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Radiation: a poly-traumatic hit leading 
to multi-organ injury
Juliann G. Kiang1,2,3*  and Ayodele O. Olabisi1

Abstract 

The range of radiation threats we face today includes everything from individual radiation exposures to mass casu-

alties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional 

traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury 

within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. 

Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal 

(GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA 

double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous 

injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sen-

sitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation 

exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double 

strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria 

to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and 

autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation 

exposure leads to the radiation response with time. We also describe current and prospective countermeasures rel-

evant to the treatment and prevention of radiation injury.
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Background
Reports on mortality in the life span study (LSS) cohort 

of atomic bomb survivors followed by the radiation 

effects research foundation indicates that (1) the risk of 

all causes of death is positively associated with radiation 

doses; (2) conventional dose-threshold analysis suggests 

no threshold; (3) the risk from cancer mortality increases 

significantly for most major organs, (4) an increased risk 

of non-neoplastic diseases including circulatory, respira-

tory and digestive systems are associated with radiation 

effects [1]. �e potential for harmful radiation exposure 

has increased dramatically since the development of 

nuclear weapons during World War II. �e number of 

nations with the capability to produce nuclear weapons is 

ever-increasing. �e potential for nuclear accidents and 

accidental exposures becomes greater with the prolifera-

tion of nuclear power plant construction to meet growing 

demands for energy that can be produced on a massive 

scale and yet clean and friendlier to the environment. In 

addition, the widespread use of radioisotopes in medi-

cine increases the dissemination of radioactive materials 

and potential for accidental occupational exposures. And 

of course, the frighteningly real possibility that terrorist 

groups could use nuclear weapons or other radiological 

weapons poses a serious risk of mass casualties. �e fact 

that more than 50% of cancer patients receive radiother-

apy at some point during the course of their disease [2] 

represents another significant source of exposure as nor-

mal tissues are subjected to radiation injury.

�ose charged with responding to radiation threats 

have modeled many of its potential exposure scenarios, 
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but for the most part they have assumed radiation expo-

sures alone as the single cause of injury. It is unrealistic 

however to assume that accidental radiation injury will 

occur in the absence of other injuries—especially when 

considering terrorist incidents. It has become abundantly 

clear that radiation exposure combined with many kinds 

of other injuries, ranging from trauma to infection, often 

results in a negative synergistic response more harm-

ful than the sum of the individual injuries. We have only 

recently begun to appreciate the practical consequences 

of combined injury and to understand that the body’s 

response to combined injury may be different from the 

responses to radiation or physical injury alone.

In this review we aim to summarize our current under-

standing of how the physiological response to radiation is 

displayed with respect to radiation alone or as accompa-

nied with other injuries. We focus on responses especially 

relevant to health effects: hematopoietic syndrome (bone 

marrow injury and circulatory blood cell depletion), sple-

nomegaly, GI death, skin atrophy, brain hemorrhage and 

bacterial infection across organs at the systemic level. 

Furthermore, DNA damage and repair, signal transduc-

tion processes, free radical-mediated apoptosis and 

autophagy at the cellular and molecular level will be dis-

cussed. We also discuss the potential effectiveness of cur-

rent radiation response-altering drugs that could also be 

used to treat or prevent radiation-related injury as well as 

the potential for new drug development.

Radiation injury
Radiation is divided into two groups: ionizing radiation 

and non-ionizing radiation. Ionizing radiation is defined 

as any type of electromagnetic radiation (e.g., X-rays or 

gamma rays) or particulate radiation (e.g., neutrons or 

alpha particles) which contains sufficient energy to ion-

ize atoms or molecules. In other words, the associated 

energy is used to eject electrons from the outer orbits 

of atoms or molecules that comes into contact with the 

forms of energy. �e effects of radiation on biological 

systems depend on the types of ionizing radiation that 

transfer their linear energy, a measure of the amount of 

energy transferred to a substance as the radiation passes 

through it. �e linear energy is classified into two types 

of radiation: low linear energy transfer (low-LET) radia-

tions and high linear energy transfer (high-LET) radia-

tions. Table  1 summarizes the types and basic physical 

characteristics of radiation in these categories. Low-LET 

radiations include gamma rays, X-rays, beta particles; 

high-LET radiations include neutrons, alpha particles, 

and heavy-particle cosmic rays [3]. Radiation exposures 

of concern to human health cover the full LET spectrum, 

and exposure could come from external sources as well as 

internalized radioactive substances (via inhalation, inges-

tion, or wound contamination).

Unlike ionizing radiation, non-ionizing radiation 

sources are known to include power lines, microwaves, 

radio waves, infrared radiation, visible light and lasers. 

Overexposure to non-ionizing radiation enables to result 

in health issues, though non-ionizing radiation is gener-

ally considered less detrimental than ionizing radiation. 

�is review covers only on poly-traumatic effects of ion-

izing radiation on biomolecules, cells, tissues and organs.

It has been well-characterized that a large radiation 

dose received over a short period of time can trigger a 

complicated pattern of physiological responses referred 

to as acute radiation syndrome (ARS). �e most radia-

tion-sensitive organs include the hematopoietic system 

[4], the gastrointestinal (GI) system [5], skin [6, 7], vascu-

lar system [8, 9], reproductive system, and brain [10–12]. 

