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Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography
(EST), is developed in conjunction with advanced mathematical regularization to investigate radia-
tion dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and
evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pedi-
atric patient data sets. Numerical simulation experiments are also performed to explore the extension
of EST to helical cone-beam geometry.
Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real
and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In
each iteration, physical constraints and mathematical regularization are applied in real space, while
the measured data are enforced in Fourier space. The algorithm is automatically terminated when
a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the
Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopo-
lar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed
by EST and conventional reconstruction methods such as filtered back projection (FBP), and quan-
tified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios
(CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally
simulated to lower dose settings for comparison and evaluation of the potential for radiation dose
reduction. Numerical experiments were conducted to quantify EST and other iterative methods in
terms of image quality and computation time. The extension of EST to helical cone-beam CT was
implemented by using the advanced single-slice rebinning (ASSR) method.
Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST
reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality,
resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic
reconstruction technique and the expectation maximization statistical reconstruction algorithm, a
significant reduction in computation time is achieved with EST. Finally, numerical experiments on
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helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions
with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and
the conventional ASSR approach.
Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean
CT data with reduced x-ray fluence. This method incorporates advantageous features in both real
and Fourier space iterative schemes: using a fast and algebraically exact method to calculate for-
ward projection, enforcing the measured data in Fourier space, and applying physical constraints
and flexible regularization in real space. Our results suggest that EST can be utilized for radia-
tion dose reduction in x-ray CT via the readily implementable technique of lowering mAs set-
tings. Numerical experiments further indicate that EST requires less computation time than sev-
eral other iterative algorithms and can, in principle, be extended to helical cone-beam geometry
in combination with the ASSR method. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4791644]

Key words: Equally Sloped Tomography (EST), medical x-ray CT, radiation dose reduction, iterative
algorithm, pseudopolar fast Fourier transform (PPFFT)

I. INTRODUCTION

Since its inception in the 1970s, x-ray computed tomography
(CT) has become a revolutionary medical tool in the diagnosis
of diseases and visualization of interventional procedures.1–4

However, due to the tomographic acquisition requirement of
sufficiently high flux projections from a multitude of direc-
tions, a major concern in medical CT is the resulting radia-
tion dose delivered to the patient, especially to the more ra-
diosensitive population such as pediatrics.5–9 According to
the 2009 report from the National Council on Radiation Pro-
tection and Measurements,10 CT accounts for about 15%
of the total radiological examinations, but is disproportion-
ately responsible for approximately 50% of the medical ra-
diation exposure and nearly 25% of the total population ex-
posure. Recently, the combination of real space iterative al-
gorithms with modern optimization methods has been in-
vestigated for radiation dose reduction in CT.11–17 Although
these methods perform well under certain circumstances, cur-
rently the most popular method in clinical CT and other tomo-
graphic fields remains filtered back projection (FBP) and its
variations.18, 19

In 2005, a Fourier-based iterative method, denoted Equally
Sloped Tomography (EST), was developed to allow the 3D
image reconstruction from a limited number of projections in
parallel beam geometry.20 It has been shown that EST is an
effective method for significant reduction of radiation dose
in several tomographic applications, including transmission
electron tomography, x-ray diffraction microscopy, and syn-
chrotron based x-ray phase contrast and transmission CT.20–25

More recently, it has been demonstrated that EST can be used
for 3D structure determination of nanomaterials at atomic
scale resolution26 as well as for high resolution, low dose
phase contrast x-ray imaging of human breast cancers in three
dimensions.27 In this paper, we report the feasibility of using
EST to reduce radiation dose in medical CT. We first present
experimental results on the low-dose EST reconstructions of
phantom and pediatric data sets in fan-beam geometry. We
then demonstrate with numerical experiments that, in combi-
nation with the ASSR method, EST can in principle be ex-
tended to helical cone-beam geometry.

