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Radiation damage and radioprotectants: new concepts in the era

of molecular medicine
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ABSTRACT. Exposure to ionising radiation results in mutagenesis and cell death, and
the clinical manifestations depend on the dose and the involved body area. Reducing
carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation
or who are in certain professional groups is mandatory. The prevention or treatment of
early and late radiotherapy effects would improve quality of life and increase cancer
curability by intensifying therapies. Experimental and clinical data have given rise to
new concepts and a large pool of chemical and molecular agents that could be
effective in the protection and treatment of radiation damage. To date, amifostine is
the only drug recommended as an effective radioprotectant. This review identifies five
distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III,
tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the
radioprotective agents into five relevant categories (A, protectants against all types of
radiation effects; B, death pathway modulators; C, blockers of inflammation,
chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic
integrity; E, agents that block bystander effects). The necessity of establishing and
funding central committees that guide systematic clinical research into evaluating the
novel agents revealed in the era of molecular medicine is stressed.
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All life forms on our planet are exposed to cosmic
radiation, albeit at a level low enough to allow genetic
stability. The Earth’s atmosphere forms a transparent
shield, allowing in the right amount of radiation to reach
soil and water, and supporting life. Experiments in
shielded conditions have shown that low-dose ionising
radiation is necessary to maintain optimum physiologi-
cal function [1, 2].

Exposure to higher doses of ionising radiation (above
some cGy), however, results in an increased rate of
genetic mutations and cell death. A total body acute
exposure of mammals to doses of 5–12 Gy results in
death due to bone marrow, gastrointestinal, lung or brain
damage. Such high exposures occur, however, only after
accidental exposure or nuclear weapon usage, or as a
medical intervention in the context of bone marrow
transplantation for patients with malignancy. Partial
exposure of the human body to much higher doses,
equivalent to a single acute dose of 16–20 Gy, occurs
during radiotherapy of cancer patients. Although in
these cases death from radiation tissue damage is rare,
late radiation sequelae may severely compromise the
quality of life of cancer survivors; therefore, radio-
protectants are important in protecting cancer patients
during radiotherapy and in preventing remote, some-
times life-threatening, sequelae.

Radioprotectants are also important in minimising the
accumulation of genetic mutations in patients receiving

radiotherapy or individuals exposed to non-lethal, but
higher than normal, levels of radiation. Levels of expo-
sure to diagnostic radiation during CT scan range from
0.01 to 0.2 Gy, and genetic damage and mutations can be
identified in the lymphocytes of individuals undergoing
CT [3]. The frequency of deoxyribonucleic acid (DNA)
mutation is dose dependent [4, 5] and appears to in-
crease linearly for doses between 0.1 and 5 Gy [6]. The
risk of second carcinomas following radiotherapy and/
or chemotherapy is not negligible. The lung cancer inci-
dence following breast radiotherapy is as high as 2% [7],
and 18% of deaths following successful treatment for
Hodgkin’s lymphoma are due to secondary carcinomas
[8], although chemotherapy is certainly a component of
such oncogenesis. It is therefore important to find ways
to reduce the cancer risk following radiotherapy, given
that cancer survivors account for .3.5% of the total
population of developed countries [9]. Whether effective
radioprotectants with acceptable side-effect profiles could
further decrease the risk of radiation carcinogenesis in
young patients undergoing radiological tests or in pro-
fessional groups receiving a higher than average radiation
dose is an issue of current interest. The field of research
on radioprotectants is also of great importance in space
science [10], given that manned missions are expected to
increase in the near future.

Radiation tissue damage

Tissues are well-organised structures composed of
cells of epithelial and connective tissue origin. The
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epithelial and haemopoietic bone marrow cell com-
ponents are continuously regenerating compartments:
the doubling time of regenerating clonogenic cells in the
crypts of the small intestine is less than 1 day, and the
whole intestinal tract epithelial compartment renews
entirely within a few days [11, 12]. Conversely, fibro-
blasts and the endothelial vascular cells that compose the
underlying stroma are slowly proliferating cells; conse-
quently, the stroma is a slow-renewing compartment.
The endothelial cell turnover in conduit blood vessels in
vivo is approximately 1 to several years, with only 0.1%
of cells actively proliferating in quiescent vessels [13, 14].
Similarly, only 0.3% of submucosal fibroblasts of the
intestine are found in the proliferative phase [15]. Under
stressful conditions, however, the proliferation rate of
these cells can increase dramatically. Neurons, on the
other hand, never proliferate.

Owing to this distinct cellular compartmentalisation,
we propose that exposure of tissues to ionising radiation
has five main effects:

1. Type I early radiation effects/cellular depletion,
which involve cellular death and cellular depletion
of a tissue followed by a proliferative response of
stem cells. At doses used in clinical radiotherapy
(,80 Gy), this damage is more evident in the epi-
thelial (or haemopoietic) compartment. This is the
early-responding cellular compartment, the depopu-
lation of which results in so-called ‘‘acute’’ or ‘‘early’’
radiation toxicity. Doses higher than those used in
radiotherapy may result in complete extinction of
such cells. Experimental and clinical data suggest that
for this compartment—which has a high a/b ratio—
the damage induced depends mainly on the total
physical dose and less on the dose per fraction (in
cases of fractionated radiotherapy) [16].

2. Type II early radiation effects/reactive gene activa-
tion, which involves cellular and tissue dysfunction
followed by increased vascular permeability, tissue
oedema, production of growth factor and cytokines on
behalf of fibroblasts and endothelial cells and chemo-
attraction of macrophages and other white cells,
leading to radiation inflammation. This is an entirely
different type of early radiation damage because it is a
consequence of reactive activation of genes involved
in inflammation, vascular permeability, angiogenesis,
apoptosis inhibition and others [17, 18]. This Type II
early response of the stromal compartment can persist
for weeks or months until it settles. Experimental and
clinical data suggest that for this compartment—which
has a low a/b ratio—the damage induced strongly
depends on the dose per fraction (in cases of frac-
tionated radiotherapy) [16].

3. Type III late radiation effects/tissue disorganisation.
If the radiation damage to fibroblasts and vessels (or
other cells of connective origin) is high enough, Type
II early effects can progress to permanent tissue
disorganisation and dysfunction, with proliferation of
fibroblasts and vessels, leading to the known clinical
signs of oedema, fibrosis and telangiectasia. Severe
damage of the vascular component may lead to
necrosis. This is a result of an unbreakable vicious
cycle of growth factor and cytokine production by
fibroblasts, endothelium and immune cells, leading to

organ dysfunction that manifests 6 months or even
2–3 years (or more) after irradiation [18].

4. Type IV radiation effects/stochastic effects, in which
mutations of the exposed somatic cell genome may
accumulate in surviving cells and be passed to
offspring. This may occur in blood cells, leading to
haematological malignancies, or in all epithelial or
connective tissue cells, leading to solid tumours [9].
Moreover, although not supported by strong epide-
miological or experimental data, germ cell mutations
can be inherited in males and manifested after a
number of generations.

5. Type V radiation effects/bystander effects. Although
we have been aware of this effect for many decades
[19], it has only recently become a target of intensive
research to clarify its molecular mechanisms [20, 21].
This effect refers to the radiation damage induced in
cells within an organ or the whole body that have
not been directly exposed to radiation. This is a result
of transmission of molecular signals through gap
junctions between cells (local level), or via secreted
molecules in the organ environment or in the blood,
that reach and damage cells in distant organs (long-
range abscopal level). Bystander (non-targeted) and
directly irradiated cells undergo a similar type of DNA
damage, which includes single- and double-strand
breaks, induction of micronuclei, sister chromatid ex-
change and c-G2AX foci, in addition to loss of DNA
methylation, resulting in increased genomic instability
[22, 23]. In this way, Type V effects may significantly
contribute to the early and late effects of radiation and,
importantly, to the Type V stochastic effects.