A dose range (1–7  Gy in human) of ionizing radiation 

poses a risk of damage to the hematopoietic system, lead-

ing to decreases in blood cells and platelet counts and 

increases in susceptibility to infection and hemorrhage 

[13, 14] while high-dose whole-body irradiation (≥ 8 Gy 

in humans) causes acute GI syndrome in addition to 

hematopoietic complications. �e GI effects manifest as 

loss of intestinal crypts and breakdown of the GI mucosal 

barrier [15]. High doses can also induce GI hemorrhage, 

endotoxemia, bacteremia, anorexia, nausea, vomiting, 

diarrhea, and loss of electrolytes and fluid [16]. In fact, 

there is no clear demarcation between the hematopoietic 

syndrome, GI syndrome, cutaneous syndrome, immu-

nological syndrome, or brain symptom; they represent 

a continuum of damage. �ere is hematopoietic damage 

that influences GI damage at higher radiation and there is 

likely some reversible GI damage even at lower radiation 

Table 1 Characteristics of nuclear radiations [135]

a For the purpose of this presentation X-rays are considered along with gamma rays. X-ray wavelength bands largely overlap those of gamma rays, and they interact 

at least mechanistically like gamma rays. They are now usually distinguished only by their origin

Name Relative mass Electric charge Emitted by Range in air Tissue penetration Radiation stopped by

Alpha 7300 + 2 Unfissioned uranium and Pluto-
nium

5 cm First layer of skin Clothing paper

Beta 1 − 1 Fission products 12 m Several layers of skin Clothing

Gammaa 0 0 Fission products 100 m Total body Several feet of concrete or earth

Neutron 1830 0 Emitted only during fission 100 m Total body Several feet of concrete or earth
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doses that is evident to impact hematopoietic damage 

and immune system [17].

Skin injury from radiation burns is characterized by 

loss of epidermis and dermis [15, 18], reduction of skin 

stem cells, and impairment of cell communication and 

cutaneous integrity, a factor that may trigger the failure 

of other organ systems [19]. �e skin injury in non-irra-

diated mice takes 14 days to heal, whereas the skin injury 

in irradiated mice takes more than 4 weeks to heal. �e 

histopathology examination exhibits a relatively smaller 

healing bud, atrophy of neutrophils and the fat cell layer 

underneath the dermis [15].

Vascular endothelium is also damaged [8]. �e 

endothelium is a monolayer of endothelial cells lining 

the lumen of all blood vessels. In an adult human, the 

endothelial surface contains approximately 1–6 × 1013 

cells covering approximately 4000–7000  m2. It weighs 

approximately 1  kg [20]. �e vascular endothelium reg-

ulates many functions including vascular tone, coagula-

tion, fibrinolysis, leukocyte adhesion (i.e., inflammation), 

platelet adhesion (i.e., thrombosis), vascular permeability, 

and vascular growth. Table 2 shows molecules involving 

in the above-mentioned functions [21].

Concomitant and interdependent injuries to vari-

ous organ systems can lead to multi-organ dysfunction 

(MOD) and multi-organ failure (MOF), and death can 

occur as a result [22–24]. However, the vascular endothe-

lium may play a key role to link and trigger the MOD 

and MOF in part, because it is (1) present ubiquitously 

and deliver oxygen to cells and tissues and (2) radiation 

causes loss of the endothelial barrier function, tissue 

edema, and tissue hypoxia [21]. �erefore, intervention 

to vascular endothelial dysfunction such as statin [25] has 

been shown to be advantageous for preventing, mitigat-

ing, and treating radiation injury.

In our laboratory, whole body of B6D2F1 female mice 

were exposed to 9.5  Gy Co-60 gamma photons. Within 

4  h after irradiation, bone marrow cell and splenocyte 

depletion was first observed. Twenty-four hour later, 

circulating neutrophil and lymphocyte counts were sig-

nificantly decreased due to lack of matured neutrophils 

and lymphocytes mobilized from bone marrow. Within 

7 days, circulating red blood cells and platelets appeared 

to decrease while the white blood cells continued to 

decrease [26]. Concurrently, systemic bacteria were 

detected within bone marrow, liver blood, heart blood 

due to the intestinal barrier integrity breakdown [15, 27]. 

While bone marrow, spleen, GI, brain, liver, and kidney 

manifested a slight decrease in cellular ATP level, damage 

to the bone marrow, spleen, and GI was still observed. 

On days 11–20, brain hemorrhage appeared in cerebrum, 

cerebellum, pons, but mostly seen in cerebellum [Kiang 

JG, Smith JT, Anderson MN, Umali MV, Ho C, Zhai M, 

Lin B, Jiang S., 2019, Ghrelin therapy with pegylated 

G-CSF inhibits hemorrhage lesions, modifies cytokines, 

and increases ATP production and AKT phosphoryla-

tion in brain after whole-body ionizing irradiation alone 

or in combination with wound trauma, unpublished]. As 

a result of all of these physiopathological changes, the 

causes of death underlying the mortality increases. Brain 

hemorrhage may have contributed to mortality since all 

dead mice had brain hemorrhage [10] and low in ATP 

[28, Kiang et al., unpublished], but 30-day surviving mice 

(1) did not have brain hemorrhage, (2) still exhibited low 

counts of lymphocytes [29], (3) bone marrow still had 

low cellularity [29], (4) GI still did not recover from the 

Table 2 Functions regulated by the vascular endothelium. Adopted from Ref. [20 ]

NO nitric oxide, PGI2 prostacyclin, ET-1 endothelin-1, Ang II angiotensin II, TXA2 thromboxane A2, TM thrombomodulin, TFPI tissue factor pathway inhibitor, TF tissue 

factor, PAR-1 protease-activated receptor-1, PAI-1 Plasminogen activator inhibitor-1, tPA tissue plasminogen activator; Il interleukin, MCP-1 Monocyte chemoattractant 

protein 1, ICAM-1 Intercellular Adhesion Molecule 1, PECAM-1 platelet endothelial cell adhesion molecule, VCAM-1 vascular cell adhesion molecule 1, VWF von 

Willebrand factor, RAGE receptor for advanced glycation end products, VEGF vascular endothelial growth factor, PDGF platelet-derived growth factor, FGF �broblast 

growth factor, TGF-1 tumor growth factor-1

Function Category Major players

Vascular tone Vasodilators NO, PGI2

Vasoconstrictors ET-1, Ang II, TXA2

Coagulation Anticoagulants TM, TFPI, PGI2

Pro-coagulants TF, PAR-1, TXA2

Fibrinolysis Anti-fibrinolytic PAI-1

Pro-fibrinolytic tPA

Leukocyte adhesion (inflammation) Inflammatory mediators IL-6, IL-8, MCP-1

Adhesion molecules P-selectin, E-selectin, ICAM-1, 
PECAM-1, VCAM-1

Platelet adhesion (thrombosis) VWF, fibrinogen

Vascular permeability RAGE

Vascular growth VEGF, PDGF, FGF, TGF-b
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injury [27], (5) the brain displayed normal cellular ATP 

levels [Kiang et  al., unpublished], and (6) most impor-

tantly, survived from the lethal exposure to radiation.