II. METHODS

II.A. The pseudopolar fast Fourier transform

In 2D parallel beam geometry, conventional equally an-
gled acquisitions result in a polar distribution of measured
data in Fourier space, while the transformed reconstructed
images must be represented on a Cartesian grid. Although
it is believed that no direct and exact FFT algorithm can be
constructed between the polar and Cartesian grids,28–30 the
existence of an algebraically exact FFT algorithm between
the pseudopolar and Cartesian grids, denoted the PPFFT, has
been demonstrated.31, 32 As depicted in Fig. 1(a), for a N ×
N Cartesian grid, the pseudopolar grid is defined by a set of
2N lines, each line consisting of 2N grid points mapped out
on N concentric squares. The 2N lines are subdivided into
two groups: a horizontal group (in gray) and a vertical group
(in red). These pseudopolar lines are termed “equally sloped”
since the successive lines in both groups change by an equal
sloped increment, as opposed to a fixed equal angled incre-
ment as in the polar grid. Unlike the polar grid, the distance
between sampling points on the individual lines of the pseu-
dopolar grid varies from line to line. The fractional Fourier
transform (FrFT) can be used to vary the output sampling dis-
tance of the Fourier transform.33 The 1D FrFT is defined by

Fa(k) =

N−1
∑

x=0

f (x) exp

(

−
i2παkx

N

)

. (1)

It is noted that the pseudopolar grid and the PPFFT algo-
rithm were originally developed to interpolate tomographic
projections from the polar to the Cartesian grid in recipro-
cal space.31, 32 The idea of acquiring tilt-series at equal slope
increments and then combining the PPFFT with iterative al-
gorithms for tomographic reconstructions was first proposed
by Miao et al. in 2005.20

II.B. The EST method

Although the PPFFT and its inverse provide an alge-
braically exact way to do the FFT between the Cartesian and
pseudopolar grids, three difficulties limit its direct application
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FIG. 1. (a) Geometrical representation of a Cartesian and a pseudopolar
grid, related by the algebraically exact PPFFT. The dotted circle represents
the resolution circle. (b) Schematic of the EST method that iterates back and
forth between real and Fourier space. The forward transform from a Carte-
sian grid in real space (bottom-left) to a pseudopolar grid in Fourier space
(top-left) is performed by the PPFFT. The inverse step from Fourier space
to real space is performed by the adjoint transform of the PPFFT (PPFFT+).
In each iteration, physical and mathematical constraints are enforced in real
space (bottom-right), while measured data is applied in Fourier space. An
error metric is used to monitor the convergence of the iterative algorithm.

to tomographic reconstructions. First, to accurately invert the
Fourier data using the PPFFT, knowledge of 2N data points
along the 2N equally sloped lines is needed.32 This requires
a large number of projections and is not desirable in experi-
ment due to radiation dose or technical restrictions. Second,
the pseudopolar grid points past the resolution circle [indi-
cated by the dotted circle in Fig. 1(a)] cannot be experimen-
tally obtained20 and thus exact reconstructions through the in-
verse PPFFT are not possible. Third, in order to enhance the
image quality and reduce radiation dose, physical constraints
and mathematical regularization have to be applied in the im-
age reconstruction.

To overcome these difficulties, the EST method was devel-
oped, which iterates back and forth between real and Fourier
space.20–27 The algorithm starts with padding each projection
with zeros and calculating its oversampled Fourier slice in the
pseudopolar grid. The oversampling concept (i.e., sampling
the Fourier slice at a frequency finer than the Nyquist inter-
val) has been widely used to solve the phase problem in co-
herent diffraction imaging.34–36 In the EST method, we imple-
mented oversampling by padding each projection with zeros.
These zeros do not provide extra information about the object
but allow us to define a support in real space to facilitate the
reconstruction process.

In order to transform the fan-beam projections to equally
sloped lines in a pseudopolar grid, a rebinning process must
be performed prior to initiating the EST iterative algorithm.
We utilized the common rebinning method, implemented with
two 1D interpolations.37 The relation of the coordinates be-
tween a ray in the fan-beam geometry p(θ , ψ) and a ray in the
parallel geometry p(γ , ξ ) is defined as4

γ = θ + ψ,

ψ = arcsin(ξ/D), (2)

where θ is the projection angle in the fan-beam geometry, ψ is
the fan angle of the ray, γ is the projection angle in the parallel
beam geometry, ξ is the perpendicular distance from the ori-
gin, and D is the distance from source to rotation center. The
main difference with the common rebinning method is that γ

is at equally sloped angular intervals. Note that, although the
rebinning step requires interpolations, our numerical simula-
tions indicate that this process does not introduce much ad-
ditional noise or artifacts as long as the fan-beam projections
are finely sampled. It is also important to point out that the re-
binning process needs to be applied only once, prior to the ini-
tiation of the iterative process, after which point, the Fourier
transform of the rebinned projections are utilized as measure-
ment constraints. Additionally, the parallel projections are not
calculated at all the 2N lines of the pseudopolar grid, rather
only limited portion of the pseudopolar grid in Fourier space
are filled with these rebinned measurement data, and the rest
of the lines are filled in by the iterative algorithm as the re-
construction is solved for.