Mechanistic classification of radioprotectants

From cell exposure to radiation to the appearance of
genetic mutation, cell death or tissue disorganisation,
we can identify discrete steps where radioprotective
policies can intervene to reverse the destructive process
(Figure 1). Exposure of cells to ionising radiation leads to
free radical formation that damages both DNA and
the cytoplasmic organelles and endoplasmic reticulum.
High linear energy transfer (LET) radiation can directly
damage DNA strands without affecting the activity of
free radicals. A repair process follows, resulting in either
the survival of the cell or the triggering of death path-
ways such as apoptosis. Inadequate survival of cells
with mutations leads to carcinogenesis. Damage to late-
responding cellular compartments leads to early dys-
function and, eventually, a chronic phase resulting in
organ destruction. Each of these steps can be blocked via
pharmacological or molecular interference. Classification
of the radioprotectants according to their position in the
above described process is shown in Table 1.

Type A1 radioprotectants: blockers of oxygen
consumption

The first step in radiation interaction with the cell
is the formation of free radicals as a result of ionisation
of water and other molecules. In 1953, Gray et al [24]
showed that the biological effect of radiation is reduced
under anoxic conditions. Oxygen-free radicals created
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by the ionising irradiation interaction with intracellular
oxygen assault the DNA strands [25]. Dysfunction of
mitochondria, the endoplasmic reticulum and other
organelles induced by free radicals may also contribute
to mutagenesis and death [26, 27]. Reduction of oxygen
tension in the body extremities to protect tissues by using
tourniquet techniques has been proposed in the past for
normal tissue protection [28]. Since the early 1960s,
reports have proposed that compounds such as hydroxy-
tryptamine [29] that reduce oxygen consumption could
have a role as radioprotectants. Amifostine, the only
radioprotectant currently approved for clinical use, has

such a role [30], although its major cytoprotective
pathway is its activity as a free radical scavenger. The
oxygen tension and saturation of haemoglobin is in-
creased in the venous blood 30 min following injec-
tion of the agent; glucose levels drop, showing a shift of
normal tissue metabolism to anaerobic pathways [31].

Another approach to reduce the cellular oxygen
consumption is amplifying the activity of the hypoxia-
inducible factors-1 alpha and 2 alpha (HIF-1a and HIF-
2a, respectively). These are key transcription factors
regulating the expression of a variety of genes involved
in glycolysis and angiogenesis [32]. These proteins are
constantly degraded by the proteasome pathway; there-
fore, under normal oxygen tension, their concentra-
tion remains low. Under hypoxic conditions, however,
degradation is inhibited and HIFas are accumulated in
the cytoplasm. Following heterodimerisation, HIFas bind
the DNA to the hypoxia response elements (HREs) of a
large number of target genes involved in angiogenesis
[e.g. vascular endothelial growth factor (VEGF), erythro-
poiesis and apoptosis/survival regulating proteins (e.g.
BNIP3)], switching on their transcription. The lactate
dehydrogenase A gene (LDHA) is under the direct control
of HIFs [33], and overexpression of LDHA leads to
suppression of oxidative phosphorylation and anaerobic
metabolism. Stabilisation of HIFs in normal tissue would
reduce oxygen consumption and eventually decrease
radiation damage by oxygen species. In fact, this may be
a key pathway in the Warburg effect noted in tumours,
whereby cancer cells prefer anaerobic glycolysis instead

Figure 1. We can interfere in radiation damage by: (a) blocking the formation of free radicals; (b) blocking the free radicals, once
formed, with free radical scavengers; (c) enhancing the deoxyribonucleic acid (DNA) repair process; (d) inhibiting death signalling
pathways; (e) preventing the acute release of cytokines and growth factors by fibroblasts and endothelium during radiotherapy; (f)
breaking the vicious cycle that continuously stimulates fibroblast and endothelium dysfunction; (g) preventing the survival of somatic
mutated cells that repopulate the tissue with initiated cells; (h) preventing the DNA damage and hypomethylation of bystander cells.

Table 1. Mechanistic classification of radioprotectants
according to their biological activity

A. Protectants against all types of radiation effects
1. Blockers of oxygen consumption
2. Free radical scavengers (endogenous and exogenous)
3. DNA repair boosters

B. Protectants against Type I early radiation damage
1. Death pathway modulators
2. Growth factors

C. Protectants against Type II early and Type III late radiation
effects
1. Blockers of radiation inflammation and chemotaxis
2. Blockers of autocrine/paracrine pathways

D. Protectants against Type IV stochastic effects
1. Antimutagenic keepers of genomic integrity

E. Protectants against Type V bystander effects

DNA, deoxyribonucleic acid.
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of mitochondrial oxidative pathways, regardless of the
presence of oxygen [34]. Stabilisation of HIFs in normal
tissue would reduce oxygen consumption and eventually
lead to decreased radiation damage by oxygen species.

Cobalt chloride (CoCl2), the iron chelator desferriox-
amine, and the organomercurial compound mersalyl are
important inducers of HIFs, which they achieve by
mimicking hypoxia [35–37], probably by reducing the
ubiquitination of HIF [38]. Clioquinol, a copper (Cu) (II)/
zinc (Zn) (II) chelator, also inhibits the degradation of
HIF-1a and leads to expression of downstream genes in
normoxic cells [39]. Isoflurane, a volatile anaesthetic drug,
can also upregulate HIF-1a and enhance HIF-1-responsive
genes [40]. Okadaic acid and vanadate also appear to
promote HIF-1a expression via Akt activation [41, 42].

The activity of prolyl-hydroxylase (PHD), the direct
sensor of hypoxia, is decreased under hypoxic conditions.
Failure of hydroxylation of HIF results in reduced ubi-
quitination and HIF accumulation. Inhibitors of PHDs
have been developed. Tilorone is a low molecular weight
antiviral and a potent activator of the HIF pathway in
neuronal cell lines, enhancing the expression of down-
stream target genes [43]. Baicalein suppresses ubiquitina-
tion of HIF-1a by inhibiting the HIF-specific hydroxylases
and increasing the target gene transcription in tissue
culture cells [44]. A novel PHD inhibitor, FG-4497, which
stabilises HIF-1a and drives the expression of down-
stream genes, has been shown to protect the intestinal
mucosa against chemical insult [45].

Type A2 radioprotectants: free radical scavengers

Generation of free radicals in the nuclear environment
leads to a direct reaction with DNA chains and causes
strand breakage. Use of free radical scavengers at this
stage would reduce the number of free radicals that
damage DNA or organelles. All cells contain a certain
level of endogenous scavengers, the expression of which
can be induced under stressful conditions. Zn, Cu or the
mitochondrial manganese (Mn) superoxide dismutase
(SOD) are important enzymes converting oxygen radi-
cals to hydrogen peroxide [46]. Glutathione is also an
important endogenous scavenger bearing a thiol group
[47]. Several compounds can induce the expression of
endogenous scavengers, such as N-acetyl-cysteine [48].
Amifostine is one of the most potent inducers of MnSOD;
levels are maintained high for several days, a phe-
nomenon that may explain the delayed radioprotective
activity of amifostine [49]. The expression of endogenous
SOD can also be enhanced using adenoviral vectors con-
taining SOD genes [50].

