 � 2
dm

dv

� �
S

� 2
dm

dt

dt

dt

dv

dt

� �21
" #

S

: �42�

Differentiating (37) with respect to t, using (25), (39) and (18), we obtain that

L1 � k

2
�p� 4hs�C2 C 0

B
�

_C

A

� �2
" #

S

: �43�

The boundary redshift can be used to determine the time of formation of the horizon. The boundary redshift zS is given by

dv

dt

� �
S

� 1� zS: �44�

The redshift, for an observer at rest at infinity diverges at the time of formation of the black hole. From (39) we can see that this

happens when

C 0

B
�

_C

A

� �
S

� 0: �45�

4 S O L U T I O N O F T H E F I E L D E Q UAT I O N S

Again as in Chan (1997, 1998) we propose solutions of the field equations (17)±(21) with the form

A�r; t� � A0�r�; �46�
B�r; t� � B0�r�; �47�
C�r; t� � rB0�r�f �t�; �48�
where A0(r) and B0(r) are solutions of a static perfect fluid having m0 as the energy density and p0 as the isotropic pressure. We remark that,

following the junction condition equation (26), the function C(rS, t) represents the luminosity radius of the body as seen by an exterior

observer.

Thus, the shear scalar (13) can be written as

s � 1

3A0

_f

f
: �49�
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Now the equations (17)±(21) can be written as

km � km0 �
1

A2
0

_f

f

� �2

� 1

r2B2
0

1

f 2
2 1

� �
; �50�

kp � kp0 2
1

A2
0

2
�f

f
�

_f

f

� �2
" #

2
1

r2B2
0

1

f 2
2 1

� �
2

4kh

3A0

_f

f
; �51�

kpt � kp0 2
1

A2
0

�f

f
� 2kh

3A0

_f

f
; �52�

kq � 2

A0B2
0

_f

f

� �
B 00
B0

� 1

r
2

A 00
A0

� �
; �53�

where

km0 � 2
1

B2
0

2
B 000
B0

2
B 00
B0

� �2

� 4

r

B 00
B0

" #
; �54�

kp0 �
1

B2
0

B 00
B0

� �2

� 2

r

B 00
B0

� 2
A 00
A0

B 00
B0

� 2

r

A 00
A0

" #
: �55�

We can see from equations (50)±(53) that when the function f �t� � 1 we obtain the static perfect fluid configuration.

Substituting equations (51), (53) and (49) into (41), assuming also that p0�rS� � 0; we obtain a second-order differential equation in f (t),

2f �f � _f 2 � aff_� b�1 2 f 2� � 0; �56�
where

a � 2
A0

B0

� �
B 00
B0

� 1

r
2

A 00
A0

� �� �
S

; �57�

and

b � A2
0

r2B2
0

� �
S

: �58�

This equation is identical to the one obtained in Chan (1997, 1998). Thus, as before it has to be solved numerically (Fig. 1), assuming that at

t ! 21 represents the static configuration with _f �t ! 21� ! 0 and f �t ! 21� ! 1: We also assume that f �t ! 0� ! 0: This means that

the luminosity radius C(rS, t) has the value rSB0(rS) at the beginning of the collapse and vanishing at the end of the evolution.

5 M O D E L O F T H E I N I T I A L C O N F I G U R AT I O N

We consider that the system at the beginning of the collapse has a static configuration of a perfect fluid satisfying the Schwarzschild interior

solution (Raychaudhuri & Maiti 1979)

A0 � g�r�
2�1� r2

S
��1� r2� ; �59�

B0 � 2R

1� r2
; �60�

where

g�r� � 3�1 2 r2
S��1� r2�2 �1� r2

S��1 2 r2�; �61�
and

R � m0

�1� r2
S�3

4r3
S

: �62�

and where rS is the initial radius of the star in comoving coordinates and m0 is the initial mass of the system. Thus the static uniform energy

density and static pressure are given by

km0 �
3

R2
; �63�

kp0 �
6

R2

�r2
S 2 r2�
g�r� : �64�

We consider the initial configuration as owing to a helium core of a pre-supernova with m0 � 6 M(; initial radius rS � 1:6 � 105 km
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Figure 1. Time behaviour of the function f(t) for the models with and without shear viscosity. The time is in units of seconds and f(t) is dimensionless.