Following the above rebinning process, in the first iter-
ation, the grid points outside the resolution circle and on
the missing projections [blue lines in Fig. 1(b) top-right] are
set to zero. The algorithm then iterates back and forth be-
tween real and Fourier space using the PPFFT. As shown in
Fig. 1(b), the jth iteration consists of the following six steps:

(i) Apply the adjoint of the PPFFT to the Fourier slices
Fj (�k) and obtain a real-space image, fj (�r) [Fig. 1(b)
bottom-right]. Here the adjoint of the PPFFT instead
of the inverse PPFFT is used because the former can
significantly accelerate the convergence process with-
out compromising the reconstruction accuracy.23 But
in the final iteration of the algorithm, the inverse
PPFFT is used. The representative adjoint operation,
which includes preconditioner and step size parameter
for optimal performance, is implemented as detailed
by Mao et al.23

(ii) Derive a new object,f r
j (�r), by applying mathematical

regularizations to fj (�r).38, 39 In our reconstructions,
we applied the nonlocal total variation regularization
(NLTV) (Ref. 40) once in every other iteration. The
nonlocal total variation regularization is defined as

JW (f )=
∫

√

∫

[f (p1) − f (p2)]2wh(p1, p2)dp1dp2,

(3)
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where the weight function wh(p1, p2) describes the
similarity between the patches surrounding two differ-
ent pixels, p1 and p2, and h is a filter parameter. The
object is regularized by minimizing

min
f

Jw(f ) +
λ

2
‖f − fj‖

2, (4)

where λ is a parameter to control the strength of TV-
regularization. Smaller values of λ give stronger reg-
ularization. The regularization step is not performed
in the last iteration so that the final reconstruction is
consistent with the measured data. Compared to the
general TV, the NLTV not only adopts the advantage
of edge preserving in TV but also uses a nonlocal
weighted graph to present the similarity of different
pixels instead of direct subtraction, which can preserve
fine structures.

(iii) A support is determined based on the zero padding of
the projections (i.e., oversampling). Outside the sup-
port, f r

j (�r) is set to zero and inside the support, the
negative values of f r

j (�r) are set to zero as a physical
constraint. A new image is obtained, defined as f ′

j (�r)
[Fig. 1(b) bottom-left].

(iv) Apply the PPFFT to f ′
j (�r) and obtain updated Fourier-

space slices, F ′
j (�k)[Fig. 1(b) top-left].

(v) Obtain the Fourier slices for the (j + 1)th iteration
[Fig. 1(b) top-right] by replacingF ′

j (�k) with the mea-
sured Fourier slices [red lines in Fig. 1(b)]. The grid
points outside the resolution circle and on the missing
Fourier slices remain unchanged.

(vi) An error metric is calculated,

Errror =

∑

k |F ′
j (�k) − F (�k)|k≤R

∑

k |F ′
j (�k) + F (�k)|k≤R

, (5)

where F (�k) represents the measured Fourier slices,
F ′

j (�k) is the calculated Fourier slices in the jth itera-
tion, and R is the radius of the resolution circle.

In general, the algorithm is stopped when the error does
not decrease by more than 1% from the previous iteration. In
actual experiments, it is automatically terminated when the
error becomes stabilized after about 20 iterations. Relative to
methods presented by Mao et al.,23 the steps subsequent to
the rebinning stage in the above algorithm can be regarded as
a general extension of the continuation method with two dis-
tinct variations. First, instead of a TV regularization in each
iteration, the NLTV is applied in every other iteration as it is
found to be an experimentally effective procedure that reduces
complexity while maintaining the proper effect of the reg-
ularization. Second, a fixed regularization parameter is used
throughout the iterative process, as it enables for a simple and
experimentally stable method.

