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Accuracy of the automated dicentric chromosome (DC) assay relies on metaphase image selection. This study validates a soft-
ware framework to find the best image selection models that mitigate inter-sample variability. Evaluation methods to deter-
mine model quality include the Poisson goodness-of-fit of DC distributions for each sample, residuals after calibration curve
fitting and leave-one-out dose estimation errors. The process iteratively searches a pool of selection model candidates by modi-
fying statistical and filter cut-offs to rank the best candidates according to their respective evaluation scores. Evaluation
scores minimize the sum of squared errors relative to the actual radiation dose of the calibration samples. For one laboratory,
the minimum score for the curve fit residual method was 0.0475Gy2, compared to 1.1975Gy2 without image selection.
Application of optimal selection models using samples of unknown exposure produced estimated doses within 0.5 Gy of phys-
ical dose. Model optimization standardizes image selection among samples and provides relief from manual DC scoring,
improving accuracy and consistency of dose estimation.

INTRODUCTION

The Automated Dicentric Chromosome Identifier and
Dose Estimator (ADCI) has been developed to auto-
mate the cytogenetic DC assay for dose estimation
from radiation exposure(1). The software uses image
processing segmentation techniques to find chromo-
somes and machine learning (ML)-based algorithm to
recognize centromeres and designate DCs(2). The ML
parameter, σ, balances sensitivity and specificity of DC
detection (1.4 or 1.5 have highest accuracy for dose
estimation). Nevertheless, the algorithm was originally
less accurate at < 1Gy, due to the failure to eliminate
false positive (FP) DCs(3). One goal of this study was
to mitigate, and if possible, eliminate FPs. Sources
of FPs in cell images included incorrectly classified
monocentric chromosomes (MC), overlapped chromo-
somes, separated sister chromatids or other non-
chromosomal objects. FP assignments were caused by
limitations of the current ML algorithm which incor-
rectly interpreted certain chromosome morphologies
or non-chromosomal objects.

We have implemented a computational approach
which corrects FPs at the chromosome-level by ana-
lyzing individual positive detections and reduces FPs
at the image-level by selecting optimal images in
samples for analysis(4). Previous approaches for
metaphase cell selection have applied fixed thresholds

to features extracted from objects present in these
images for binary classification as either suitable or
unanalyzable(5, 6). Rule-based criteria for metaphase
assessment have also extracted morphological fea-
tures of objects enclosed by rectangles to partition
chromosomes(7) or images(8) into small numbers of
generally analyzable classes, with the exception of
poor quality samples with high levels of debris or low
mitotic indices(8). User-scored features have been
combined into quality measures which then classify
metaphase cells into discrete groups(9). Our approach
integrates aspects of metaphase cell selection with
radiation dose determination. We perform image seg-
mentation with gradient vector flow snake and inte-
grated intensity Laplacian algorithms to precisely
define boundaries of all objects in an image(1). From
these objects, ADCI derives all features required for
both image selection and DC detection. ADCI does
not rely on fixed thresholds for image selection and
removes only images lacking metaphase cells.
Features used for image selection include object
count and shape (used in ref.5, 6), contour finite dif-
ference, a novel measure of texture coarseness (used
in ref.10), as well as likely centromeres(2). Two differ-
ent, novel quality measures have been developed for
ranking metaphase images(4). We enumerate a range
of parameter values used in image ranking to

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
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determine the best image selection criteria (termed
models). These criteria generate optimal calibration
curves based on either minimizing fit residuals, maxi-
mizing Poisson distribution of DCs, or estimating
radiation dose of calibration samples whose expo-
sures are blinded during curve generation.

METHODS

Data have been generated by biodosimetry labora-
tories at Health Canada (HC) and Canadian
Nuclear Laboratories (CNL). Blood samples were
irradiated by HC with an X-RAD-320 (Precision X-
ray, North Branford, CT), at CNL with a 137Cs
GammaCell40 (Atomic Energy of Canada Ltd,
Ottawa, ON), and processed at both facilities using
established protocols(11). One set of metaphase
images from CNL (referred as CNL-low, 1 Gy phys-
ical dose) and two sets from HC (referred as HC-low
and HC-high, 1 Gy and 3.0–4.0 Gy physical dose,
respectively) were used for algorithm development
and testing. Images were captured using a Metafer
slide scanning platform (Metasystems, Newton, MA).
Calibration curves were prepared for samples irra-
diated at known exposures (0, 0.25, 0.5, 0.75, 1, 2, 3,
4 and 5Gy). Samples from previous exercises (desig-
nated HS## and CS## in Table 1) were analyzed
with these curves before versus after application of

matched image selection models. After completing
training on ADCI(12), authors from HC and CNL
performed these analyses independently.