The dephosphorylated thiolic form of amifostine (WR-
1065) is a potent exogenous free radical scavenger with
established clinical position in the protection against
platinum toxicities and the prevention of radiation xero-
stomia [51]. In the recent European Society for Me-
dical Oncology recommendations, the potential value of
amifostine in the protection of radiation proctitis and
oesophagitis is highlighted [52]. Experimental studies
have shown important protection of cells against hypo-
xanthine–guanine phosphoribosyl transferase (HPRT) gene
mutations after exposure to radiation [53]. Amifostine
can be administered as a simple subcutaneous injection,

has an acceptable tolerance profile and is a selective pro-
tectant of normal tissues in various malignancies, as
shown in a large number of randomised studies [54].
More recently, an oral nanoparticle formulation of WR-
1065 has been tested in pre-clinical models [55].

Fullerenes are crystal forms of carbon molecules that
are neither graphite nor diamond. They consist of a
spherical, ellipsoid or cylindrical arrangement of dozens
of carbon atoms. The addition of a hydroxy moiety on
each carbon of a 60-fullerene gives 60-fullerenol, a water-
soluble molecule with potent free radical scavenger
activity. In a study involving rats, the administration of
a high dose of this compound resulted in radioprotection
against total body irradiation (TBI) of 8 Gy, similar to that
provided by amifostine [56]. However, the tolerance of
the drug and its selectivity remains unknown. Cerium
oxide (CeO2) nanoparticles have also been shown to
protect the gastrointestinal epithelium and lung tissue
against radiation damage in mice by acting as free radical
scavengers and increasing the endogenous production of
SOD [57, 58].

Nitroxides have also been tested as free radical
scavengers. The lead compound of oxidised forms of
nitroxides, tempol (4-hydroxy-2,2,6,6-tetramethylpiperi-
dine-1-oxyl), has shown radioprotective efficacy in
experimental models [59]. The unique quality of the
drug to have paramagnetic properties allows the study
of the accumulation and clearance using MRI, which
may be useful in optimising the administration time
before radiotherapy to prevent tumour protection [60].

Type A3 radioprotectants: DNA repair boosters

Immediately following the formation of DNA strand
breaks, a complex machinery involving a large number
of enzymes is activated to enable rapid and accurate
repair of the damage, so that the cell can survive with
unaltered genomes. The recent application of fluorescent
immunohistochemical techniques with antibodies recog-
nising the phosphorylated form of (phosphorylated
histone 2AX) that appears immediately after the forma-
tion of a double-strand break enables us to easily
investigate the rate of repair and how putative radio-
protectants affect the process [61].

Oxidation of the WR-1065 thiolic product of amifos-
tine in cells leads to a disulphidic form, WR-33278, with
DNA repair activity. An effect of the molecule on the
polyamine-induced compaction and aggregation of DNA
has been reported [62] as decreasing DNA strand break
accumulation. WR-33278 has structural similarities to the
polyamines putrescine, spermidine and spermine [63],
and is transported at the same velocity by the polyamine
transport system. Polyamines are integral components of
the cell chromatin structure and are involved in DNA
repair mechanisms [64–66]. Inhibitors decreasing their
intracellular concentration result in enhanced ra-
diation cell killing and mutagenic effect. In supercoiled
plasmid DNA experiments, WR-33278 has protected
DNA even following neutron exposure, by scavenging
of hydroxyl radicals and by reducing the accessibility of
radiolytic attack sites via the induction of packaging
of DNA in liquid crystalline condensates [67]. Enhance-
ment of the topoisomerase I-mediated unwinding of
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supercoiled DNA is a process mediated by WR-33278
[68]. Both WR-1065 and WR-33278 molecules have the
ability to remove the platinum adducts from DNA [69].

Resveratrol (3,4-trihydroxy-trans-stilbene) is a poly-
ethanol extract from red grapes that is available as a
dietary supplement; several studies have shown that it
increases life expectancy in experimental animals and
prevents carcinogenesis. The addition of resveratrol
during radiotherapy of mice resulted in a reduction of
chromosomal aberrations [70]. A possible mechanism
by which resveratrol acts as a radioprotectant is the
stimulation of expression of sirtuins (silent information
regulator 2), a class of proteins that exhibit histone
deacetylase or mono-ribosyltransferase activity acceler-
ating DNA repair [71].

Direct molecular interference in DNA repair machin-
ery by targeting multiple enzymes involved in the pro-
cess may also prove critical in accelerating the restoration
of DNA damage. Oxoguanine DNA glycosylase (OGG1)
initiates base excision repair of oxidised purine bases
and exhibits 8-OH-G glycosylase activity [72]. Although
this enzyme does not interfere with DNA double-strand
breaks and cell death, it seems to have an important
antimutagenic effect, as shown in cell lines exposed
to ultraviolet light [73]. OGG1 seems also to prevent
oxidative damage of mitochondrial DNA [74]. Butin, a
7,39,49-trihydroxydihydroflavone, protects cells against
hydrogen peroxide-induced damage of DNA by enhan-
cing the transcriptional activity of OGG1 and the ex-
pression of phosphorylated Akt, a regulator of OGG1,
which makes the compound a candidate antimutagenic
agent [75].

A key enzyme of base excision repair is the human
apurinic/apyrimidinic endonuclease (HAP1/APE1); the
mitochondria-targeted APE1 exhibits robust DNA repair
activity. Overexpression vectors of mitochondria-tar-
geted truncated APE1 and full-length APE1 significantly
protect normal cells from oxidative stress [76]. Poly-
(adenosine diphosphate-ribose) polymerase (PARP-1) is
a nuclear enzyme that is possibly involved in DNA
base excision repair. PARP-1 is involved in suppressing
imprecise repair of endogenous DNA damage, leading to
deletion mutation during ageing [77]. PARP-1 amplifies
a signal for rapid recruitment of repair factors, enabling
efficient restoration of genome integrity [78]. Exper-
iments in PARP-1–/– mice have revealed the importance
of the enzyme in the survival of intestinal epithelial stem
cells following irradiation [79]. A role of the enzyme in
the repair of DNA double-strand breaks following
irradiation has also been postulated [80]. Boosting the
activity of such enzymes by gene therapy techniques
could have an important role in the prevention of
radiation mutagenesis or toxicity.

Type B1 radioprotectants: inhibitors of death
signalling pathways

The DNA damage and, presumably, the endoplasmic
reticulum and mitochondria damage induced by radia-
tion-free radicals immediately trigger the pro-apoptotic
cell response [81]. The p53 gene, as a guardian of geno-
mic integrity, is rapidly upregulated, producing the wild
type p53 protein, which is considered as the first step of

apoptosis. The gap1phase cell-cycle arrest that follows
(first death check point) provides the necessary time for
the DNA repair process to occur. If the cell considers the
repair to be effective then proliferation follows; if not,
the cell progresses to the second death check point (G2
arrest), followed by the release of mitochondrial caspases
and death. The B-cell lymphoma 2 (bcl-2) family of pro-
teins, being the guardians of this latter check point, can
regulate the cell decision towards survival [82]. The anti-
apoptotic activity of Bcl-2 is prominent in cancer cells [83].