II.C. Data acquisition

The EST method has been validated thoroughly for the
parallel beam geometry in our former research work.20–27 In
this work, the data sets were acquired from a Siemens SO-

MATOM Sensation 64 scanner under axial mode. The cen-
tral slice was selected to validate the feasibility of the EST
method for fan-beam geometry. A total of 1160 projections
was acquired from 0◦ to 360◦. There were 1344 detectors and
the reconstruction matrix size was 1344 × 1344 pixels. A re-
binning step was performed prior to initiating the algorithm in
order to transform the fan-beam projections to parallel projec-
tions along equally sloped lines of the pseudopolar gird. Since
the scanner utilizes a flying focal spot (FFS) technology to in-
crease detector sampling, the raw projections were interlaced
and corrected prior to rebinning.41

II.C.1. Phantom studies

The Siemens image quality phantom (EMMA) (Ref. 42)
was used to quantify the amount of CT dose reduction achiev-
able by the EST method. The phantom contains resolution in-
serts to measure the image resolution, and contrast inserts to
measure the image contrast.42 The EMMA phantom was sys-
tematically scanned at different flux settings, ranging from a
maximum of 583 mAs to a minimum of 39 mAs. All scans
are performed under axial mode with the tube current modu-
lation off and the voltage set to 120 kVp. The FBP reconstruc-
tions are performed with a standard uncropped ramp filter in
conjunction with cubic interpolation for the back projection
process for all doses. In the case of 39 mAs dose, the FBP
reconstruction result is at last denoised by nonlocal total vari-
ation regularization (i.e., FBP + NLTV). The 39 mAs EST
reconstruction was computed by using the iterative algorithm
described in Sec. II.B. Both FBP + NLTV and EST used the
same regularization parameter (0.0035).

II.C.2. Patient studies

To further quantify the radiation dose reduction in clinical
environment with the EST method, a pediatric patient data set
consisting of a cranial scan of an anonymous 8-year old boy
was used. The scan was acquired under axial mode with a
voltage of 120 kVp and a flux setting of 140 mAs. However,
unlike the phantom studies, it is not possible to acquire re-
peated scans of the patient at different flux settings due to ra-
diation dose concerns. To address this issue, we implemented
an algorithm to simulate low dose patient data based on ex-
isting scans.43, 44 Using this algorithm and the pediatric pa-
tient data set with a flux setting of 140 mAs, we generated
CT scans at 39 mAs, the lowest possible flux setting of the
Siemens Sensation SOMATOM 64 scanner. Both the FBP and
EST reconstructions are computed in the same manner as the
phantom studies.

II.D. Evaluation methods

We firstly evaluate overall image quality of the recon-
struction results by observing the visibility of the fine and
low contrast structures relative to the reconstruction of such
objects acquired under high dose acquisition protocols that
provide the benchmark image. The correlation between the
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reconstructed image and the benchmark image can then be
quantified by using cross-correlation. In the phantom studies,
the contrast and resolution inserts are used to evaluate the im-
age contrast and image resolution at different flux levels. In
phantom studies, quantitative comparisons are done by mea-
suring the mean values and their standard deviation at various
contrast regions to calculate the SNRs and the CNRs,

SNR =
Mean(IROI)

Std(IROI)
,

CNR =
2 × |Mean(IROI1 ) − Mean(IROI2 )|

Std(IROI1 ) + Std(IROI2 )
, (6)

whereIROI1 and IROI2 represent the pixel values in the region of
interest 1 and 2.

III. RESULTS

III.A. Quantification of the image contrast

The detectability of low contrast features is one of the im-
portant criteria in low dose reconstructions, especially when
using iterative algorithms. We have quantified the image con-
trast and quality of the EST and FBP reconstructions at dif-
ferent flux settings by using the medium and low contrast in-
serts of the EMMA phantom. Figures 2(a)–2(e) show the FBP
reconstructions at 583, 140, and 39 mAs, FBP + NLTV re-
construction at 39 mAs, and EST reconstruction at 39 mAs
of the medium contrast insert, respectively. This insert con-
sist of four different sets of the cylinders and the zoomed

FIG. 2. Comparative reconstructions of the medium contrast insert of the
EMMA phantom. Grayscale window: [–1000, 1000] HU. Reconstructions
of (a) 583 mAs FBP, (b) 140 mAs FBP, (c) 39 mAs FBP, (d) 39 mAs FBP
+ NLTV, and (e) 39 mAs EST. (g)–(j) Zoomed images of the rectangular re-
gion from (a)–(e), where the SNRs and CNRs were calculated for the largest
diameter cylinder, indicated by the circle in (f).