Image and DC Filtering

False positive DCs (FPs) and true positive DCs (TPs)
were discriminated based on their quantitative mor-
phological characteristics such as contours and width
profiles using a set of quantitative filters to delineate
FPs(3). All TPs were retained after processing of FPs
(i.e. 100% specificity). On average, 55 ± 9.6% of FPs
were removed among all sets; individually the filters
eliminated 52% of FPs from the CNL set, which was
comparable to the HC sets (66% and 48% for low
and high dose image sets, respectively).

Additionally, ADCI automatically selects images
by filtering and scoring all objects detected in an
image, only a small fraction of which are DCs.
Image segmentation filters measure morphological
features and use empirically determined criteria to
eliminate poor images. Filtering calculates and elimi-
nates images exceeding thresholds for:

(I) average length–width ratio of objects
(II) average centromere candidate density of

objects
(III) average contour finite difference (measuring

object concavity) of objects

Table 1. Actual versus estimated exposures (in Gy) of Health Canada (HS) and Canadian Nuclear Laboratories (CS)
Exercise Samples before and after image selection.

Selection model

Sample ID
Actual dose

HS01
3.10

HS08
2.30

HS10
1.40

HS04
1.80

HS05
2.80

HS07
3.40

RMSE
(Gy)

Unselected 2.40 0.60 0.00 2.85 1.80 3.90✓ 1.13
A_C1 3.15✓ 1.80✓ 1.20✓ 3.90 2.70✓ 3.90✓ 0.91
A_D2 2.85✓ 1.50 1.25✓ 3.45 2.45✓ 3.90✓ 0.80
A_B

3 3.25✓ 2.45✓ 1.00✓ 1.75✓ 3.25✓ 2.90✓ 0.33
Automated,1789814 3.60✓ 2.15✓ 1.25✓ 3.90 2.75✓ 3.90✓ 0.91

Sample ID
Actual dose

CS01
1.20

CS02
3.10

CS03
0.00

CS04
0.90

CS05
4.00

CS06
2.80

CS07
1.70

CS08
3.60

CS09
2.30

Unselected 1.50✓ 3.95 1.25 1.35✓ 4.65 3.20✓ 2.55 4.35 2.35✓ 0.70
C_B5 1.30✓ 3.50✓ 0.20✓ 1.40✓ 5.00 3.00✓ 2.70 3.90✓ 3.20 0.61
Automated 2956 0.40 2.70✓ 0.10✓ 0.00 3.70✓ 2.20 2.30✓ 3.50✓ 2.10✓ 0.52
Automated 869

7 1.05✓ 3.00✓ 0.80 0.60✓ 3.95✓ 2.30✓ 2.30✓ 3.80✓ 2.60✓ 0.41

✓: fulfills IAEA triage criteria for dose estimation; RMSE: Root Mean Square Error. Descriptions of Selection Models
evaluated: Unselected: includes all metaphase images 1A_C selects top 250 images ranked by combining Z-scores (based
on the standard deviations from mean values of each Filter for all images in the same sample) of Filters I–VI weighted
according to [5,2,4,3,4,1]; 2A_D applies standard deviation thresholded image Filters I–VI; 3A_B selects top 250 images
scored by Group Bin Distance; 4Leave-one-out (LOO)-optimized Automated Model 178981 selects top 300 images ranked
by combining Z-scores of Filters I–VI weighted according to [5,4,1,4,5,3]; 5C_B applies standard deviation thresholded
image Filters I–III and selects top 250 images ranked by Group Bin Distance; 6LOO-optimized Automated Model 295
applies thresholded Filters I–VI (Standard deviation range <1–1.5); 7Poisson-optimized Automated Model 869 applies
Filters II–IV to all images. The most accurate dose estimates are indicated by bolding of the Selection Models with the low-
est RMSE for data from each laboratory.
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(IV) total number of objects
(V) number of segmented objects
(VI) ratio of classified objects (di- + monocentric) to

segmented objects (di- + mono- + unclassifiable).