Figure 2. Density profiles for the model with and without shear viscosity. The radii r and rS are in units of seconds and the density is in units of s22.
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(Woosley & Phillips 1988). With these values we can solve numerically the differential equation (56). We can see from equation (53), using

(59)±(62) and this initial configuration, that ��B 00=B0 � 1=r 2 A 00=A0�=A0�S , 0 and by the fact that qS . 0 we then conclude that _f , 0:

In order to determine the time of formation of the horizon fbh, we use the equations (37), (45) and (46)±(48) and write
_f bh

f bh

� 2
A0

B0

B 00
B0

� 1

r

� �� �
S

< 23:606 � 103; �65�

which gives us f bh < 0:673 �t < 21:275 � 1024�; using the numerical solution of f(t).

We will assume that h is constant, but in general the shear viscosity coefficient depends on the temperature and density of the fluid

(Cutler & Lindblom 1987). Hereinafter, the values of h will be 1:347 � 1030; 6:736 � 1030 and 1:347 � 1031 g cm21 s21; which correspond

to values 100, 500 and 1000 s21, respectively, in time units.

In Fig. 2 we show the time evolution of the density profiles for the model with and without shear viscosity.

In Fig. 3 we notice that the radial pressure increases with the shear viscosity while the tangential pressure (Fig. 4) diminishes with the

viscosity.

In Fig. 6 we show the time evolution of the heat flux scalar profiles for the model with and without shear viscosity.

In Fig. 5 �h � 0� we can see that the star is isotropic at the beginning of the collapse �f � 1� but becoming more and more anisotropic

at later times. The anisotropy for the viscous model �h ± 0� has the same time behaviour.

6 E N E R G Y C O N D I T I O N S F O R A V I S C O U S A N I S OT R O P I C F L U I D

Following the same procedure used in Kolassis, Santos & Tsoubelis (1988) we can generalize the energy conditions for a viscous

anisotropic fluid.

For the energy-momentum tensor Segre type [111,1] and if l0 denotes the eigenvalue corresponding to the time-like eigenvector, the

general energy conditions are equivalent to the following relations between the eigenvalues of the energy±momentum tensor:

(a) weak energy condition

2l0 > 0; �66�

0

2

4

6
f = 1
f = 0.99
f = 0.9
f = 0.8

f = 1
f = 0.99
f = 0.9
f = 0.8

0 0.2 0.4 0.6 0.8 1

0

2

4

6
f = 1
f = 0.99
f = 0.9
f = 0.8

0.2 0.4 0.6 0.8 1

f = 1
f = 0.99
f = 0.9
f = 0.8

Figure 3. Radial pressure profiles for four different values of h . The radii r and rS are in units of seconds and the radial pressure is in units of s22.
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and

2l0 � li > 0; �67�
(b) dominant energy condition

l0 < li < 2l0; �68�
(c) strong energy condition

2l0 �
X

i

li > 0; �69�

and

2l0 � li > 0; �70�
where the values i � 1; 2; 3 represent the eigenvalues corresponding to the space-like eigenvectors.

The eigenvalues l of the energy±momentum tensor are the roots of the equation

jTab 2 lgabj � 0: �71�
Since l is a scalar we can use a locally Minkowskian coordinate system, we have

ua � da0 ; �72�
Xa � da1 ; �73�
qa � qda1 : �74�

0

2

4

6

8

f = 1
f = 0.99
f = 0.9
f = 0.8

f = 1
f = 0.99
f = 0.9
f = 0.8
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6