Blockage of the p53 function will break the apoptotic
pathway and prevent death, ignoring sometimes impor-
tant DNA damage. Sodium orthovanadate (Na3VO4) and
Pifithrin-a (imino-tetrahydrobenzothiazol-tolylethanone
hydrobromide) are potent p53 inhibitors. The adminis-
tration of these compounds in mice receiving lethal TBI
(8 Gy) significantly enhances survival and protects the
gastrointestinal mucosa from radiation damage [84].
Antisense oligonuleotides blocking the p53 upregulated
modulator of apoptosis (PUMA) protein, a p53 down-
stream protein which is important for the apoptotic
process, also protect mice against 15 Gy of TBI and allow
regeneration of the intestinal progenitor cells, preventing
the gastrointestinal syndrome [85]. Such p53 blocking
approaches seem important for the prevention of Type I
early radiation toxicities due to restriction of cellular and
stem cell depletion of epithelial tissues. However, one
should keep in mind that by blocking apoptosis a higher
percentage of cells with mutations will survive, because
the p53 guardian gene will not be allowed to eliminate
such cells. In this way, Type I toxicities may be pre-
vented, but Type IV stochastic effects would increase the
enhancement of radiation carcinogenesis.

An important group of proteins controlling apoptosis
at the post-p53 level is the Bcl-2 family of proteins. Bcl-2
and Bcl-extra large (Bcl-xl) are anti-apoptotic, while
bcl-2 associated protein X (Bax) and bcl-2 homologous
antagonist/killer protein are apoptosis-inducing pro-
teins. Pre-treatment of mice with small-molecule inhibi-
tors of glycogen synthase kinase 3b (GSK-3b), SB216763
and SB415286, shows a significant reduction of Bax
expression and Bcl-2 upregulation in intestinal crypt cells
after radiation with 4–8 Gy compared with radiation
alone, and reduces the apoptotic rate of these cells and
protects mice against gastrointestinal radiation syndrome
[86]. Viral proteins such as the Human Papilloma Virus
16E5 protein seem to have anti-apoptotic effects by
stimulating the ubiquitin–proteasome-mediated degrada-
tion of the Bax protein [87], and may become models for
the development of anti-apoptotic radioprotectants. The
angiotensin receptor blockers pioglitazone and TAK-491
also have anti-apoptotic functions; they increase Akt and
extracellular signal-regulated kinase (ERK) activity and
inhibit Bax activation [88].

Nuclear factor kappa light-chain enhancer of activated
B cells (NF-kB) is an important transcription factor re-
gulating the expression of a variety of genes including
Bcl-2 and Bcl-xl, as well as the expression of the in-
hibitors of apoptosis proteins (IAPs) [89, 90]. NF-kB is
usually found as a complex with an NF-kB inhibitor,
keeping NF-kB inactive in the cytoplasm. Activation of
specific receptors such as the Toll-like receptors leads
to activation of the NF-kappa-B essential modulator/
inhibitor of nuclear factor kappa-B kinase-interacting
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proteins that induce degradation of the NF-kB inhibitor
protein, releasing the NF-kB protein that shifts into the
nucleus [91]. Flagellin is a bacterial protein extracted
from Salmonella enterica that binds to the TLRs. CBLB502
is an engineered derivative containing the TLR-5-
activating domains of flagellin [92]. Administration of
CBLB502 before 13 Gy of TBI in mice results in
preservation of the normal crypt cell proliferation rate
and significantly protects against death, showing a more
potent effect than that of amifostine [92]. CBLB502 also
protects monkeys exposed to 6.5 Gy TBI. On the other
hand, direct inhibitors of NF-kB activity, including ethyl
pyruvate and the synthetic triterpenoid CDDO-TFEA
(RTA401), not only protect against but also mitigate
radiation toxicity when given 1–2 h post-exposure to
zebrafish embryos [93]. Inhibitor of kappa B (IkB) kinase
inhibitors also improve the overall survival of lethally
irradiated zebrafish embryos. These may imply a com-
plex role of NF-kB in radiation sensitivity.

An important pathway controlling death and survival
of cells is the autophagic machinery. Although manip-
ulation of autophagy with specific inducers and blockers
alters the radiosensitivity of cancer cells [94], there are no
data on the role of these in the prevention or treatment
of normal tissue radiation damage [95]. Preliminary
(unpublished) data from our group suggest that radia-
tion leads to aberrant autophagosome formation and
accumulation, implying an important role of autophagy
as a stress response pathway to radiation. Studies in-
vestigating the phenomenon and assessing the eventual
impact on radioprotection are ongoing.

Type B2 radioprotectants: growth factors

Depopulation of the early responding component of
tissues (epithelial and blood cells) induces accelerated
proliferation of the relevant stem cells, in order to
balance the cellular loss. The pick of this Type I early
radiation toxicity appears 15–20 days after exposure to
radiation. Specific growth factors acting directly on the
stem cell population of epithelial or haematological tissues
enhance the rate of repopulation and toxicity healing.

Haematopoietic growth factors such as erythropoietin
(EPO) and granulocyte (G) or granulocyte–macrophage
(GM) colony-stimulating factor (CSF) have an established
position in the treatment of anaemia and neutropenia
following chemotherapy or radiochemotherapy [96]. GM-
CSF may also have a role in the healing of acute radiation
mucositis [97]. Second-generation thrombopoietin (TPO)
mimetic agents such as romiplostim and eltrombopag are
important agents activating the TPO receptor [98] and have
been approved for the treatment of immune thrombocyto-
penic purpura. The keratinocyte growth factor palifermin
has been approved for the treatment of severe oral
mucositis that occurs after high-dose chemotherapy and
radiotherapy followed by stem cell rescue [99].

Becaplermin, a recombinant platelet-derived growth
factor B-chain homodimer, has shown important activity
in wound healing and seems also to have an important role
in osteogenesis [100]. Intracoronary infusion of recombi-
nant human (rh) VEGF, a potent angiogenic factor, induces
revascularisation and improves angina in patients with
stable exertional angina [101]. Repeated local application

of the rhVEGF telbermin in chronic diabetic foot ulcer has
been applied in Phase I trials [102]. An eventual role of
such topical gel formulations [103] to accelerate healing of
severe radiation mucositis is postulated as VEGF over-
expression, and has been shown to occur during the
healing of oesophageal acute radiation damage [97].

A peptide derived from the receptor-binding domain of
fibroblast growth factor (FGF)-2, FGF-P is a potent mitogen
that promotes stem cell renewal, progenitor cell differ-
entiation and epithelial proliferation. 5-day administration
of this peptide in mice immediately after sub-TBI (to avoid
death by myelosuppression) shows enhanced proliferation
of crypt cells of the small intestine, preservation of the
gastrointestinal function and prevention of weight loss,
suggesting an eventual role of this approach in preventing
acute gastrointestinal radiation syndrome [104]. An FGF-
1:FGF-2 chimeric growth factor with universal FGF
receptor specificity significantly protects the small intes-
tine crypts when given intraperitoneally to BALB/c mice
prior to whole-body irradiation [105]. Velafermin, the
recombinant FGF-20, reduces lethality of TBI in mice by
increasing expression of nuclear factor-erythroid 2 p45-
related factor 2 and of MnSOD, and by activating the ERK
and Akt signal transduction pathways [106].

Type C1 radioprotectants: blockers of radiation
inflammation and chemotaxis

Following irradiation, the slowly proliferating cell
compartments of tissues suffer a reactive upregulation
and downregulation of genes, changing the functional
profile of the cells [17]: an event that results in early Type
II radiation toxicity. Agents targeting this effect may be
extremely useful in reducing acute vascular dysfunction
and leukocyte chemotaxis and infiltration during radia-
tion pneumonitis and colitis, as well as in preventing
acute breast, laryngeal/pharyngeal or even brain oedema.
Type C1 radioprotectants could block the appearance of
Type II toxicities when given during or immediately after
the end of a radiotherapy course. These are also likely to
act prophylactically against the subsequent development
of Type III toxicities by preventing the establishment
of autocrine/paracrine pathways. Moreover, they may
have a role in the treatment of Type III toxicities by
interfering in immunological pathways together with
Type C2 radioprotectants.