Ranking sorts images either by combining Z-scores
of features in Filters I–VI (or a subset of these) to
provide an assessment of image quality (i.e. com-
bined Z-score), or binning chromosomes into three
groups based on their areas which approximate num-
bers of base-pairs in each (i.e. Group Bin Distance).
The weights of each of the features are specified
prior to generating the combined Z-score. The
Group Bin Distance uses the Euclidean distance
between chromosome length bins and the standard
karyotype(13) to score images. Regardless of which
ranking method is used, we select ≥250 top-scoring
images, based on our finding that ≥200 images are
needed to stabilize DC frequencies(4). Image selec-
tion models of empirically or automatically-derived
parameter combinations were used to select images
for calibration curves and estimating exposures.

Automated Image Selection Model Generation

Aside from the pre-computed image selection models
provided with ADCI(3), models can be computed
and derived prospectively and then applied to cali-
bration sample data. These models select images at a
particular σ value by an exhaustive search of para-
meters consisting of: combinations of Filters I–VI at
different Z-score thresholds and/or top ranked
images ordered either by combined Z-scores of
Filters I–VI or by group bin distance to normal kar-
yotypes (Figure 1). Thousands of potential image
selection models can be derived by changing these
parameters. Since optimal model configurations can
differ between laboratories due to their particular
sample preparation procedures, ADCI provides
automated search functionality to compute optimal
models for sets of samples. These automated
searches involve both generation of a pool of pos-
sible models and a comparative evaluation of the
performance of each model in the pool with all of
the others. Each filter can either be enabled at a user
specified threshold value or be disabled altogether.
Images can be scored using the combined Z-score
method (contents of an image selection model head-
ing) or with the group bin method. The combined
Z-score method apportions adjustable contributions
of each feature using a weight vector. The number of
selected top images, after images are scored and
ranked, is also adjustable. Optimized image selection
models are evaluated by determining overall scores,
S, based on either the collated P-values of Poisson
fit for every sample, or calibration curve fit residuals
(requires ≥ three samples), or LOO cross-validation
of dose estimation (requires ≥4 calibration samples).

Smaller scores, S, indicate better selection models.
For Poisson evaluation, P-values for each of the fil-
ter scores applied in the model, i, are combined by
Fisher’s method:

∑= − ∗S p2 ln i

For fit residual evaluation, least square residual
differences between response, i.e. DC frequency, and
the calibration curve estimate for each sample, j, are
summed:

∑= ( − ( ))S fDose Responsej j
2

For LOO evaluation, one sample is treated as a
test sample, and the remaining samples are treated
as calibration samples. A curve is fit and the dose
estimation error of the test sample calculated. This
process is iterated over all samples. S is the sum of
the dose estimation errors over all samples:

∑= ∗ ( − ( ))S f2 Dose Responsej j j
2

RESULTS

Application of Image Selection Filters

Use of image selection models eliminates poor qual-
ity images, which reduces differences between sam-
ples based on features extracted from chromosome
images. Heat maps of statistical comparisons of
these feature distributions for different samples from
the same laboratory indicates the results of applying
image selection models to calibration and exercise
samples (Figure 2). The differences between chromo-
some morphologies become less significant after the
image selection model is applied (Panel B) which
removes suboptimal images with extreme object
counts from both types of samples. Nevertheless,
several pairwise comparisons between the object
count distributions in the calibration versus exercise
sample image sets remain significant despite filtering,
consistent with the possibility that there are batch
effects that distinguish these groups of samples.

Estimating Radiation Dose with Image Selection
Models

Sample exposures were estimated and compared
with corresponding actual radiation doses. The same
image selection models used for calibration curve
generation were also applied to exercise samples.
The best image selection method for HC data scored
images by Group Bin Distance and selected top
ranked images in each sample to create a calibration
curve. Accurate doses were obtained with CNL data
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with Filters II–IV. Dose estimates for exercise sam-
ples after image model selection were compared with
unselected images from the same samples (Table 1).
Models with the highest accuracies for these inter-
national exercise samples (smallest RMSE) for HC
were A_B (automated Model 178981 also performed
well for all except one sample), and automated
Models 869 and 295 for CNL.

