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Abstract
The three dimensional dose/volume/outcome data for lung are reviewed in detail. The rate of
symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident
threshold “tolerance dose/volume” levels. There are strong volume and fractionation effects.
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1. Clinical significance
Radiation therapy (RT) plays an important role in the treatment of several tumors in and
around the thorax. Clinically-significant symptomatic pneumonitis (RP) occurs in ≈5–50%,
≈5–10%, and ≈1–5% of patients irradiated for cancers of the lung, mediastinal lymphatics,
and breast, respectively (1, 2), and is one of the most common clinical toxicities in these
patients. The risk of RP limits the delivered dose for some and may thus hamper tumor
control. A large fraction of patients experience sub-clinical RT-induced injury (e.g.,
reductions in formal pulmonary function tests [PFTs], and/or radiologic changes) that may
be chronic and reduce the patient’s reserve to deal with future cardio-pulmonary stresses.
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2. Endpoints
Several endpoints can be used to define RT-induced lung injury (Table 1). In the context of
QUANTEC, consideration is limited to the endpoint of symptoms; arguably the most
clinically meaningful endpoint for patients. Approximately 80% of RP is clinically manifest
within 10 months of RT. The scoring of symptomatic RP presents several challenges:

a. Dyspnea is non-specific and can also be caused by anemia, cardiac arrhythmia,
infection, tumor, etc. In a prospective clinical study, 28% of patients suspected of
having RP also had ongoing medical conditions confounding the diagnosis (3).

b. Toxicity grading systems often consider the medical interventions (e.g., steroid
use). Therefore, physicians that are more apt to prescribe steroids may note a higher
reported rate of pneumonitis. Steroid use is grade 3 for RTOG, but grade 2 in
several other systems. Requirement of steroids has been omitted from the CTCAE
3.0.

c. Treatment-induced tumor shrinkage may improve overall lung function (especially
for central lesions compressing regional airways/vessels), thus maybe masking the
effects of RT on the normal lung.

d. The relevant grade of symptoms is controversial. Grade I RP is common, and is
often not clinically significant. More severe RP is more clinically relevant, but its
lower incidence limits the statistical power of analysis based on severe events.

3. Challenges Defining Volumes
The lung is usually considered as a single, paired-organ (total lung tissue) rather than as
separate ipsi- and contra-lateral lungs. Since lung volumes vary with breathing, there is
ambiguity in defining its DVH-based parameters. In the articles herein reviewed, dosimetric
information was mostly based on CT images obtained during free breathing. The dosimetric
parameters would change had these scans been obtained at specific phases of the respiratory
cycle. Segmentation of a thoracic scan can be challenging. There is uncertainty defining how
much of the bronchus should be defined as “lung”, and the lung edges may vary with the
window/level setting. Thus, volume-based parameters will vary between investigators. The
accuracy of any auto-segmenting tools should be carefully assessed, especially to ensure that
portions of atelectatic lung or tumor at soft tissue interfaces are not inadvertently omitted
from the lung.

During RT planning, the total lung volume is usually defined to exclude the gross tumor
volume (GTV). Excluding the planning target volume (PTV), rather than the GTV from the
lung volume, may reduce the apparent lung exposure (as normal lung within the PTV, but
outside the GTV, will be excluded), and may increase inter-institutional variations (as PTV
margins may vary).

During treatment, there may be changes in GTV-volume, with corresponding changes in
normal tissue anatomy. Thus, plans defined based on pre-RT imaging may not accurately
reflect the degree of normal lung exposure. While this effect has not been systematically
assessed, presumably tumor shrinkage (with movement of normal lung into to previously-
occupied GTV) will increase normal lung exposure relative to pre-RT plans. Similarly,
changes in pleural effusions, and re-aeration of lung regions can cause anatomic and
functional changes. Indeed, the ability to predict changes in lung function based on pre-RT
dosimetric data is reduced in patients with tumor-associated airway obstruction (i.e., those
most likely to experience re-aeration during therapy) (4).
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4. Review of dose/volume data
The literature on dose-volume-pneumonitis is extensive: for this review we identified >70
published papers. The results are inconsistent, both for the best predictive metrics and
significant co-morbid factors.