views of the lowest contrast set of the cylinders are shown
in Figs. 2(f)–2(j). The SNRs and the CNRs were also cal-
culated for the largest diameter cylinder [indicated in Figs.
2(f)–2(j)]. Compared to the FBP and FBP + NLTV recon-
structions at 140 and 39 mAs, the EST reconstruction at 39
mAs [Figs. 2(e) and 2(j)] exhibits better image quality and is
almost consistent with the reference reconstruction (FBP at
583 mAs). As indicated by the arrows in the zoomed views
[Figs. 2(f)–2(j)], the smallest cylinder (3 mm in diameter) in
the 39 mAs EST reconstruction is as visible as that in the
583 mAs FBP reconstruction, but it almost disappears in 140
mAs FBP, 39 mAs FBP, and FBP + NLTV reconstructions.
Also, the SNRs and CNRs of the 39 mAs EST reconstruction
outperform all FBP, FBP + NLTV ones, including the 583
mAs reference reconstruction. However, the SNRs and CNRs
have limitations and depend on the place chosen. Also, NLTV
denoising could help to improve SNRs and CNRs but poten-
tially results in patchiness phenomenon in the case of heavy
noise.

Figure 3 shows the reconstruction images for the low con-
trast insert of EMMA phantom. Low flux results in noise
which influences the image quality of the reconstructions of
the low contrast insert. Figures 3(f)–3(j) show the zoomed
view of the second highest contrast set of the cylinders. The
second smallest cylinder (5 mm in diameter) indicated by ar-
rows completely disappears in the 39 mAs FBP and FBP +
NLTV reconstructions and is almost invisible in the 140 mAs

FIG. 3. Comparative reconstructions of the low-contrast insert of EMMA
phantom. Gray window: [−200, 500] HU (a) 583 mAs FBP, (b) 140 mAs
FBP, (c) 39 mAs FBP, (d) 39 mAs FBP + NLTV, and (e) 39 mAs EST. (f)–
(j) Zoomed views of the rectangular region. The 5 mm diameter cylinder is
indicated by arrows. The SNRs and CNRs of the circled region, labled in (f),
were calculated for all the reconstructions.
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FIG. 4. Comparative reconstructions of the resolution insert of the EMMA
phantom. Gray window: [−200, 800] HU. Zoomed images of two smallest
bar groups 10 and 11 for the reconstructions of (a) 583 mAs FBP, (b) 140
mAs FPB, (c) 39 mAs FBP, (d) 39 mAs FBP + NLTV, and (e) 39 mAs EST.
(f) The line profiles along the dotted line in (a) are plotted.

FBP reconstruction, while it is still visible in the 39 mAs EST
reconstruction.

III.B. Quantification of the image resolution

We quantified the image resolution of the FBP and EST
reconstructions by using the resolution insert of the EMMA
phantom. Figures 4(a)–4(e) show bar groups 10 and 11 in the
resolution insert obtained from the 583 mAs FBP, 140 mAs
FBP, 39 mAs FBP, 39 mAs FBP + NLTV, and 39 mAs EST
reconstructions, respectively. The line profiles along the dot-
ted line in Fig. 4(a) are plotted in Fig. 4(f). The smallest bar
group 11 (1 line pair per mm) is not clearly discernable, but
the second smallest bar group 10 (0.8 line pairs per mm) is

FIG. 5. Comparative reconstructions of a head slice from an anonymous
pediatric patient. Gray window: [−400, 500] HU. (a)–(c) Whole slice recon-
structions for 140 mAs FBP, 39 mAs FBP, and 39 mAs EST. (d)–(f) The
corresponding zoomed images of the rectanglular region with fine and low-
contrast structures. The white arrows point to some fine features.

FIG. 6. Comparative reconstructions of another head slice from the same
pediatric patient data set. The gray windows for (a)–(c): [−400, 800] HU
and for (d)–(f): [−400, 600] HU. (a)–(c) Whole slice reconstructions for 140
mAs FBP, 39 mAs FBP, and 39 mAs EST. (g)–(l) The corresponding zoomed
images of the rectangular region with fine and low-contrast structures.

visible in all reconstructions. In contrast to FBP reconstruc-
tions at 140 and 39 mAs, in which noise degrades the geo-
metrical fidelity of the bars as sharp rectangular objects, the
39 mAs EST reconstruction [Fig. 4(e)] maintains a noise-
free appearance similar to the 583 mAs FBP reconstruction
[Fig. 4(a)].