DISCUSSION

Validation of optimal image selection models results
in accurate radiation dose estimates on calibration

and exercise samples. Both pre-computed and auto-
mated optimized models generated dose estimates
that met IAEA criteria for triage biodosimetry(1).
Interestingly, the models that performed well to
select metaphase image data produced by one
laboratory differed from models chosen for the other
laboratory. However, after the best images were
selected, dose estimates between laboratories were
consistent. This was also apparent using biodosime-
try samples irradiated at the same exposure that
were independently processed by each laboratory(4).
Differences between calibration curves from individ-
ual laboratories are well known, yet the estimated

Figure 1. Panel showing results dialog after automated image selection model generation, according to criteria specified in
the Wizard and Settings menus of ADCI. CNL calibration samples are fit to a curve with σ = 1.5. Image feature parameters,
and optional image ranking and inclusion criteria are iterated across all selected combinations to generate 1152 different mod-
els. In this example, each model is evaluated by determining residuals upon fitting calibration curves. Scores indicate squared
sums of residuals. Up to 50 Search Results can be displayed. Models are sorted by score; in this example, the optimal combin-
ation with smallest overall residuals is Model 952 (the first model highlighted). The Image Exclusion Filter elements shown
correspond to the highlighted model. Individual or multiple models may be Saved, Viewed, or summarized as Reports. The

same algorithm is applied with the other available evaluation methods, which can sometimes result in improved scores.
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Figure 2. (A) Unfiltered samples. (B) Model B_C filtered samples. Representative heat maps of chromosome object count
distributions for Health Canada calibration (HC ##Gy.csv) and exercise (S##.csv) samples. Panels A and B, respectively,
show significance of pairwise comparisons of object counts in unselected versus Model B_C filter(3) selected images from each
sample. The legends (rightmost column) display probability thresholds of Wilcoxon signed rank tests of chromosome object
counts between each pair of samples from the HC laboratory. Similar results were obtained for other chromosomal features.
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exposures of commonly sourced exercise samples
were consistent to within 0.5 Gy (not shown). Since
ADCI uses the same algorithms to call DCs for dif-
ferent samples, differences in dose estimates may
largely be attributable to variations in metaphase
image selection criteria.

Batch effects that differentiate calibration from
exercise sample categories were also noted during
image filtering. These effects may arise from inter-
category differences in chromosome preparation
methods, time in transit, or sample sources. Sample
handling protocols, sources of culture media or
reagents may differ between calibration and exercise
sample processing between and within laboratories.
Image filtering mitigated many of these batch effects.
It is conceivable that uncorrected batch effects seen
in unselected or poorly curated metaphase images
could explain dose estimation errors in some exercise
samples.

Once a calibration curve and an optimal image
selection model have been established, the exposure
level of any subsequent sample can be determined
by applying the model after processing the corre-
sponding images for DC detection. After culturing
and slide preparation, sample analysis is constrained
only by the time needed for microscope image acqui-
sition and to a lesser extent, for image segmentation
by ADCI. The subsequent steps are rapid: (a) the
optimal image selection model is determined previ-
ously as part of calibration curve generation, (b) DC
identification is performed as part of image segmen-
tation, (c) determination of radiation exposure fol-
lows immediately using a built-in software wizard.
Unattended analysis of multiple samples may be per-
formed in ADCI. We have carried out single runs
with up to 750 duplicated samples, sourced from
multiple exercise samples consisting of 500–800
images each, using the Windows version of the pro-
gram on computers with 16 Gb RAM. The actual
number of images used to estimate exposure is flex-
ible in order to allow for analysis of samples with
low mitotic indices. Each 500 image sample required
~5min to estimate exposures with a computer accel-
erated with an Nvidia® GTX960M graphics process-
ing unit (GPU). With two GPU-equipped
workstations, this level of throughput is equivalent
to 576 samples per day. This should be adequate to
perform uninterrupted dose estimation of a
moderate-sized population of potentially exposed
individuals, for example, in the case of a local radi-
ation accident.
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