Confounding factors in�uencing severity 
of radiation injury
Many confounding factors can influence severity of 

radiation injury, namely, types of radiation, radiation 

duration, radiation dose rates, ages, genders, or existing 

health conditions. �e mortality rate is positively corre-

lated with types of radiation [30, 31], radiation doses [1, 

15, 32, 33], and radiation dose rates [32]. Female animals 

are considered to be more sensitive to radiation than 

male animals. In addition, younger animals are consid-

ered to be more radio-resistant than older animals [34]. 

However, it is not clear whether pre-existing health con-

ditions can directly influence the severity of radiation 

injury based on these findings.

Combined injury
Data collected from historical radiation exposure events 

suggest 60–70% of irradiated victims are also often sub-

jected to burns as victims from doubly atomic bombed 

of Hiroshima and Nagasaki, Japan [35, 36]. Combined 

injuries were observed in 10% of 237 victims exposed to 

radiation and thermal burns from the Chernobyl reactor 

accident [18]. Burns, wounds, and infections can result in 

mortality after otherwise non-lethal radiation exposures 

in animal models of combined injury including mice [15, 

30, 37], rats [38–42], guinea pigs [43], dogs [44, 45], and 

swine [43]. Skin exposed to radiation also delays wound 

healing times [15, 46]. Combined injury can acceler-

ate acute myelosuppression, immune system inhibition, 

fluid imbalance, macro/microcirculation failure, massive 

cellular damage, and disruption of vital organ functions, 

thereby, compounding the occurrence of multi-organ 

dysfunction and multi-organ failure, which are the most 

frequent causes of death after combined injury [47–49]. 

In the experimental animal models, the time between 

the irradiation and the added trauma is critical. A single 

trauma sequentially followed by an irradiation exhibits 

less mortality when compared to an irradiation that is 

sequentially followed by a trauma, which results in more 

mortality in the animal model [30, 31, 50, 51]. However, 

if the added trauma occurs concurrently with irradiation, 

then the experimental animal model still exhibits less 

mortality than the previous trauma sequence [52]. How-

ever, Reid et al. [45] observed similar lethality regardless 

of the order of events in an animal model that combines 

radiation exposure with burn trauma.

While it is known that combined injury usually exac-

erbates wound healing, body weight loss, circulating 

blood cell depletion, spleen weight reduction, circulating 

cytokines/chemokines, and sepsis, it is not clear whether 

combined injury would exacerbate vascular endothelium.

It should be noted that by following the Atomic bomb-

ing survivors and their offspring, the risk of all causes of 

death is positively associated with radiation dose. Zero 

dose is the best estimate of the threshold. �e risk of 

cancer mortality increases significantly for most major 

organs [1]. However, it is not clear whether radiation 

combined injury would cause more risk of cancer mortal-

ity. Although the mode of combined injury death is fairly 

clear, the molecular events that may lead to combined 

injury-enhanced mortality remain poorly understood.

Molecular mechanisms
Radiation induces white blood cell depletion, activates 

signal transduction pathways, increases cytokine and 

chemokine production, and increases susceptibility to 

bacterial infection [15]. �e changes observed after irra-

diation appear at various levels—nucleus, cytoplasm, 

tissues, organs, and system—and at various time after 

injury. Whether cells survive or die after ionizing radia-

tion alone or when combined with other trauma depends 

on the number and severity of organ lesions, which 

determines the extent to which signal transduction path-

ways responsible for triggering cell death by apoptosis 

and autophagy are activated.

Recent research has identified key molecular inter-

mediaries involved in radiation injury. Among the many 

radiation injury-activated molecules, inducible nitric 

oxide synthase (iNOS) and nitric oxide (NO) play impor-

tant roles in radiation injury-induced apoptosis [53] and 

autophagy [54] due to free radical peroxynitrite produc-

tion [55]. �e promoter region of the iNOS gene contains 

motifs of many transcriptional factors [56]. Radiation 

injury increases iNOS and its transcription factors such 

as nuclear factor-κB (NF-kB) and Kruppel-like factor 6 

(KLF-6) resulting in increased NO production that leads 

to caspase-mediated apoptosis [53] and protein nitra-

tion-mediated autophagy [54]. Radiation injury increases 

concentrations of interleukin-6 (IL-6), tumor necrosis 

factor-α (TNF-α), and interferon-γ (IFN-γ) in human 

blood [57]; IL-1β, IL-3, IL-6, and G-CSF in mouse blood 

[15, 58, 59]; and IL-6 and IL-8 in CNS of non-human 

primates [60]. Cytokines are responsible for stimulating 

nuclear factor-IL6 (NF-IL6), which subsequently binds 

to the consensus motif within the iNOS promoter (rang-

ing from + 10 to − 300  bp upstream of the TATA box) 

to activate iNOS gene expression [61]. In addition, over-

production of IL-6, NO, or nitrogen reactive species can 

cause dysfunction of the GI barrier [14, 62, 63], which can 

allow bacteria to enter systemic organs. �ese changes 

are greatly enhanced by radiation combined injury [15].
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DNA damage and repair
�e severity of chromosomal damage is proportional to 

the absorbed dose of radiation. High- and low-LET ion-

izing radiation produce different types of DNA damage. 