III.C. Pediatric patient data

A total of six axial scans were acquired from the head of an
anonymous pediatric patient. Figures 5 and 6 show two repre-
sentative head slices reconstructed from two axial scans using
140 mAs FBP, 39 mAs FBP, and 39 mAs EST. Relative to the
protocol setting of 140 mAs, the 39 mAs reconstructions sim-
ulate with 70% less imaging dose. It is noted that the SNRs
of the low-dose EST reconstructions at 39 mAs are similar to
SNRs of the FBP reconstructions at 140 mAs, while the im-
age quality of the low-dose FBP reconstructions at 39 mAs are
degraded by noise. The 39 mAs EST reconstruction still con-
tains most of low-contrast structures while the 39 mAs FBP
reconstruction has higher noise. Comparative reconstructions
were also performed by using 140 mAs FBP, 39 mAs FBP
with NLTV regularization, and 39 mAs EST with the same
NLTV regularization parameters (Fig. 7). Circled regions

FIG. 7. Comparative reconstructions by 140 mAs FBP (a), 39 mAs FBP
with NLTV regularization (b), and 39 mAs EST with the same NLTV reg-
ularization parameters (c). Circled regions indicate the degradation of fine
features by simply applying the NLTV regularization to the 39 mAs FBP
reconstruction. Grayscale windows: [−400, 600] HU.

Medical Physics, Vol. 40, No. 3, March 2013
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FIG. 8. Numerical experiment results on the reconstruction of the fan-beam
CT data by ART, ART + TV, EM + TV, and EST. Simulation images are
normalized to [0, 1] with a grayscale window of [0.01, 0.5]. The number
of projections is 360 and the number of iteration in each algorithm is 20.
(a) ART; flux = 7.0 × 105 photons/pixel. (b) ART + TV; flux = 7.0
× 105 photons/pixel. (c) EM + TV; flux = 7.0 × 105 photons/pixel. (d) EST;
flux = 7.0 × 105 photons/pixel. (e) ART; flux = 7.0 × 103 photons/pixel.
(f) ART + TV; flux = 7.0 × 103 photons/pixel. (g) EM + TV; flux = 7.0
× 103 photons/pixel. (h) EST; flux = 7.0 × 103 photons/pixel.

indicate the degradation of fine features by simply applying
the NLTV regularization to the 39 mAs FBP reconstruction.

III.D. Numerical comparisons between EST and other
iterative reconstruction methods

To evaluate the reconstruction quality and computation
time, we performed numerical comparisons among the EST
method, the algebraic reconstruction technique (ART),1, 2

TV-based ART (ART + TV),45 and the TV-based expec-
tation maximization (EM + TV) statistical reconstruction
algorithm.46, 53, 54 The simulation projections were generated
by a fan-beam CT scan on a 2D Shepp-Logan phantom and
were added Poisson noise with a fluence of 7.0 × 105 and
7.0 × 103 photons/pixel. For a fair comparison, all iterative
algorithms used the same number of iterations, the same rect-
angular support and the positive constraint. As Fig. 8 shows,
the EST and ART + TV methods obtained comparable good-
quality images with a fluence of 7.0 × 105 photons/pixel (low
noise), but EST achieved better image quality than ART + TV
with a fluence of 7.0 × 103 photons/pixel (high noise). Both
EST and ART + TV clearly outperformed ART. The recon-
structions of EM + TV and EST are comparable in both dose
cases of 7.0 × 105 and 7.0 × 103 photons/pixel. The com-
putation time of FBP, ART, ART + TV, EM + TV, and EST
with a fluence of 7.0 × 103 photons/pixel is shown in Table I.
Compared to ART, ART + TV and EM + TV, EST requires
less than one-eighth of the computation time.