8

f = 1
f = 0.99
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f = 0.8

0.2 0.4 0.6 0.8 1

f = 1
f = 0.99
f = 0.9
f = 0.8

Figure 4. Tangential pressure profiles for four different values of h . The radii r and rS are in units of seconds and the tangential pressure pt is in units of s22.
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Thus, we can rewrite equation (71) as

m� l 2q 0 0

2q p 2 l 2 2hs11 0 0

0 0 pt 2 l 2 2hs22 0

0 0 0 pt 2 l 2 2hs33

�����������

�����������
� 0;

where the determinant of this equation is given by

��m� l��l 2 p� 2hs11� � q2��l 2 pt � 2hs22��l 2 pt � 2hs33� � 0: �75�
Thus, one of the solutions of the equation (75) is

��m� l��l 2 p� 2hs11� � q2� � 0; �76�
which can be rewritten as

l2 � �m 2 p� 2hs11�l� q2 2 m�p 2 2hs11� � 0: �77�

The two roots of the equation (77) are

l0 � 2 1
2
�m 2 p� 2hs11 � D�; �78�

and

l1 � 2 1
2
�m 2 p� 2hs11 2 D�; �79�
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Figure 5. The profiles for four different values of h of the ratio between the radial and tangential pressures. The radii r and rS are in units of seconds; and the

radial and tangential pressure,p and pt, are in units of s22.
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where

D2 � �m� p 2 2hs11�2 2 4q2 > 0; �80�
must be greater or equal to zero in order to have real solutions. This equation can be rewritten as

jm� p 2 2hs11j2 2jqj > 0: �81�
The second solution of the equation (75) is

�l 2 pt � 2hs22��l 2 pt � 2hs33� � 0; �82�
whose roots are given by

l2 � pt 2 2hs22; �83�
and

l3 � pt 2 2hs33: �84�

6.1 Weak energy conditions

From equations (66) and (78) we get the first weak energy condition written as

m 2 p� 2hs11 � D > 0: �85�
From equation (67), setting i � 1 and using equations (78) and (79) we get the second weak energy condition given by

D > 0; �86�
which is equal to the condition (80).

From equation (67), now setting i � 2 and using equations (78) and (83) we get the third weak energy condition given by

m 2 p� 2hs11 � 2�pt 2 2hs22� � D > 0: �87�
From equation (67), now setting i � 3 and using equations (78) and (84) we get the fourth weak energy condition given by

m 2 p� 2hs11 � 2�pt 2 2hs33� � D > 0: �88�

Figure 6. Heat flux scalar profiles for the model with and without shear viscosity. The radius r and rS are in units of seconds and the heat flux q is in units

of s22.
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6.2 Dominant energy conditions

From equation (68), setting i � 1 and using equations (78) and (79) we obtain the inequality

2�m 2 p� 2hs11 � D� < 2�m 2 p� 2hs11 2 D� < m 2 p� 2hs11 � D; �89�
which can be split into two inequalities, given by

D > 0; �90�
and

m 2 p� 2hs11 > 0: �91�
From equation (68), setting i � 2 and using equations (78) and (83) we get the inequality

2�m 2 p� 2hs11 � D� < 2�pt 2 2hs22� < m 2 p� 2hs11 � D; �92�
which again we can split it into two inequalities, given by

m 2 p� 2hs11 � 2�pt 2 2hs22� � D > 0; �93�
and

m 2 p� 2hs11 2 2�pt 2 2hs22� � D > 0: �94�
From equation (68), setting i � 3 and using equations (78) and (84) we get the inequality

2�m 2 p� 2hs11 � D� < 2�pt 2 2hs33� < m 2 p� 2hs11 � D; �95�
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Figure 7. The energy conditions (110)±(113), for the model without shear viscosity, where h � 0: The time is in units of seconds and all the others quantities

are in units of s22.
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which again we can split it into two inequalities, given by

m 2 p� 2hs11 � 2�pt 2 2hs33� � D > 0; �96�
and

m 2 p� 2hs11 2 2�pt 2 2hs33� � D > 0: �97�

6.3 Strong energy conditions

Substituting equations (78), (79), (83) and (84) into equation (69) we get the first strong energy condition given by

2pt 2 2h�s22 � s33� � D > 0: �98�
Since one of the weak energy conditions, equation (67), is the same for the strong energy condition (equation 70), thus we have that the

second, third and fourth strong energy conditions are equal to equations (86)±(88), given by