Blockers of the leukocyte chemotaxis may be useful in the
avoidance of the early inflammatory response that leads to
vasodilation and oedema. Anti-inflammatory interleukins
(ILs) such as IL-10 suppress tumour necrosis factor a (TNFa)
and inhibit the expression of endothelial adhesion molecules
[e.g. intercellular adhesion molecules (ICAMs)], preventing
leukocyte extravasation [107, 108]. Endogenous IL-10 limits
Ang II-mediated oxidative stress and vascular dysfunction
[109]. Inhibitors of the IL-6 pro-inflammatory cytokine,
which is considered to be a major cause of lymphocytic
alveolitis, may be important blockers of this phase [110]. In
studies of radiation brain injury, neutralising antibodies
against either IL-1b or TNFa prevented the expression of
ICAM-1, and thus of leukocyte migration [111].

Recombinant IL-10 (TenovilTM; Schering Corporation,
Kenilworth, NJ) has passed the clinical phase of exper-
imentation in patients with Crohn’s disease, who have
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shown an excellent tolerance profile for 12 week sub-
cutaneous administration [112]. Dekavil, a recently
synthesised immunocytokine produced by the fusion of
IL-10 with the fibronectin-8 antibody recognising fibro-
nectin and tenascin-C, is being tested as an inhibitor of
collagen-induced arthritis [113]. Given the fact that
fibronectin and tenascin-C are upregulated by radiation
[114], blocking approaches would be of interest in the
prevention and treatment of radiation tissue fibrosis via
multiple immunomodulatory and fibroblast targeting
pathways. Airway-directed gene transfer of IL-10 using
viruses also seems to be an interesting approach. The
recombinant Sendai virus seems to be an efficient IL-10
gene transfer approach to the airway epithelium [115],
with eventual applications in radiation pneumonitis.
Noradrenaline elicits anti-inflammatory actions in the
central nervous system (CNS), inducing IL-10 production
and signalling in the CNS, which may protect against
neurodegeneration. The noradrenaline reuptake inhibitor
reboxetine combined with the a2-adrenoceptor antagonist
idazoxan induces a profound increase in IL-10 in the brain
[116], and could be tested as a neuroprotector during
radiotherapy or in the treatment of radiation CNS syn-
drome. Compounds such as Y-40138 [117], the peroxisome
proliferator-activated receptor PPARa ligand WY14643
[118] and the anti-tumour alkyl-lysophospholipid ana-
logue edelfosine [119] are potent inducers of IL-10.

Infliximab, an anti-TNFa agent, reduces the infiltration
of the synovium by TNFa-producing inflammatory cells
[120]. Antibodies against the IL-6 receptor such as
tocilizumab have a potent anti-inflammatory effect by
blocking leukocyte adhesion to the endothelium [121,
122]. The novel calcineurin/nuclear factor of activated
T cells blocker A-285222 reduces IL-6 production by
arteries [123]. Baicalein, a component of Scutellaria radix,
blocks IkBa degradation followed by downregulation of
IL-6 [124]. Anakinra, an IL-1 receptor antagonist, is also
an effective agent that inhibits inflammatory pathways
and exhibits potent antirheumatoid activity [125].

Irradiation of mice lung results in a sharp increase of
lung tissue messenger (m) ribonucleic acid (RNA) for
ICAM-1/cluster of differentiation 54 (CD54), vascular
cell adhesion molecule and P-selectin and E-selectin in
the pulmonary endothelium some hours after irradia-
tion, which is sustained at a high level for several days
and returns to normal within 1 week [126]. Trans-
endothelial migration into the alveoli and interstitium
is thereby facilitated. Anti-CD54 blocking antibodies
lead to attenuation of inflammatory cell infiltration in
the irradiated lung and ICAM-1 knockout mice show no
lung inflammatory response to radiation [127]. ICAM-1
is induced in the mouse CNS following irradiation,
suggesting a role in leukocyte migration and brain
vascular inflammation [128]. Pravastatin, a new hydroxy-
methylglutaryl coenzyme A reductase inhibitor, exerts
persistent anti-inflammatory and antithrombotic effects
on irradiated endothelial cells [129] by inhibiting the
overproduction of monocyte chemoattractant protein 1,
IL-6 and IL-8 and the enhanced expression of ICAM-1. It
seems to be an important antifibrotic agent in radiation-
induced enteropathy [130], because it inhibits Type I
collagen and fibronectin accumulation, modulating the
secretory phenotype of mesenchymal cells. It also seems
to prevent or reduce radiation-induced skin damage [131].

Type C2 radioprotectants: blockers of autocrine/
paracrine pathways

Protracted gene activation and stromal cell functional
deregulation leads to the establishment of autocrine/
paracrine loops, stimulating fibroblast and endothelial
proliferation and leading to structural disorganisation
and organ failure (Type III radiation toxicity). Iden-
tification of the key molecules involved in this cycle and
of specific inhibitors would allow the breakage of the
loop, interruption of damage progression and, possibly,
reversal of the process. Type C2 radioprotectants could
be useful during the immediate post-radiotherapy period
to prevent the establishment of late radiation sequelae or
could be used in the treatment of the already established
Type III toxicities.

Lung hypoxia is a common event, with maximum levels
reached within 6 months following irradiation, as shown
in experimental studies applying pimonidazol localisation
appraisal [132]. Blockage of the prolyl- and asparaginyl
hydroxylase activity and subsequent accumulation of
hypoxia-inducible factors 1 and 2 is, therefore, expected to
dominate Type III radiation toxicities. A variety of genes,
including VEGF, EPO and lactate dehydrogenase-A
(which is involved in angiogenesis, glycolysis and
apoptosis regulation), are under the direct transcriptional
control of HIFs [32]. Because VEGF induces VEGF
receptors in fibroblasts, myofibroblasts and endothelial
cells [133, 134], blockage of the VEGF-related pathway by
VEGF tyrosine, kinase inhibitors (vatalanib, pazopanib
and cediranib) may also lead to cessation of the autocrine
or paracrine loops acting on fibroblasts and endothelial
cells. Blockage of VEGF attenuates pulmonary fibrosis
induced by bleomycin [135]. The TNP-470 anti-angiogenic
compound suppresses the proliferation of myofibroblasts
in experimental models by reducing the expression of
VEGF [136]. Specific HIF inhibitors have been developed,
such as PX-478 and YC-1 [137, 138], which, apart from
finding a position in the treatment of cancer, may prove to
be useful tools in the prevention and treatment of late
radiation sequelae.

Transforming growth factor beta (TGFb) is a key
cytokine in the fibrotic process [139] because it induces
phenotypic modulation of human lung fibroblasts to
myofibroblasts and stimulates collagen protein synthesis
[140, 141]. TGFb gene expression increases rapidly
within 14 days after irradiation [142]. Following thoracic
irradiation, elevated plasma TGFb-1 levels are noted in
patients [143]. Rats treated with an adenoviral-mediated
soluble TGFb Type II receptor showed markedly reduced
fibroproliferative changes following irradiation [144].
SMAD inhibitors such as naringenin downregulate ex-
pression and phosphorylation of SMAD protein in fibro-
blasts, blocking TGFb signalling [145]. A small molecular
weight molecule, halofuginone, inhibits the TGFb sig-
nalling pathway by increasing the inhibitory SMAD-7
expression and significantly lessens radiation-induced
fibrosis [146]. Relaxin, a potent antifibrotic agent and
TGFb inhibitor, also seems to exploit the SMAD path-
way [147]. Specific inhibitors of the activin receptor-like
kinase activity of the TGFb-1 receptor, such as SB-525334,
exhibit antifibrotic activity in lungs [148, 149]. The
SB203580 and WP631 SMAD inhibitors abrogate exces-
sive proliferation of human lung fibroblasts induced by
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c-rays [150]. Pirfenidone, a novel drug approved for the
treatment of idiopathic pulmonary fibrosis, reduces
fibroblast proliferation and collagen production [151,
152]. Pentoxifylline also exerts antifibrotic activity by
downregulating TGFb [153].