Figure 9 shows the convergence curves of the ART, ART
+ TV, EM + TV, and EST reconstructions with a fluence of
7.0 × 105 photons/pixel. The normalized root mean square
error (RMSE) between the current and the previous iteration
was calculated as a function of the number of iteration by,

RMSE(i − 1) =

√

n
∑

k=1

[

fi−1(k) − fi(k)
]2

√

n
∑

k=1

[

f1(k) − f2(k)
]2

, (7)

TABLE I. Computation time comparison for FBP, ART, ART + TV, EM +

TV, and EST (number of projections: 512; detector pixels: 1024; reconstruc-
tion matrix: 512 × 512 pixels). The simulation parameters are based on a
Siemens Sensation 64 CT scanner (source to isocenter distance: 570 mm;
source to detector distance: 1060 mm; pixel width: 0.72 mm). The numerical
experiment was conducted on a dual-six-core with Intel Nehalem 2.66 GHz
CPUs and 4 GB Memory per core. The codes were compiled to C executable
by a MATLAB compiler (mcc), and run on a Linux operating system (Cen-
tOS). For the EST reconstruction, the time for rebinning and the fractional
Fourier transform before the iterative process is less than 0.5 s. The com-
putation time for FBP is comparable with one ART iteration, including one
forward and one backward projection. The extra time in FBP is due to the
use of more precise cubic interpolation and the filtering process. If a simpler
linear interpolation is used and the filtering step is removed, the computation
time for FBP is 23.7 s.

Methods Total time (s) Time per iteration (s)

FBP 50.3 50.3
ART, 20 iterations 910.8 45.5
ART + TV, 20 iterations 934.2 46.7
EM + TV, 20 iterations 1449.7 72.5
EST, 20 iterations 115.38 5.8

where i is the number of iterations, fi − 1(k) and fi(k) are the
reconstructions of the ith and (i – 1)th iteration, k is the pixel
index, and n is the amount of pixels. While all four algorithms
converged after 20 iterations, EST has the fastest convergence
speed.

III.E. Extending EST to helical cone-beam CT

Modern CT scanners use the axial and helical cone-beam
geometry because they can significantly increase the image
acquisition speed relative to the fan-beam geometry. The
cone-beam geometry requires more sophisticated reconstruc-
tion methods.1–4 Currently, the FDK method is one of the pop-
ular cone-beam reconstruction techniques.18 In this section,

FIG. 9. Convergence curves for the ART, ART + TV, EM + TV, and EST
reconstructions showing the normalized root mean square error (RMSE) as a
function of the number of iterations. The fast convergence of the EST recon-
struction is due to the use of the adjoint of the PPFFT instead of the inverse
PPFFT (Ref. 23).
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TABLE II. Simulation parameters used for the reconstruction of the heli-
cal cone-beam CT data. The geometrical parameters are similar to those in
Ref. 52 and the dimensions of the 3D Shepp-Logan phantom are 138, 184,
and 180 mm along the x, y, and z-axis, respectively. The size of reconstructed
images is 512 × 512 × 512 voxels.

Detector type Cylindrical

Detector row 64
Detector column 512
Pixel width 0.78 mm
Pixel height 0.78 mm
Distance from the source to the detector 1005 mm
Distance from the source to the center 570 mm
The helical pitch 0.8
Total projections in each circle 720

we extend EST to the helical cone-beam geometry and com-
pare it with FDK by using a numerical experiment.

For helical cone-beam CT, several rebinning methods have
been developed.47–51 Among them, the Advanced Single-
Slice Rebinning (ASSR) method49 is an effective algorithm

FIG. 10. Numerical experiment on the reconstruction of helical cone-beam
CT data by FDK, conventional ASSR, and EST with ASSR. (a)–(c) Three
representative slices of the FDK reconstruction with Z = −30, 0, and 23 mm.
The grayscale window of the images is [0.01, 0.5]. (d)–(f) The same three
slices reconstructed by the conventional ASSR method with 2D FBP and TV
regularization. (g)–(i) The same three slices reconstructed by EST with ASSR
and TV regularization. (j) Line scan along the yellow line for (a), (d), and (g).
(k) Line scan along the white line for (a), (d), and (g).

which uses virtual tilted reconstruction planes along a helical
path to Z-interpolate the images onto a Cartesian grid. The
key step in ASSR is to rebin the helical cone-beam data into a
series of 2D projections along virtual tilted planes that can be
reconstructed by using conventional 2D FBP.