4.1 Lyman-Kutcher-Burman (LKB) DVH-reduction scheme and Mean Lung Dose (MLD)
The most widely used NTCP model for RP is the LKB model. This model has three
parameters, a position parameter, TD50, a steepness parameter, m, and the volume exponent,
n (where n=1 the model reverts to mean lung dose; MLD). While TD50 is strongly
dependent on the grade of RP being considered, n is often regarded as a tissue characteristic.
Figure 1 shows a meta-analysis of reported n-values, it does not include the study by Rancati
(39), which used only the ipsilateral lung. The best estimate for n is 1.03 with standard
deviation 0.17 (95% conf interval: [0.67–1.39]), the test for heterogeneity of the data sets is
not significant, and I2 is zero. The TD50 values cannot be pooled in a meaningful way, as
the various reports analyzed considered varying grades of RP.

The MLD model is widely considered due to its simplicity and effectiveness. It was the
metric used by the large multi-institutional analysis of Kwa (5), and often performs as well
as more complex models. Figure 2A shows a logistic regression fitted to RP vs. MLD data
from all published studies of a significant size that had extractable complication rates binned
by mean dose. Some of the variation around the fitted curve is possibly explained by
differences in patient selection as well as differences in the grade of RP reported in the
various studies. Nevertheless, there is a relatively small 68% confidence interval (stippled
lines). A similar fit using the probit model (equivalent to fitting the Lyman model with n
fixed at 1) gives an essentially identical response function in the region of the data. The
gradual increase in dose response suggests that there is no absolute ‘safe’ mean lung dose
below which there is no pneumonitis. The clinically acceptable risk of RP –and therefore the
associated planning constraint on MLD– will depend on the risk: benefit ratio in the
individual case. A number of non-DVH-based factors may affect the risk of RP (section 5).
Finally, it is likely that the MLD-RP relationship may have lower predictive power for ‘non-
standard’ dose distributions not included in these analyses, for example after stereotactic
body radiotherapy (SBRT) or proton therapy.

4.2 Dose-volume threshold analyses
Various Vx values (% lung volume receiving ≥X Gy) are associated with RP risk (Fig. 2b)
The observation that a variety of dose levels are predictive suggests that there is no sharp
dose threshold, below which there is no risk. Within individual data sets, there are usually
strong correlations between the different dosimetric parameters (e.g., V5 and V20); and thus
there are probably no “optimal” thresholds. Further, the correlations between dosimetric
parameters are technique dependent, and readers should carefully assess the similarity of
their treatment technique before using any of these limits as clinical constraints.

RT-induced dyspnea appears more commonly in patients with lower- vs. upper-lobe tumors,
and may be better correlated with RT doses to the lower- vs. upper-lung (7–11). An analysis
that combined institutional data with RTOG 93-11 (n=324) concluded that RP is much
better predicted (at least for that dataset) based on mean lung dose and positional
dependence of the high dose region as opposed to mean lung dose alone (12). The cause of
this correlation is presently unknown and requires further investigation.
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5. Factors affecting risk
Several patient and treatment-related factors have been inconsistently reported to correlate
with the risk of developing RP. Vogelius and Bentzen (70) applied standard meta-analysis
methodology to eight factors with meaningful data. In summary, there was no significant
evidence for an association between RP and laterality (left vs. right lung), co-morbidity or
gender. Younger patients, typically defined as <60 or <70 years of age, have a lower risk of
RP than older patients. Surgery had a just-significant p-value, but the test for heterogeneity
was significant (p=0.03) suggesting that the variation among studies cannot be explained by
chance alone. Thus, at present, the reduced rate of RP in patients undergoing surgery
remains controversial. Interestingly, current smokers have a significantly reduced risk of
developing RP.