Platelet-derived growth factor (PDGF) isoforms have
an important role in stimulating the proliferation and
migration of myofibroblasts during fibrosis. PDGF action
is directed towards PDGFa and -b receptors with tyrosine
kinase activity, present on the surface of stimulated
fibroblasts [154]. Radiation induces expression of PDGF
and phosphorylation of PDGF receptors that persists for a
long period (26 weeks) even in the late phase of radiation-
induced fibrosis [83]. PDGF receptor tyrosine kinase
inhibitors reduce radiation-induced fibroblast and
endothelial cell activation [155]. Administration of imati-
nib or SU9518 (an agent that blocks PDGF receptors)
results in prolongation of survival of mice receiving 20 Gy
to the lungs, and reduces the radiomorphological signs of
lung fibrosis. Imatinib also inhibits bleomycin-induced
lung fibrosis [156]. In a recent study, administration of
imatinib (100 mg kg–1) daily after 18 Gy whole lung
irradiation of mice until euthanasia significantly reduced
lung fibrosis [157, 158].

TNFa is produced by activated macrophages and
released in large amounts during the fibrotic process
[159]. It stimulates fibroblast proliferation, secretion of
extracellular matrix proteins and secretion of pro-
inflammatory cytokines such as IL-1 and IL-6. Thoracic
irradiation of mice results in lung infiltration by TNFa,
producing macrophages. This reaction settles within 4
months, suggesting that TNFa probably has a role in the
early phase of radiation pneumonitis [160]. Blockage of
TNFa activity with recombinant TNFa receptor adminis-
tration results in resolution of lung fibrotic lesions [161].
TNF receptor 1 inhibition using antisense oligonucleo-
tides preserves lung function following local fractionated
irradiation of lung mice [162]. Inhibitors of TNFa such as
infliximab, a chimeric monoclonal immunoglobulin G1
(IgG1) antibody against the tumour necrosis factor used in
Crohn’s disease and rheumatoid arthritis, downregulate
both basic FGF (bFGF) and VEGF in the serum of patients
[163]. Administration of infliximab in a patient with lung
fibrosis and pulmonary hypertension associated with
advanced systemic sclerosis has resulted in stabilisation of
lung function tests and pulmonary arterial pressures that
progressively worsened after cessation of therapy [164].
Anti-TNFa treatment protects normal brain vasculature
against radiation [165].

The combination of pentoxifylline and vitamin E in the
prevention and treatment of fibrotic lesions has been
tested in clinical trials. Pentoxifylline inhibits TNFa [166]
and leukotriene synthesis, and reduces inflammation.
Prolonged treatment with this combination appears to
reduce radiation skin fibrosis [167]. Other clinical trials
on breast, lung and pelvic tissue fibrosis have provided
inconclusive results [168–171].

Hepatocyte growth factor (HGF) is a tyrosine kinase, a
product of the c-Met gene, with angiogenic properties.
HGF appears to be important in reparative lung response
following injury [172]. Activation of NF-kB by HGF has
been reported and abrogation of NF-kB activity by IkBa
repressors have resulted in loss of HGF/scatter factor-
mediated protection of renal cells against doxorubicin

[173]. HGF promotes the proliferation of ECV304 cells
and inhibits radiation-induced apoptosis of endothelial
cells [174]. Intramyocardial injection of adenoviral
vectors transferring the HGF gene protect against
experimental radiation-induced heart disease [175].
Continuous infusion of HGF in mice attenuates bleomy-
cin-induced lung damage; furthermore, administration
of HGF after establishment of bleomycin fibrosis reverses
the fibrotic process and accelerates the proliferation of
alveolar epithelial cells [176]. HGF plasmids, when
injected into the liver and transferred by electroporation,
significantly protect rats against radiation-induced liver
damage [177]. Retinoic acid, an active metabolite of
vitamin A that acts on specific receptors on cells,
prevents fibrosis by counteracting the activity of TGFb
and stimulating HGF promoter activity and HGF
receptor phosphorylation [178].

bFGF activates the ERK mitogen-activated protein
kinase pathway and induces activator protein-1 binding,
a nuclear factor that regulates the expression of a variety
of genes involved in fibrosis [179]. bFGF promotes
fibroblast growth and differentiation, and is produced
by endothelial cells within hours following radiation
exposure [180, 181]. Serum concentrations of bFGF
(together with TNFa and IL-6) are consistently higher
in patients receiving lung irradiation [182]. Blockage of
bFGF may be useful in the treatment of radiation fibrosis
only after the completion of radiotherapy, because
blockage of this pathway during irradiation may worsen
Type I radiation toxicity.

There is some limited evidence for the protective effect
of angiotensin-converting enzyme inhibitors, especially
captopril and an angiotensin II Type 1 receptor blocker,
on radiation-induced pulmonary injury [183]. Finally,
cyclo-oxygenase selective inhibitors may also have a role
in preventing radiation pneumopathy [184].

Type D radioprotectants: keepers of genomic
integrity

Patients undergoing radiotherapy are exposed to
inhomogeneous low-dose whole-body radiation (ranging
from 0.004% to 1% of the dose fraction [185, 186]) as a
consequence of the scattering of the radiation outside the
portals used; in addition, varying volumes of normal
tissues receive high doses ranging from 10% to 85% of
the total fraction delivered to the tumour. The estimated
overall incidence of secondary radiotherapy-induced
carcinoma is 1–2% [187], which is low compared with
the benefit of cure rates, but significant considering that
3.5% of the general population are cancer survivors [9].
Diagnostic radiology, like CT scans, also delivers a dose
in the range of 2 cGy to large body areas [188] and the
increasing application of CT scanning in medicine
highlights worries regarding potential increased radia-
tion carcinogenesis in the general population [189]. Type
D radioprotectants are therefore important in decreasing
the overall cancer incidence induced by medical applica-
tions. Such agents may also be useful in protecting, for
example, radiologists, nuclear industry workers [190],
aircraft crew [191] and astronauts [10] against occupa-
tional exposure.
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Experimental studies show that Type I radioprotec-
tants such as amifostine are important in decreasing the
mutation load, given that incorrectly repaired DNA
double-strand breaks are considered to be the major
cause of radiation mutagenesis [192]. However, no study
has yet to assess their efficacy in protecting against sec-
ondary carcinomas in a series of patients undergoing
radiotherapy and, given the 1–2% excess rate expected
within 10–20 years, it is unlikely that such data will ever
be available. Administration of 100 mg kg–1 of amifostine
in mice has been shown to reduce cyclophosphamide-
induced mutagenesis at the HPRT by fivefold [193].
Mutagenesis of splenic T lymphocytes at the HPRT locus
following whole-body irradiation of neutrons (single
doses, 50–150 cGy) and 60Co photons (single doses, 250–
750 cGy) also declined when amifostine administration
(400 mg kg–1) preceded irradiation, by factors of 1.4 and
2.4, respectively [194]. Amifostine has also been shown
to reduce the frequencies of radiation-induced altered
hepatocyte foci in Sprague DawleyH (Charles River,
Wilmington, MA) rats [195].