High-LET ionizing radiation (neutrons, alpha particles, 

cosmic ray heavy particles) is more likely to cause direct 

DNA damage that is more complex and difficult to repair 

than damage from low-LET radiation, whereas low-LET 

ionizing radiation (gamma and X-rays) causes DNA dam-

age mostly indirectly via formation of free radicals [64]. 

Acute exposure to ionizing radiation causes damage to 

macromolecules and increases mitochondria-dependent 

generation of reactive oxygen species (ROS) and reac-

tive nitrogen species (NOS), with subsequent cell cycle 

checkpoint arrest, apoptosis, and autophagy [53, 54].

Ionizing radiation induces base damage, single strand 

breaks (SSBs), double strand breaks (DSBs), and DNA 

crosslinks. DSBs are the primary lethal lesion [65, 66]. 

Two repair pathways, homologous recombination (HR) 

and non-homologous end joining (NHEJ) efficiently 

repair DSBs. �e majority (80–90%) of DSB repair 

involves NHEJ [67, 68]. Within hours, ionizing irradiation 

induces DNA strand breaks that lead to ataxia telangiec-

tasia mutated (ATM) phosphorylation. As a result, the 

histone H2AX is phosphorylated within seconds, which 

is termed γ-H2AX and is radiation dose-dependent [69, 

70]. It is evident that the γ-H2AX formation is corre-

lated with DNA strand breaks [71]. Increases in γ-H2AX 

formation are found in mice [72], Gottingen minipigs 

[73] and non-human primates [74]. �e γ-H2AX foci 

formation was found in peripheral blood lymphocytes 

and plucked hairs, suggesting a robust biodosimeter for 

analyzing partial body exposure to ionizing radiation in 

humans [74].

In mice, it is evident that radiation combined injury 

causes a greater amount of DNA damage than ionizing 

radiation alone. However, studies have shown that  Lin+ 

cells,  Lin−  Sca1+c-Kit− cells and  Lin−  Sca1− c-Kit+ cells 

produced more DNA breaks after radiation injury than 

radiation combined injury [72].

Signal transduction pathway activation 
in response to DNA damage
DNA repair proteins including RAD50, MRE11, NBS1, 

RAD17, RAD1, RAD9, and HUS1 bind to ionizing 

radiation-induced DSBs to form complexes, which are 

detected by ataxia telangiectasia mutated (ATM) kinases. 

DSBs stimulate ATM phosphorylation within minutes. 

�e phosphorylated ATM is stable for many hours. 

MDC1, 53BP, BRCA1, and TopBP1 mediate the CHK2 

phosphorylation by ATM and related kinases. �e phos-

phorylated CHK2 then phosphorylates p53 and CDC25. 

Phosphorylated p53 arrests the cell cycle at G1/S and 

phosphorylated CDC25 arrests the cell cycle at both 

S and G2/M to allow DNA repair (see review #72 and 

Fig. 1).

Phosphorylated ATM can induce phosphorylation 

of the histone variant H2AX at serine 139, generating 

γ-H2AX [75]. Immunocytochemical assays with antibod-

ies recognizing γ-H2AX have become the gold standard 

for detection of DSBs because there is close to a 1:1 rela-

tionship between the numbers of DSBs and γ-H2AX foci 

formed. Furthermore, the rate of DSB repair correlates 

with the rate of loss of γ-H2AX foci [76]. γ-H2AX trig-

gers the CHK2 signal transduction pathway that activates 

p53 and CDC25. It should be noted that phosphorylated 

ATM also directly phosphorylates p53, which transcrip-

tionally activates the CDK inhibitor p21 and arrests the 

cell cycle at G1/S [77].

Recent evidence demonstrates DSB-dependent ATM 

phosphorylation activates NF-kB [78, 79]. Phospho-

rylated ATM binds to and phosphorylates IKKγ in the 

nucleus. �e complex exits the nucleus and associates 

with IKKα and IKKβ. �e IKK complex releases NF-kB 

from its inhibitors, IκBα and IκBβ, and unbound NF-kB 

is then free to move into the nucleus and regulate tar-

get genes. �e NF-kB signaling network includes DNA 

repair, cell cycle check regulation, mitochondrial anti-

oxidants, survival and apoptosis, and cytokine and 

chemokine expression in response to ionizing radiation-

induced damage [15].

Additional trauma such as wounding potentiates 

gene expression induced by ionizing radiation. Table  3 

shows that 60Co γ-irradiated mice display increases in 

expression of p21, Bax, DDB2, and Gadd45α genes. 

Mice treated with 60Co γ-irradiation and wound trauma 

exhibit further increases in p21, Bax, and DDB2, but not 

Gadd45α. Additionally, the mechanisms underlying this 

enhancement in radiation combined-injured mice remain 

unclear.

Changes in gene expression involved in cell 
adhesion, extracellular matrix, and cell membrane 
signaling
Using gene array techniques, we have shown that levels 

of cadherin-6 (a calcium dependent cell–cell adhesion 

glycoprotein) decrease in skin next to the wound of 

wounded, irradiated, and combined injured mice 7 days 

after wounding and irradiation (Table  4). Integrin α-7 

inhibiting cadherin-6 is elevated in combined injured 

mice. Matrix metalloproteinases (MMPs) involving in 

the breakdown of extracellular matrix are increased as 

well. Among them, MMP3 and MMP13 significantly 

increase after combined injury more than after wound-

ing, whereas irradiation does not induce such increase. 
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However, endogenous tissue inhibitors of metallopro-

teinases (Timps; known to inhibit MMPs) increases in 

both irradiated and combined injured mice. Myeloid 

differentiation primary response gene 88 (Myd88: a 

signal transducer involved in the activation of numer-

ous proinflammatory genes) also increases in com-

bined injured mice. �is increase in Myd88, breakdown 

of extracellular matrix by MMPs, and the decrease in 

cell–cell adhesive molecules are thought to facilitate 

the serious bacterial infections that had been found 

in irradiated and combined injured mice. In addition, 

toll-like receptors (TLRs) on cell membranes also 

significantly increase. TLR4, whose binding ligands 

include the lipopolysaccharides of gram-negative bac-

teria, increases in 4–5  h after combined injury and 

remains elevated up to 7 days. It should be noted that 

the increased Timps gene expression is probably a self-

defense response, but it occurs too late to impede the 

breakdown of extracellular matrix [80].