Chemotherapy
Many systemic agents have known pulmonary toxicities (13) and may exacerbate RT-
induced injury. The varying drugs, doses and schedules (e.g., sequential, concurrent) make
any synthesis of data from multiple studies generally not feasible. Based on general
experience, adding chemotherapy should be expected to increase the risk of RP.
Nevertheless, the agents most commonly utilized with RT for lung cancer, such as cisplatin,
carboplatin, paclitaxel, and etoposide, have not been consistently shown to increase the risk
of pneumonitis (7, 11, 14, 15, 66). More modern agents have been associated with high rates
of pulmonary toxicity when used concurrently with thoracic RT (e.g., docetaxel and
gemcitabine; 1, 16, 64).

Radiation dose-time-fractionation
RP has a relatively high fractionation sensitivity, the best current estimate (±1 standard error
of the estimate) of the α/β ratio of the linear-quadratic model is 4.0±0.9 Gy (65). For
comparison, the upper bound on the 95% confidence interval for α/β for pulmonary fibrosis
is 3.5 Gy. There is also a significant time factor for pneumonitis, with an overall best
estimate of the dose recovered per day, Dp, of 0.54±0.21 Gy/day. Several have suggested
methods to adjust the DVH to reflect the impact of fraction size (6, 17).

6. Mathematical/biologic models
The association between RP risk and MLD (logistic fit to the data in Figure 2B) can be
expressed as:

Best fit parameters [95% confidence intervals] are b0=−3.87 [−3.33, −4.49], b1=0.126
[0.100, 0.153] Gy−1. These estimates yield a predicted TD50=30.8 [28.7, 33.9] Gy and γ50
=0.97 [0.83, 1.12] (this parameter represents the increase in response [measured in %] per
1% increase in dose, near the 50% dose response level.) A fit using the probit response
function (equivalent to a fit of the Lyman model with n= 1) yields TD50 = 31.4 Gy, 95%
conf.: [29.0–34.7 Gy], and m = 0.45 95% conf.: [0.39–0.51]. The resultant response function
is essentially identical to that of the logistic fit in the region occupied by the data. The
curvature is slightly smaller, resulting in the slightly larger TD50 value.
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7. Special situations
The data reviewed here are largely derived from patients who received partial lung
irradiation using conformal 3D-planned external beam RT with conventional fractionation
(e.g., 1.8–2.0 Gy/fraction). Several special situations are discussed:

7.1 Whole Lung Irradiation
Near-uniform irradiation of both lungs occurs during total body irradiation (TBI) as
conditioning for stem cell transplants, hemibody RT for diffuse metastases, and whole lung
irradiation (WLI) for prophylaxis or treatment of pulmonary metastases from various
malignancies. The risk of RP depends on total dose and fraction size (Fig 3). The
development of RP in these settings is an ominous sign, proving fatal in up to 80% of
patients (18). The pathogenesis of RP, in particular after TBI, is relatively complex and
depends on multiple patient and treatment-related factors (19). There are consistent data
supporting a protective effect of low dose rate and low dose per fraction. For a recent
comprehensive review see Sampath (20).

7.2 Hypofractionation
Stereotactic body radiation therapy (SBRT) generally involves 1–5 large fractions (e.g. 14–
30 Gy) given over 5–20 days (21, 22). The high-dose volumes are small, and dose gradients
are steep, minimizing dose to surrounding critical structures. However, because numerous
beams are used, there are large areas of lung receiving low-medium doses (22). Thus, the
dose volume characteristics of SBRT are quite different from conventional lung RT, and
deserve special consideration. RP is relatively uncommon after SBRT, usually <10% (23,
24), but as high as 25% (25). Bronchial injury/stenosis, an unusual complication with
conventional doses (26), has been associated with SBRT of perihilar/central tumors (22).

7.3 Intensity Modulated Radiation Therapy (IMRT) for lung cancer
M.D. Anderson reported a lower rate of symptomatic grade ≥3 pneumonitis in 68 patients
treated with IMRT, vs. a historical control group of 222 receiving conventional 3D (27).
Memorial Sloan Kettering recently noted an acceptable 11% rate of grade ≥3 pneumonitis in
55 patients treated with IMRT (28). Postoperative IMRT for mesothelioma has been
associated with a high rate of lethal pneumontis (8–46%) (29–31), and extreme care should
be used to limit lung irradiation in these cases (see section 8).