Free radical scavenging is certainly a major antimuta-
genic pathway, but it seems that amifostine also exploits
additional pathways. p53 is a key tumour suppressor
gene, the functional loss of which provides resistance to
irradiation. Ionising radiation dramatically accelerates
lymphoma development in p53 heterozygous mice.
Upon irradiation, p53 disruption confers a selective
advantage and expansion of p53-deficient clones fol-
lowed by an increased incidence of lymphoma [196].
Amifostine restores the normal p53 gene function in the
presence of specific p53 gene mutations [197, 198] and
also suppresses the activation of the c-Myc oncogene
[199]. This suggests that amifostine could potentially
act as an antileukemogenic agent in cases of genetic
predisposition. At low intracellular levels, amifostine
exhibits antimutagenic activity against nucleoside
reverse transcriptase inhibitors used for the treatment
of human immunodeficiency virus 1 infection [200].
Amifostine may, therefore, be classified as a Type D
radioprotectant, owing to its genetic interference in
addition to its scavenger activity.

The exact nature of the mutagenic event induced by
radiation remains elusive. Irradiation of peripheral blood
mononuclear cells with 3 Gy results in prolonged up-
and downregulation of a variety of genes [201]. The
upregulated guanine nucleotide binding protein a 15 and
the downregulated chemokine (CX3C) receptor 1 are
involved in G-protein-coupled receptor protein signal-
ling pathways. The H4 histone family, member G,
replication protein A3 and topoisomerase 2a all act as
DNA binding molecules in DNA metabolism and are
downregulated. V-Maf, a musculoaponeurotic fibrosar-
coma (avian) oncogene homologue with transcription
factor activity, is also upregulated. The identification of a
specific phenotype that marks a normal cell as initiated
would allow the development of treatment approaches
aiming to cleanse the body from such cells.

p53 gene mutations appear to occur late in the process
of radiation carcinogenesis [202], and amplification of the
murine double minute (mdm2; p53 inactivating) protein
has been also documented in some experimental radia-
tion-induced tumours [203]. Anti-p53 Type II radio-
protectants are expected to increase carcinogenesis,

while an attempt to restore p53 function once radio-
therapy is accomplished seems a reasonable approach to
eliminate p53-linked radiation carcinogenesis. The direct
activity of amifostine on p53 gene function restoration
implies that an antimutagenic effect could be achieved
even if the compound is administered late after cessation
of radiotherapy. Whether p53 gene therapy (INGN201)
[204] or mdm2 inhibitors such as Nutlin-3 or MI-219
[205, 206] are useful approaches as a cleansing method
following irradiation should be tested experimentally.
Whether Bcl-2 inhibition (i.e. with oblimersen sodium
[207]) during radiotherapy may also prove significant
in promoting the death of mutated cells is also an
interesting speculation. Levels of the anti-apoptotic
Bcl-xl protein have been shown to increase following
irradiation promoting the aggressiveness of cancer cells
[208, 209].

Non-homologous end joining (NHEJ) of DNA double-
stranded breaks, an error-prone repair pathway, is
common in mammalian cells compared with the error-
free homologous recombination pathway [210]. The D-
NHEJ depends on the activities of DNA-dependent
protein kinase (DNA-PK) and DNA ligase IV/XRCC4/
XLF, while B-NHEJ uses DNA ligase III/XRCC1, PARP-1
and histone H1 [211, 212]. Even partial deficiency of
DNA-PKcs leads to increased ionising radiation induced
mutagenesis (that is directly related to the level of
deficiency) and telomere dysfunction [213]. High mobi-
lity group adenine–thymine-hook 2 protein (HMGA2)
overexpression interferes with NHEJ processes, promot-
ing genomic instability and tumorigenesis [214]. Vanillin
derivatives, on the other hand, bearing importent anti-
mutagenic properties, selectively inhibit the activity of
DNA-PK so that blockage of the NHEJ is considered to
be the cause of its antimutagenic effect, presumably by
shifting the balance towards homologous error-prone
recombination [215]. Ribonucleoproteins (RNPs) are in-
volved in the packaging, processing and export of pre-
RNA molecules in the cytoplasm, and have an important
role in gene regulation. A subclass of TNPs, hetero-
geneous nuclear ribonucleoproteins (hnRNPs), show
either mRNA transcript or protein quantity changes
following ionising radiation. A role for hnRNPs A1, A18,
A2/B1, C1/C2, K and P2 in regulating double-stranded
break repair pathways by promoting preferentially hom-
ologous recombination or NHEJ repair is implied [216].
This certainly represents a field of research to identify
pathways involved in radiation carcinogenesis. The
stimulation of homologous error-free recombination
repair of double-strand breaks is a field for research
for the development of Type D radioprotectants, and
hnRNPs may represent a putative target.

Centrosome aberrations rapidly appear following
irradiation of normal cells [217]. These are linked to
prolonged cell-cycle arrest and are considered as an
important mechanism involved in radiation-induced
genomic instability, predisposing cells for the subse-
quent development of tumours. Exposure of human
mammary epithelial cells to 2 Gy irradiation leads to an
increase of centrosomal aberrations that are reduced
when cells are treated for 8 post-irradiation days with
TGFb [218]. This effect of TGFb is not related to a
reduction of induced aberrations but to elimination of
cells with established centrosomal aberrations. This
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observation is interesting because a growth factor,
namely TGFb, appears to be an important agent for the
cleansing of cells with genomic instability. This effect
was proved to be mediated by p53 activation, high-
lighting again the potential for eliminating mutated cells
via this approach. Because TGFb is also a factor involved
in Type II and III radiation sequelae, it is possible that
anti-TGFb agents aiming to mitigate such radiation
toxicities may instead enhance genomic instability, and
that TGFb administration aiming to decrease genomic
instability may enhance Type II/III toxicities. However,
short-term administration of TGFb in the form of, for
example, avotermin [219] for a short period after the
cessation of Type II radiation sequelae may be feasible
and could be tested at experimental level. Such an
approach may also be significant in reducing the load of
mutated cells after exposure to lower, Type II/III
toxicity-free radiation doses such as those used in
diagnostic radiology or following exposure during space
missions.

Telomerases also appear to have an important role in
radiation-induced genomic instability. Telomeric repeat
binding factor (TRF-2) is a telomere-binding protein with
roles in telomere length regulation, and is upregulated in
certain tumours. In the absence of telomerase activity,
TRF-2 becomes a potent oncogene accelerating epithelial
carcinogenesis [220]. There is increasing evidence that
many DNA double-strand break repair proteins, including
Ku, DNA-PKcs, RAD51D and MRN, BRCA1, hRad9 and
PARP1, are involved in telomere maintenance. TRF-2 is
not confined to its telomeric environment but it may
migrate to the sites of DNA breakage following radiation
[221]. X-ray induces phosphorylation of TRF-2 and plays a
functional role in DNA double-strand break repair [222].
There is, therefore, increasing evidence that telomere
maintenance mechanisms constitute an integral part of
DNA damage response machinery. NF-kB, a transcription
factor that becomes functionally activated upon radiation
exposure, upregulates the telomerase activity by binding
to the kB-binding region in the promoter region of the
TERT gene [223]. Enhancing NF-kB, therefore, may protect
genomic integrity in addition to protecting normal tissues
against Type I toxicities.