Sensors: RAD50/MRE11/NBS1      RAD17     HUS1/RAD1/RAD9

DNA damage

Transducers:  ATM ATR

Mediators: MDC1, 63BP, BRCA1, TopBP1

Effectors:                   CHK2 

NF-κB        p53        CDC25

G1      S      G2      M          

CHK1

Free radicals from 

low-LET radiation

High-LET

radiation

-H2AXγ

Fig. 1 Simplified representation of the DNA-damage-induced checkpoint response. Ionizing radiation induces DNA breaks. After the detection of a 

given damage by sensor proteins, this signal is transduced to the effector protein CHK2 via the transducer protein ATM. This ATM activation induces 

γ-H2AX formation, used as a biomarker for DNA breaks. Depending on the phase of the cell cycle the cell is in, this can lead to activation of p53 

and inactivation of CDC25, which eventually leads to cell cycle arrest. Mediator proteins mostly are cell cycle specific and associate with damage 

sensors, signal transducers, or effectors at particular phases of the cell cycle and, thus, help provide signal transduction specificity. The effect of 

UV light is via the transducer protein ATR and the effector protein CHK1. MRE11 meiotic recombination 11, NBS1 Nijmegen breakage syndrome 1, 

ATM ataxia telangiectasia mutated, ATR  ataxia telangiectasia related, γ-H2AX phosphorylated form of Histone variant 2AX, MDC1 mediator of DNA 

damage checkpoint 1, 63BP p63 binding protein, BRCA1 breast cancer 1, TopBP1 topoisomerase binding protein 1, CHK1 check 1, CHK2 check 2, 

CDC25 cell division cycle 25, G1 gap 1, S synthesis, G2 gap 2, M mitosis

Table 3 Gene expression in  bone marrow after  radiation 

injury and radiation combined injury [78 ]

B6F2D1/J female mice received 8.5 Gy 60Co gamma (RI) or 8.5 Gy followed 

by 15% total body surface area skin wound trauma 1 h after radiation (CI). 

The skin wound was to remove panniculus carnosus muscle and overlying 

skin (23.5 ± 1.1 mm in length and 14.9 ± 0.7 mm in width; see ref. [15]). Gene 

expression in bone marrow 24 h after RI or CI was measured using real-time PCR. 

Each group contained 6 mice

DDB2 DNA damage-binding protein 2, Gadd45α Growth arrest and DNA-

inducible protein 45α, TERT telomerase reverse transcriptase

a P < 0.05 vs. Sham, RI, and CI

b P < 0.05 vs. Sham, Wound, and CI

c P < 0.05 vs. Sham, Wound, and RI; determined by Chi square test

Gene Relative to Sham

Sham Wound RI CI

p21 1.0 0.4a 19.7b 35.9c

Bax 1.0 0.5a 8.6b 17.5c

Bcl-2 1.0 1.4 1.6 2.0

Bax/Bcl-2 1.0 0.4a 5.5b 8.6c

DDB2 1.0 1.1 5.7b 7.9c

Gadd45α 1.0 1.1 5.2b 4.6b

TERT 1.0 0.1a 0.7b 0.3c
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Free radical-mediated apoptosis
In mammalian cells, low-LET ionizing radiation but 

not high-LET ionizing radiation generates free radicals, 

including reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), via mitochondrial mechanisms 

[81, 82]. Consistent with this observation, free radical 

scavengers or hypoxia treatment can help prevent low-

LET ionizing radiation injury. Free radicals are required 

for the physiological function of cells, but overproduc-

tion of free radicals damages cellular components (Fig. 2). 

ROS are formed from hydrolysis of water in the nucleus 

and the cytoplasm. ROS in the nucleus cause DNA dam-

age while ROS in the cytoplasm activate multiple signal 

transduction pathways involved in growth, apoptosis, 

and autophagy [7, 15, 53, 54]. �ese injuries can lead to 

cell-cycle arrest, transformation, and cell death.

While ROS are short-lived and extremely reactive, 

RNS are longer-lived and more specific in the reactions 

they undergo [7]. NO reacts with superoxide to form 

the peroxynitrite anion, resulting in oxidative stress 

[15, 55] and the release of cytochrome c from the mito-

chondria to the cytoplasm as well as the subsequent 

conjugation of the cytochrome c with caspase-9 and 

Apaf-1 to form apoptosomes that activate caspase-3 

and caspase-7. Activated caspase-3 then activates cas-

pase-2, -6, -8, and -10, resulting in apoptosis [56].

Because exposure to ionizing radiation combined 

with wound or hemorrhage trauma enhances iNOS 

gene expression and iNOS protein levels, due to activa-

tion of both NF-kB and NF-IL6 and increases in serum 

cytokines [15, 27, 33], greater production of peroxyni-

trite anion and more protein nitration is anticipated 

relative to that seen after radiation exposure alone. 

Apoptosis can thus be expected to occur to a greater 

extent after radiation combined injury. Peroxynitrite 

anion also leads to more LC3-mediated autophagy (see 

below).

Ionizing radiation activates PI3K/AKT and mitogen-

activated protein kinase (MAPK) pathways [27, 83]. 

�e PI3K/AKT pathway activates anti-apoptotic pro-

teins [28, 84]. �e MAPK pathways include extracel-

lular signal-regulated kinase 1/2 (ERK1/2) activity [85], 

JNK [86], and p38 [87]. �e former is anti-apoptosis, 

whereas the latter two are pro-apoptosis. It is evident 

that both radiation alone and radiation combined 

injury enhance MAPK pathways in ileum samples [27].