D > 0; �99�
m 2 p� 2hs11 � 2�pt 2 2hs22� � D > 0; �100�
and

m 2 p� 2hs11 � 2�pt 2 2hs33� � D > 0: �101�

6.4 Summary of the energy conditions

Summarizing the results, we rewrite the energy conditions. The energy conditions for a spherically symmetric fluid whose energy±momentum
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Figure 8. The energy conditions (114)±(117), for the model without shear viscosity, where h � 0: The time is in units of seconds and all the others quantities

are in units of s22.
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tensor is given by equation (3) are fulfilled if the following inequalities are satisfied:

�i� jm� p 2 2hs11j2 2jqj > 0; �102�
�ii� m 2 p� 2pt � D� 2h�s11 2 2s22� > 0; �103�
�iii� m 2 p� 2pt � D� 2h�s11 2 2s33� > 0; �104�
and besides,

(a) for the weak energy conditions

�iv� m 2 p� D� 2hs11 > 0; �105�
(b) for the dominant energy conditions

�v� m 2 p� 2hs11 > 0; �106�
�vi� m 2 p 2 2pt � D� 2h�s11 � 2s22� > 0; �107�
�vii� m 2 p 2 2pt � D� 2h�s11 � 2s33� > 0; �108�
(c) for the strong energy conditions

�viii� 2pt � D 2 2h�s22 � s33� > 0; �109�
where D �

������������������������������������������������
�m� p 2 2hs11�2 2 4q2

p
:

These equations, using equations (14)±(16) and (46)±(48), can be rewritten as

�i� jm� p� 4hB2
0sj2 2jqj > 0; �110�

�ii� m 2 p� 2pt � D 2 4hB2
0s�1� r2f 2� > 0; �111�
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Figure 9. The energy conditions (110)±(113), for the model with shear viscosity, where h � 1000: The time is in units of seconds and all the others quantities

are in units of s22.
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�iii� m 2 p� 2pt � D 2 4hB2
0s�1� r2f 2 sin2 u� > 0; �112�

�iv� m 2 p� D 2 4hB2
0s > 0; �113�

�v� m 2 p 2 4hB2
0s > 0; �114�

�vi� m 2 p 2 2pt � D 2 4hB2
0s�1 2 r2f 2� > 0; �115�

�vii� m 2 p 2 2pt � D 2 4hB2
0s�1 2 r2f 2 sin2 u� > 0; �116�

�viii� 2pt � D 2 2hr2B2
0sf 2�1� sin2 u� > 0; �117�

where D �
�������������������������������������������������
�m� p� 4hB2

0s�2 2 4q2

q
: In order to minimize the values of the equations (112), (116) and (117) in relation to u , we have

chosen the values of sin2 u � 0; 1; 1; respectively, since h > 0 and s < 0� _f < 0;A0 . 0�:
In order to verify the energy conditions, we have plotted the time evolution of all the conditions, for several radii and for two values of

h (0 and 1000), as we can see in the Figs 7, 8, 9 and 10. For the sake of comparison with the model h ± 0; we have plotted all the

conditions (110)±(117) for h � 0; even though in this case some of them are identical.

From the Figs 7(i) and 9(i) we can conclude that only the inequality �jm� p� 4hB2
0sj2 2jqj > 0� is not satisfied during all the

collapse and for any radius. This inequality is not satisfied for the innermost radii �r < 0:2rS� and for the latest stages of the collapse. The

condition (117) is not satisfied for r , 0:2rS [Figs 8(viii) and 10(viii)] because the inequality (110) �D > 0� is not satisfied for these radii

and for the latest stages of the collapse.

7 P H Y S I C A L R E S U LT S

As in Chan (1997, 1998), we have calculated several physical quantities, as the total energy entrapped inside the S surface, the total
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Figure 10. The energy conditions (114)±(117), for the model with shear viscosity, where h � 1000: The time is in units of seconds and all the others

quantities are in units of s22.
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luminosity perceived by an observer at rest at infinity and the effective adiabatic index, and we have compared them to the respective non-

viscous ones.