Type E radioprotectants: protecting bystander cells

The exact molecular events defining the non-targeted
effects of radiation remain poorly understood. This is an
important field of research, given that understanding the
pathways may help in the reduction of radiotherapy
sequelae, enhance its antitumour efficacy and, most
importantly, reduce the risk of secondary carcinomas.

Gap junctions allow the flow between cells of small
molecules (1000–1500 Da) such as calcium ions, nucleo-
tides and peptides, and this route is considered a major
pathway of bystander effect manifestation within an
organ [224, 225]. Targeting gap junctions and their
constituent proteins, namely connexins, may prove im-
portant in blocking the bystander effects within a
partially irradiated organ (e.g. the lung or liver). Gamma-
hexachlorocyclohexane (lindane) induces gap junction
endocytosis, a process that is activated by the ERK path-
way [226]. TGFb-3 treatment downregulates connexin 43

and induces the ERK pathway [227]. Phorbol ester 12-O-
tetradecanoylphorbol-13-acetate and chlorohydroxyfura-
nones, by-products of drinking water chlorination, also
appear to inhibit gap junction [228].

The long-range abscopal effects are postulated to be
mediated through large molecules (1000–10 000 kDa) such
as lipid peroxide products and cytokines (IL-1, IL-6, TGFb
and TNFa). Such cytokines induce nitric oxide synthase 2
and increased nitric oxide content in target cells. Injection
of Cu/Zn-SOD or nitric oxide synthase inhibitors such as
L-NAME lead to reduced expression of bystander effects in
experimental animals [229]. Macrophages appear to be the
source of the long- and short-range bystander signals
through cytokine production [230]. Whether abrogation
of macrophage activation may have a role in protection
against Type D radiation toxicities is an emerging
hypothesis. Macrophage migration inhibitory factor
(MIF) is a macrophage-produced cytokine that induces
TNFa secretion and nitric oxide production, also con-
tributing to the recruitment of leukocytes. Its activity can
be blocked with monoclonal antibodies or by targeting
MIF tautomerase activity using small molecules such as
(S,R)-3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic
acid methyl ester [231]. Inhibitors of protein kinase-C,
such as 1-(5-isoquinolinesulphonyl)-2-methylpiperazine
dihydrochloride, also display important inhibitory activ-
ity on macrophage activation [232].

Because hypomethylation of DNA is a bystander effect
of radiation [22] that may be important in genomic
instability and carcinogenesis, agents that can restore this
effect may also be useful Type V radioprotectants. CpG
dinucleotides are major sites of DNA methylation in
mammals. During somatic cell differentiation, DNA
methylation occurs and represses germline-specific
genes, a process catalysed by DNA methyltransferases
(DNMTs). Demethylation is an important subsequent
step in permitting expression of tissue-specific genes and
occurs either by inhibition of DNMTs or as an active
process involving the DNA repair-related demethylase
[233]. The latter process is largely obscure, although it
seems to be related to DNA repair machinery, including
DNA glycosylases. Growth arrest and DNA-damage-
inducible protein GADD45a is a non-enzymatic factor
involved in base excision repair that actively promotes
DNA demethylation. Cytidine deaminase also appears to
be involved, converting 5-methylcytosine into a thymine;
this is followed by excision and replacement of methy-
lated nucleotides. DNA demethylation correlates with
extensive histone modification and exchange that is
facilitated by histone chaperone proteins such as histone
cell cycle regulation defective homolog A and nucleo-
some assembly protein. It is expected that explanation of
the process of demethylation will help in the develop-
ment of strategies to block radiation-induced demethyla-
tion in bystander cells.

Conclusion

It is evident that during the past decade a large
number of experimental and clinical data providing new
concepts have been accumulated, in addition to a large
pool of chemical and molecular agents that can be
effective in the protection and treatment of early and late
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radiation damage, as well as in the reduction of car-
cinogenesis following exposure to therapeutic or diag-
nostic ionising radiation. Where we stand in the clinical
setting is rather disappointing. Amifostine, an important
multitype radioprotective agent, is the only agent tested
and officially approved for a very narrow spectrum of
radiation toxicity; namely, radiation-induced xerostomia,
regardless of the large amount of clinical data supporting
its activity in the prevention of oesophagitis, pneumoni-
tis and intestinal toxicity. Such indications, however,
have been included in the clinical recommendation
guidelines of certain organisations [234, 235].

Table 2 summarises the types of radiation damage and
the corresponding agents expected to have a radio-
protective role. It is obvious that many of the agents may
be valuable for protection against multiple types of
radiation damage, given that the underlying biological
pathways overlap to a certain extent. It is also stressed
that some agents, although protective against one type of
radiation, can aggravate another type of damage; there-
fore, the time points of their usage may be a critical
issue for clinical trials. Establishing central committees,
recruiting experts in the field and absorbing significant
funds from governmental and charitable agencies active
in the field of cancer and radiation protection is required
to sustain large-scale clinical experimentation with an
aim to uncover the value of the plethora of agents with
putative radioprotectant activity.
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Justies N, Collı́a F, et al. Novel anti-inflammatory action
of edelfosine lacking toxicity with protective effect in
experimental colitis. J Pharmacol Exp Ther 2009;329:
439–49.

120. Wijbrandts CA, Dijkgraaf MG, Kraan MC, Vinkenoog M,
Smeets TJ, Dinant H, et al. The clinical response to
infliximab in rheumatoid arthritis is in part dependent on
pretreatment tumour necrosis factor alpha expression in
the synovium. Ann Rheum Dis 2008;67:1139–44.

121. Nishimoto N, Kishimoto T, Yoshizaki K. Anti-interleukin
6 receptor antibody treatment in rheumatic disease. Ann
Rheum Dis 2000;59:i21–7.

122. Suzuki M, Hashizume M, Yoshida H, Mihara M. Anti-
inflammatory mechanism of tocilizumab, a humanized
anti-IL-6R antibody: effect on the expression of chemokine
and adhesion molecule. Rheumatol Int 2010;30:309–15.

123. Nilsson LM, Sun ZW, Nilsson J, Nordström I, Chen YW,
Molkentin JD, et al. Novel blocker of NFAT activation
inhibits IL-6 production in human myometrial arteries
and reduces vascular smooth muscle cell proliferation.
Am J Physiol Cell Physiol 2007;292:1167–78.

124. Liu S, Ma Z, Cai H, Li Q, Rong W, Kawano M. Inhibitory
effect of baicalein on IL-6-mediated signaling cascades in
human myeloma cells. Eur J Haematol 2010;84:137–44.

125. Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a
systematic review. J Rheumatol 2009;36:1118–25.

126. Tsujino K, Kodama A, Kanaoka N, Maruta T, Kono M.
Expression of pulmonary mRNA encoding ICAM-1,
VCAM-1, and P-selectin following thoracic irradiation in
mice. Radiat Med 1999;17:283–7.

127. Hallahan DE, Virudachalam S. Intercellular adhesion
molecule 1 knockout abrogates radiation induced pul-
monary inflammation. Proc Natl Acad Sci U S A 1997;
94:6432–7.

128. Olschowka JA, Kyrkanides S, Harvey BK, O’Banion MK,
Williams JP, Rubin P, et al. ICAM-1 induction in the
mouse CNS following irradiation. Brain Behav Immun
1997;11:273–85.

129. Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme
M, Vozenin-Brotons MC, Benderitter M. Pravastatin limits
endothelial activation after irradiation and decreases the
resulting inflammatory and thrombotic responses. Radiat
Res 2005;163:479–87.

130. Haydont V, Bourgier C, Pocard M, Lusinchi A,
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