Table 4 Gene expression in skin next to the wound after radiation and radiation combined injury [78 ]

Radiation combined injury induces greater levels of gene expression than radiation alone in mouse skin. B6D2F1/J female mice received 9.75 Gy 60Co γ-radiation 

followed immediately by 15% total body surface skin-wound trauma. Skin samples were collected various times after sham-treatment (Sham), wounding (W), 

radiation-injury (RI), and radiation combined injury (CI). Each group had 6 mice. Gene arrays were used to quantitate gene expression

Cdh6 Cadherin 6, Itga7 intergrin alpha-7, Mmp matrix metallopeptidase, Timp metalloproteinase inhibitor, TLR toll-like receptor, Myd88: myeloid di�erentiation 

primary response 88
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Free radical-mediated autophagy
A growing body of evidence suggests that ionizing radia-

tion induces programmed cell death mediated not only 

by the Bcl-2 family of proteins and caspase proteases 

(type I cell death) but also autophagy-dependent pro-

grammed cell death type 2 (PCDT2) [88]. �e role of 

ionizing radiation-induced autophagy in normal cells, 

especially in the cells of dose-sensitive tissues such as 

small intestine, is a subject that requires attention.

Autophagy (or autophagocytosis) is a lysosomal mech-

anism of degradation of self-constituents that is evolu-

tionary conserved and occurs in various eukaryotic cells 

[89–91]. �ree forms of autophagy have been distin-

guished, based on how intracellular material is delivered 

to lysosomes: chaperone-mediated autophagy, microau-

tophagy, and macroautophagy [92]. Macroautophagy is 

the most generic form of autophagy; under normal con-

ditions macroautophagy is responsible for the routine 

bulk degradation of redundant or defective organelles, 

long-lived proteins, large macromolecules, and patho-

gens. Macroautophagy thus provides a homeostatic bal-

ance between biosynthetic and biodegradative activities 

and innate immunity. Macroautophagy is characterized 

by the formation of autophagosomes (phagophores), in 

which portions of cytoplasm are sequestered, cargo pack-

aged within a double membrane-enclosed vacuole are 

transported to lysosomes or late endosomes for biodeg-

radation [93, 94].

One of the crucial steps of this multistage process is 

conversion of light chain protein 3 type I (LC3-I) (also 

known as ubiquitin-like protein Atg8) to type II (LC3-II) 

either by a redox sensitive Atg4 serine protease or by E-1 

and E-2 like enzymes Atg7 and Atg3 [95–97]. LC3 pro-

tein is considered a marker for autophagosomes [95, 96].

Macroautophagy (MAG) is induced in response to cer-

tain conditions including exposure to ionizing radiation. 

Induction of MAG in response to cytotoxic stress can 

be either protective or detrimental. It has been recently 

shown that PCDT2 is related to the damage-regulated 

autophagy modulator (DRAM), the death associated 

protein kinase (DAPK), autophagic massive elimination 

of apoptotic mitochondria, and oxidative activation of 

Atg4 serine protease, which can occur via free radical 

mechanisms activated by ionizing radiation. Although 

MAPK
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4

Fig. 2 RI and CI alter molecular mechanisms determining survival. RI and CI activate 4 signal transduction pathways. 1. RI and CI activate NF-κB. 

NF- κB binds onto 10 motif sites on the promoter region of iNOS gene to transcribe and translate iNOS protein. This protein catalyzes NO 

production so as to produce high levels of peroxynitrite, a free radical to nitrate other proteins. The free radical stimulates NF-κB that increases 

circulating cytokine/chemokine concentration and vice versa. As a result, cell death occurs. 2. RI and CI activate MAPK that is known anti-survival. 3. 

RI and CI decrease NRF1 and NRF2 so that B-ATP synthase, cytochrome c and cytochrome c oxidase IV are reduced. Then, ATP production is reduced, 

and cell death occurs. 4. RI and CI increase miR-34a that is evident to activate NF- κB. RI radiation injury, CI combined injury, MAPK mitogen-activated 

protein kinase, NF-κB nuclear factor-keppaB, Foxo3 forkhead box O3, PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha, 

NRF nuclear respiratory factor, iNOS inducible nitric oxide, ROS reactive oxygen species, RNS reactive nitrogen species, IL interleukin, TNF tumor 

necrosis factor
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the free-radical species produced by ionizing radiation 

have short-term effects, the subsequent activation of pro-

oxidant pathways, such as the iNOS cascade, can potenti-

ate and prolong oxidation and thus extend up-regulation 

of MAG.

LC3-II is identified in host small intestine-defense cells 

such as Paneth cells, which are considered to be relatively 

resistant to radiation and can therefore help maintain the 

GI barrier after otherwise lethal insults. We assessed the 

dynamics of LC3 protein to track MAG in ileal crypt cells 

after ionizing radiation or radiation combined injury. We 

found that there is a larger increase in LC3-II in CD15-

positive Paneth cells at day 7 after radiation combined 

injury than after radiation injury alone [80]. �e increase 

is correlated with iNOS activation, NO production, lipid 

peroxidation, and protein nitration. �e up-regulation of 

autophagy is accompanied by a decrease in protein–pro-

tein interaction between LC3, heat shock protein 70 kDa, 

and Bcl-2-associated anthanogene-1 [54].

Bacterial infection activates signal transduction 
pathways
Overproduction of IL-6, NO, or nitrogen reactive species 

can cause dysfunction of the GI barrier [14, 27, 62, 63], 

resulting in bacterial entry into the systemic organs. In 

our laboratory, we collected heart blood and liver tissue 

from recently deceased or euthanized sham, wounded 

[15] or hemorrhaged [27], radiation-injured, or radiation 

combined-injured mice and cultured the tissue to deter-

mine if facultative bacteria had entered the circulation. 