From equation (37) we can write using (46)±(48) that

m � r3B3
0

2A2
0

f _f 2 � rB0

2
f �1 2 f 2� � m0f 3

� �
S

; �118�

where

m0 � 2 r2B 00 �
r3B 020
2B0

" #
S

: �119�

We can observe from Fig. 11 that the mass inside S is equal for both models, with and without shear viscosity. This means that they radiate

the same amount of mass during the evolution.

Using the equations (43) and (46)±(48) we can write the luminosity of the star as

L1 � k

2
�p� 4hs�r2B2

0f 2 r
B 00
B0

� 1

� �
f � rB0

A0

� �
_f

� �2
( )

S

: �120�

This equation apparently depends on the viscosity but if we substitute the equations (49) and (51) into (120) the viscosity dependence

vanishes remaining only the pressure without shear viscosity. That is the reason we have presented in Fig. 12 a single plot for both models.

The effective adiabatic index can be calculated using the equations (50), (51), (56) and (59)±(64). Thus, we can write that

Geff � �ln p�
�lnm�
� �

r�constant

� _p

p

� �
m

m_

� �
� c�r�f �3j�r� _f 2 � bj�r��1 2 f 2�� � _f {c�r��12b� aj�r�f 2�2 12d�r��}

c�r��6 _f 3 � 2aff_2� � _f �2c�r�b�1 2 f 2� � 4d�r��

� 12r2d�r�f 2 � h�r��c�r� _f 2 � d�r��1 2 f 2��
72r2e�r�f 2 � h�r�{c�r�j�r�f _f � 3�bc�r�2 d�r���1 2 f 2�} ; �121�

where

c�r� � r2m2
0�1� r2

S�8; �122�

Figure 11. Time behaviour of the total energy entrapped inside the surface S for the models with and without shear viscosity. The time, m and m0 are in units

of seconds.
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Figure 13. Time behaviour of the effective adiabatic index Geff for four values of h . The quantity dG is defined as Geff�h ± 0�2 Geff�h � 0�: The time is in

units of seconds, Geff and dG are dimensionless.

Figure 12. Time behaviour of the luminosity perceived by an observer at rest at infinity for the models with and without shear viscosity. The time is in units

of second and the luminosity is dimensionless.
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d�r� � r2
Sg2�r�; �123�

e�r� � r6
S�r2

S 2 r2�g�r�; �124�
h�r� � �1� r2�2; �125�
and

j�r� � 3a 2 4khA0: �126�
Comparing the figures for Geff �h � 0 and h ± 0� we can see that the time evolution of the effective adiabatic indices are not very

different graphically. This is the reason to plot the quantity dG � Geff�h ± 0�2 Geff�h � 0� instead of Geff for the h ± 0 models. We can

note in Fig. 13 �h � 0� that shortly before the peak of luminosity (see Fig. 12) there is a large discontinuity in Geff owing mainly to the

behaviour of the pressure. The effect of the viscosity is to increase much more these discontinuities.

Finally, models of radiating viscous spheres have been presented by Herrera et al. (1989). This work is particularly relevant for the

proposed discussion because the conclusion concerning the effective adiabatic index is the same in both cases. Namely, a decreasing of the

critical adiabatic index required for stability (Chan et al. 1994), or equivalently, an increasing of the effective adiabatic index, induced by

viscosity. Since the models considered in each case are completely different, we suggest that this effect seems to be model independent.

8 C O N C L U S I O N S

The main conclusions of the present study are as follows.

(i) We have generalized the result which the pressure has non-zero value at the surface of the star unless the heat flux and shear

viscosity vanish.

(ii) The pressure anisotropy increases with the shear viscosity.

(iii) The total radiated mass is equal for the non-viscous star and for the star with shear viscosity.

(iv) The star luminosity is the same for both collapsing models.

(v) The collapsing times with shear viscosity and without shear viscosity are the same.

(vi) The shear viscosity increases the value of the effective adiabatic index.
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