8. Recommended dose/volume limits
Recommending dose/volume limits is challenging since there are no clear/consistent
“thresholds” for candidate metrics (i.e., the response function is often gradual), and the
“acceptable” risk level varies with the clinic scenario. RT fields for lung cancer may be
appropriately-large for target coverage; physicians and patients often need to accept the
significant pulmonary risks. Further, there are marked inter-patient variations in pre-RT lung
function that may impact symptom development, and tumor-related dysfunction may
improve after RT.

Despite these caveats, it is prudent to limit V20 to ≤30–35 %, and MLD to ≤20–23 Gy (with
conventional fractionation), if one wants to limit the risk of RP to ≤20%, in definitively
treated patients with non-small cell lung cancer. Similar guidelines for other parameters can
be extracted from the figures. Limiting the dose to the central airways to ≤80 Gy may reduce
the risk of bronchial stricture (26). In patients treated post-pneumonectomy for
mesothelioma, it is prudent to limit the V5 <60%, the V20 <4–10%, and the MLD to <8 Gy
(see Miles [31] for detailed review).
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9. Future toxicity studies
Progress regarding the predictors of RT-induced lung injury requires further understanding
of:

a. Endpoint interaction: The study of RT-induced lung injury is confounded by the
use of ambiguous endpoints. Many scoring systems combine radiologic, functional,
and symptomatic criteria to define a “global score”. Since each endpoint may have
different dose/volume dependence, this approach maybe counter-productive.
Therefore, we recommend that further study of lung injury explicitly consider
symptomatic, functional and radiographic endpoints separately.

b. The impact of clinical factors (e.g., pre-RT functional status, tobacco use) and
systemic agents (e.g., chemotherapy) on the risk of RP needs further study.

c. Organ interactions: Some data suggest that there may be interactions between the
lung and heart in the development of RT-associated dyspnea. In rats, the respiratory
rate following thoracic RT was related to the volume of lung and heart irradiated
(32–34).

d. The impact of an in situ lung cancer on the risk of radiation-induced lung injury:
The data for whole lung radiation is derived essentially from patients without
primary lung cancers (e.g., elective lung RT for sarcoma), vs. fractionated partial
lung radiation, often derived from patients with gross lung cancers. The
confounding effect of tumor in the lung makes the study of RT-induced lung injury
extremely challenging. Indeed, in several studies, the ability to predict for RT-
induced lung injury is improved in patients without large central/occluding tumors.
Thus, it might be relevant to develop separate useful predictive models in patients
with intact intra-parenchymal lung tumors vs. those without such a lesion (i.e. post-
resection RT for lung cancer, or RT for other thoracic tumors).

e. Radiation response modifiers: Amifostine is a thio-organic pro-drug believed to
scavenge harmful free radicals mediating RT-induced injury. Several randomized
studies in patients receiving RT for lung cancer note a reduction in RP in the
amifostine arm although the largest study (from the RTOG) was negative (35).
However, this study has been criticized because the drug was administered once
daily (4 days/week) and the RT was delivered twice daily (5 days/week), and thus
60% of the RT fractions were delivered without the protector. Such mixed results,
combined with the acute toxicities of amifostine (nausea/vomiting, hypotension,
infection, rash), have dissuaded many from using it in routine practice. One small
randomized study demonstrated a protective effect of pentoxifylline, but
pentoxifylline is not currently utilized in routine clinical practice (36).

f. Biomarkers: Additional work is needed to assess the predictive ability offered by
biomarkers such as TGFβ (measured before and/or during RT).