Since tissues from healthy animals are normally sterile 

(except for occasional, transient bacteremia), the pres-

ence of bacteria in detectable numbers is indicative of 

systemic infection.

In sham-treated mice no bacteria were found in the 

tissues tested. In wounded, hemorrhaged, and radia-

tion-injured mice Enterococcus sp., Staphylococcus sp. 

[15] and Proteus mirabilis [27] were only occasion-

ally detected. However, in radiation combined-injured 

mice, Sphingomonas paucimobilis [27], Enterococcus sp., 

Staphylococcus sp., Bacillus sp., and Lactobacillus sp. 

[15] were common, and the same bacterial species were 

also isolated from ileum. Bacteremia in mice receiving 

wounds alone was transient and present only until day 

3 after wounding. On the other hand, systemic infection 

was demonstrated in radiation combined-injured mice 

through day 17 and sporadically in radiation-injured 

mice through day 25. In radiation combined injured-

mice, Bacillus and Lactobacillus were isolated within 

the first 8 days after radiation combined injury. �e data 

[15] imply that mice receiving wounds alone were able 

to resist infection. However, systemic infection occurred 

in both radiation combined-injured mice and mice 

receiving radiation alone. �is was observed several days 

sooner in the radiation combined-injured mice [15, 27].

Bacteremia induced increases in serum cytokine con-

centrations, which further promoted iNOS overexpres-

sion, peroxynitrite production [55] and activation in 

radiation combined-injured mice [15]. It is important to 

note when interpreting these data that luminal micro-

biota composition may influence the host’s intestinal 

response to radiation and may change in those develop-

ing postirradiation diarrhea [98]. For this reason, it is not 

surprising to observe variations in the intestinal response 

either to radiation or radiation combined with wound 

trauma.

Radiation-induced ATP reduction and possible 
signaling involvement
A normal ATP production is maintained by glycolysis and 

the TCA cycle taking place in mitochondria [99]. ATP is 

the main energy form for a variety of cellular processes, 

including DNA, RNA and protein synthesis, mainte-

nance of the cytoskeleton, signaling, ion transport and 

repair. Herein, we reported that combined injury signifi-

cantly reduced cellular ATP contents in ileum along with 

pancreas, brain, spleen, kidney and lung [28]. Radiation 

exerts its actions by (1) decreasing pyruvate dehydroge-

nase (PDH, an enzyme complex crucial to conversion 

of pyruvate to acetyl CoA for entrance into TCA cycle), 

(2) increasing pyruvate dehydrogenase kinase (PDK, 

an enzyme that phosphorylate PDH resulting in PDH 

becoming inactive) so that mitochondria lacks acetyl 

CoA as an fuel to generate ATP [28], and (3) remodeling 

mitochondria with fusion and fission leading to propto-

sis and autophagy [100]. MAPK has been shown to dis-

integrate the cell biogenesis [101]. Radiation-induced 

reduction in ATP levels are known to disintegrate the cell 

structure and function, leading to necrosis, apoptosis, 

autophagy [102–107].

It is reported that poly(ADP-ribose) polymerases 

(abbreviated as PARP) repair damaged DNA and, acti-

vates NF-κB activity that leads to inflammation and 

reduction in ATP levels. �e peroxisome proliferator-

activated receptor (PPPAR)-γ coactivator-1α (PGC-1α) 

is known to be regulated by MAPK [108] and to inhibit 

NF-κB activity [109]. Increased PGC-1α induces the tran-

scription of nuclear respiratory factor (NRF)1 and NRF2, 

leading to overexpression of β-ATP synthase, cytochrome 

c and cytochrome c oxidase IV [110, 111]. Also, micro-

RNA-696 inhibits PGC-1α [112]. As a result, ATP pro-

duction increases, and thus, apoptosis and necrosis are 

both inhibited [55, 113]. In our laboratory, we found 

radiation alone or radiation combined injury significantly 

decreases cellular ATP levels through reduction of NRF1 

and NRF2 without PARP and PGC-1α alteration [Kiang 
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et al., unpublished]. Figure 2 shows that radiation alone 

or combined injury activates MAPK activity but does 

not stimulate PGC-1α. Radiation and combined injury 

increases iNOS, RNS, NF-κB and cytokines, thereby, 

leading to decreased survival. Concurrently, radiation 

and combined injury reduces NRF1, NRF2, β-ATP syn-

thase, cytochrome c and cytochrome c oxidase IV. As a 

result, ATP production is reduced, and cell death subse-

quently occurs.

Countermeasures for radiation injury and radiation 
combined Injury
FDA has approved 3 drugs, namely, Neupogen, Neulasta 

and Leukine for acute hematopoietic syndrome [114]. 

Farese et  al. [115] reported that Neupogen decreased 

mortality and duration of neutropenia and thrombocy-

topenia after 7.5 Gy total body irradiation in non-human 

primates. Likewise, Hankey et  al. [116] reported similar 

results with Neulasta treatment in non-human primates. 

Kiang et al. [29, 117] reported that Neupogen and Neu-

lasta decreased mortality in mice after 9.5 Gy irradiation 

alone or radiation combined injury.

A synergistic effect between radiation and traumatic 

injury has been reported in mice [15, 30, 37], rats [38–

42], guinea pigs [43], dogs [44, 45], and swine [118]. Key 

features of radiation combined injury include: (a) shock, 

which occurs earlier and is more frequent and severe 

compared to simple radiation injury, often becoming the 

main cause of death at times soon after injury; (b) dra-

matic suppression of hematopoiesis and the immune 

system, which negatively affects prognosis after radia-

tion combined injury; (c) extensive and severe GI dam-

age, such as mechanical and immune barrier breakdown, 

which leads to dysfunction in absorption and secretion 

and increased risk of infection; and (d) delayed wound 

healing—often double the healing time of wounding 

alone.