In our approach, we first used ASSR to rebin the helical
cone-beam projections into a series of tilted slices along a he-
lical path. Each tilt slice was reconstructed by EST and the
series of 2D reconstructions was then interpolated along the
z axis to obtain a 3D image. After implementing EST in the
helical cone-beam geometry, we performed a numerical ex-
periment on a 3D Shepp-Logan phantom. Table II shows the
parameters used to generate the helical cone-beam CT data.
Poisson noise was added to the helical cone-beam projections
with a fluence of 7.0 × 103 photons/pixel. In the numerical ex-
periment, we computed the reconstructions of the 3D Shepp-
Logan phantom by using FDK,18 conventional ASSR,49 and
EST with ASSR. Figures 10(a)–10(i) show three different
horizontal slices (Z = −30, 0, and 23 mm) reconstructed by
FDK, ASSR, and EST with ASSR. Quantitatively, the hori-
zontal and vertical line scans, shown in Figs. 10(j) and 10(k),
indicate that EST with ASSR produced a 3D reconstruction
with highest image fidelity and least noise among the three re-
construction methods. Although the combination of EST and
ASSR works well for simulated helical cone beam CT data,
the extension of EST to circular cone beam CT data has not
been demonstrated and will be pursued in follow-up studies.

IV. DISCUSSION AND CONCLUSION

There is no single metric that can adequately quantify im-
age quality, and in the analysis of image quality and aggregate
of metrics, both subjective and objective, must be considered
along with purpose of the imaging task. The purpose of this
paper is to address the feasibility of performing low dose re-
constructions using an efficient Fourier based algorithm and
regularization method. Due to the complexity of the analysis
of image quality, in general, one cannot readily derive a spe-
cific dose reduction factor in simplistic terms. However, the
results in this work demonstrate an enhanced performance of
the proposed algorithm, relative to the conventional method,
in the realm of low dose fan-beam CT. The evaluation utilized
is firstly a comparison to a high dose reconstruction. Accord-
ingly, for the image quality phantom analysis, data sets, ac-
quisitions, and reconstructions were made the highest possi-
ble flux setting of the scanner at 583 mAs, protocol setting of
140 mAs, followed by EST reconstructions of 39 mAs which
deliver 70% lower dose than the protocol 140 mAs. Although
equivalence cannot be claimed in such low dose reconstruc-
tions due to the complexity of image analysis, it is demon-
strated that in both the EMMA imaging quality phantom and
a pediatric patient data acquired from a clinical CT scanner,
that the 39 mAs EST reconstruction produces comparable im-
age quality, resolution and contrast relative to 140 mAs FBP
reconstruction.

The proposed EST method also provides an efficient way
to enforce measured data in Fourier space, which through
the PPFFT constitutes an accurate and fast method for
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calculating the equivalent of forward and back projections.
This allows any regularization constraint to be implemented
in manner such that the final reconstruction result is consistent
with the measured data, since in each iteration, including the
final step of the iterative algorithm, the measured data is rein-
forced in Fourier space. This is to be contrasted by a method
that simply applies denoising or regularization to FBP recon-
structions, as by doing so, there is no guarantee that the final
image is consistent with patient measurements, or that over-
smoothing and loss of important features have not occurred.
To demonstrate this more thoroughly, the NLTV regulariza-
tion was simply applied to the FBP reconstructions in both
the phantom and patient data. As expected, the high contrast
resolution is not considerably affected by such a procedure;
however, the fine contrast features such as those shown Figs.
5 and 6 by the arrows are degraded. Figure 7 shows a com-
parison of regions for the pediatric patient data using NLTV
with the exact same parameters as the EST algorithm, which
demonstrate that some structures (shown in dashed circles)
are lost if such a simple method is attempted.

Numerical comparisons between EST and other iterative
methods were also conducted. While both the EST method
and the EM statistical algorithm produced good quality re-
constructions, EST required much less computation time than
EM. It is also important to note that the EM statistical algo-
rithm used here has been developed for emission tomogra-
phy, and may not represent the ideal case for x-ray CT data.
As more advanced statistical algorithms have been developing
(see, e.g., Ref. 13), further studies are needed to fully evalu-
ate the potential and limit of the EST method relative to these
statistical algorithms. Furthermore, since there is a rebinning
step before initializing the iterative process, compared to non-
rebinning reconstruction algorithms, the error comes from re-
binning might increase for EST when there are fewer number
of measured projections. Finally, the extension of EST to he-
lical cone beam CT data has been explored. Our numerical
experiment suggests that the combination of EST with ASSR
can achieve better reconstructions of helical cone beam data
than the FDK and conventional ASSR methods in terms of
image fidelity and noise level.
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