Since the mechanisms of radiation combined injury 

appear to be more complicated than the mechanisms of 

the individual injuries alone, it can be expected that the 

treatments are also not as straightforward. DiCarlo et al. 

[119] suggests that the complexity of the response makes 

them pessimistic that any effective treatments amenable 

for use in a mass casualty scenario can be found. How-

ever, the search for pharmacological countermeasures for 

radiation combined injury has shown some promise.

Zou et al. [49] reports that cervical sympathetic nerve 

block once a day for 14  days after radiation combined 

injury significantly decreases mortality [120]. Ledney and 

Elliott [30] reported that the nonspecific immunomodu-

lator S-TDCM given i.p. immediately after radiation 

combined injury, along with systemic and topical applica-

tion of gentamicin, improves survival. �ey also reported 

that syngeneic bone marrow transplantation increases 

the survival of mice with combined injury. Shah et al. [41] 

reported that human ghrelin attenuated organ injury and 

improves survival in a rat model of radiation combined 

with sepsis. Our laboratory has reported that ghrelin 

[10, 121, 122], Alxn4100TPO [123], Ciprofloxacin [72, 

124, 125] and mesenchymal stem cells [10, 12] are effec-

tive to mitigate radiation combined injury. In fact, due to 

the radiation-induced polytraumatic detriment on multi-

organs, polypharmacy approaches have been investigated 

[29]. �e possible interactions between treated drugs/

biologics need to be thoroughly explored.

�e medical response to radiation exposure in a mass 

casualty scenario would always be different from how a 

small number of exposed victims or first responders to 

a radiation-contaminated area are managed in compari-

son to a controlled situation involving radiation therapy 

patients. It is clearly unrealistic in mass casualty situa-

tions to undertake cervical sympathetic ganglia blocks, 

bone marrow transplants, or even the intravenous 

administrations of drugs. Intramuscular injections, orally 

administered drugs, and perhaps subcutaneous injec-

tions [126] may be the most complex treatments available 

to mass casualty victims. Countermeasures for radiation 

attacks or nuclear accidents that must be given prior to 

radiation exposure could be impractical since it is rather 

unlikely that such event would occur with adequate 

warning; however, countermeasures could prove to be 

useful for situations where radiation exposures are rather 

certain or likely to happen as planned, as in the case of 

radiation therapy. Successful countermeasure develop-

ment and strategy must therefore address the specific 

requirements for a radiation exposure scenario from all 

types of radiation exposure possible situations.

Potential biomarkers for radiation and combined 
injury
With a mass casualty after radiological accidents or 

nuclear weapon detonation, triage becomes unes-

capable and from this need emerges the necessity for 

easily accessible biomarkers. It has been shown that 

IL-18 increases in the blood samples from non-human 

primates [127], minipigs [127], and mice [27, 127, 

128]. A similar IL-18 profile was found in the urine 

samples from non-human primates [129]. Addition-

ally, G-CSF has been reported as another reliable bio-

marker whose levels are increased by radiation and 

radiation combined injury [128, 130]. This is accom-

panied by reduced lymphocyte counts and increased 

FMS-like tyrosine kinase (Flt-3) ligands from mouse 

blood samples [130]. Citrulline produced by entero-

cytes is another biomarker that has been observed 

to be reduced after both radiation only and radiation 
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combined injury. Circulating citrulline can serve as a 

biomarker for acute and prolonged GI injury in a non-

human primate after total- and partial-body irradia-

tion [131].

MicroRNAs (miRs) have been investigated and sug-

gested to regulate proteins and gene expression. In 

human cells, radiation can up-regulate miR-30b, 

miR-30c and miR-30d as observed in CD34+ cells, 

whereas it has been shown to inhibit miR-30c expres-

sion in hFOB cells   [132]. In non-human primates, 

radiation can increase miR-574-5p, miR-126, miR-144, 

miR-21, miR-1-3p, and miR-206, and decrease miR-

150-5p levels [133]. In mice, radiation combined injury 

can increase 8 miRNAs and decrease 10 miRNAs levels 
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in serum. Among all the altered miRNAs, radiation 

combined injury particularly increased miR-34 levels 

in the serum resulting in an increased phosphorylation 

of ERK, p38, and increased NF-κB signaling, which 

up-regulate iNOS expression and caspase-3 activation 

in the ileum. Further, let-7g/miR-98 targets increased 

phosphorylation of STAT3 in the ileum, which is 

known to bind to the promoter region of iNOS gene. 

In addition, MiR-15, miR-99, and miR-100 are known 

to regulate IL-6 and TNF accordingly [27]. Changes 

in Let-7e, miR-30e and miR-29b have been reported 

in associated with regulation of both the hematopoie-

sis and inflammation [33]. Increase in miR-34a levels 

has been observed in mice exposed to both mixed field 

(neutron and gamma) and Co-60 gamma radiation 

[Kiang et al., unpublished]. It would be of great inter-

est to explore whether miR-34a is upregulated after 

irradiation with combined injury.

Conclusion
Radiation combined with wound trauma results in a 

decrease in the levels of lymphocytes, macrophages, 

neutrophils, platelets, cell adhesion molecules, tissue 

integrity, and stem cells, but leads to an increase in the 

activity of the iNOS/NF-kB/NF-IL6 and p53/Bax path-

ways, TLR signaling, cytokine concentrations [134], bac-

terial infection, cytochrome c release from mitochondria 

to cytoplasm, and DNA single and double strand breaks. 

�ese alterations lead to apoptosis and autophagy, result-

ing in diseases/mortality. Radiation injury combined 

with burns, infection, or fractures may be mediated by 

mechanisms like those observed after radiation injury 

combined with wound trauma (Fig. 3). Countermeasures 

available for radiation combined injury are currently very 

limited (Fig. 4), so the development of agents for preven-

tion, mitigation, and treatment remains a pressing need. 
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