10. Toxicity scoring
A SOMA-LENT-type scoring system is recommended since it explicitly considers
symptomatic, functional and radiographic endpoints individually. A global score can be
generated, but the granular data can be maintained.
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Figure 1.
Meta-analysis of reported n-values (volume parameter) for the LKB model using an inverse-
variance (IV) weighting method. Recovery of variance estimates from the 95% confidence
intervals (CI) and use of ~± 2*sigma instead of 1.96*sigma gave rise to small deviations in
the derived 95% CI as compared to the literature reported values. Data estimated from (38,
40–41). Abbreviations: n = n-values for the LKB Model, IV = inverse variance, Fixed =
fixed effect model CI = confidence interval. The n value reflects the manner in which dose/
volume parameters lead to complications. A lower value of n suggests that the tissue is
sensitive to hot spots (e.g., an organ structured in “series”), while a higher value of n (closer
to 1.0), suggests that the risk is more related to the volume of an organ irradiated (e.g.,
“parallel” structure).
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Figure 2.
Rate of RP following fractionated partial lung RT related to:
Panel A: Mean lung dose. Confidence intervals shown are ±1 standard deviation.
.Mean dose response data from: MSKCC, (10) from Fig 4a; (≥RTOG grade 3, 6 months);
Duke, (15) from Table 4; (≥CTC grade 1, 6 months); Michigan, (43) from Table 4 and Fig
2a; (≥SWOG grade 2, 6 months)—bin location and time from authors; MD Anderson, (44)
from Fig 2; (≥CTC grade 3, 1 year actuarial—includes concurrent chemo patients); NKI, (9)
from Fig 3a; (≥SWOG grade 2, 6 months); Washington University, (11) from Fig 9c;
(≥SWOG grade 2—no time limit) with bin locations from authors, increased by 11% to
~account for inhomogeneity corrections; Michigan, (45) from Table 1; (≥SWOG grade 1)
with mean doses calculated from relationship between EUD (n=0.87) and mean dose from
Kwa et al. (42), Fig 2a); Heidelberg, (46) from Fig 2 and text (≥RTOG acute grade 1);
Milan, (47) from Fig 3; (≥SWOG Grade 2—no time limit, patients without COPD –
includes induction chemo patients); Gyeonggi, (48) from Table 5; (≥RTOG grade 3, 6
months—includes concurrent chemo patients)—median values of mean dose in each bin
provided by the authors. Dashed line is logistic fit: data fit to the form (f/(1+f)), where
f=exp(b0+b1*dmean). Best fit values [95% confidence intervals] are b0 = −3.87 [−3.33–
−4.49], b1 = 0.126 [0.100–0.153], corresponding to TD50 = 30.75 [28.7–33.9] Gy and γ50 =
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0.969 [0.833–1.122], where γ50 represents the increase in response [measured in %] per 1%
increase in dose, near the 50% dose response level.
Panel B: The rate of RP is shown for different values of Vx.
Vx response data from: Yorke V13, V40, (10) from Fig 4d; Willner V40, (68) from Fig 4;
Hernando V30, (15) from Table 6; Tsujino V20, (56) from Fig 1; Kong V13, V20, (43),
from Table 4; Armstrong V25, (59) Fig 3; Kim V20, V30, (69) from Table 5; Graham V20,
(7) from Table 4; Seppenwoolde V13, (40) from Fig 2; Wang V5, (44). Some data estimated
from published reports.
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Figure 3.
Whole lung irradiation for diffuse lung or boney metastases, or prophylaxis for occult
metastatic disease (18, 60–63). Numbers in parentheses give the incidence of pneumonitis
divided by the population at risk for each fractionation scheme in each study. Some data
estimated from published reports.
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Table 1

Example end points for RT-induced lung injury (and approximate incidence)

Regional Global

Clinical Bronchial stricture (<3%*) Shortness of breath (5–50%)

Subclinical Radiologic abnormalities (e.g. computed tomography,
perfusion/ventilation scans) (20–80%)

Pulmonary Function Tests, Six-minute Walk Test, Blood

gases, exercise capacity#

Example endpoints used to study RT-induced lung injury can be broadly segregated as shown.

*
Uncommon with conventional fractionation and doses. More common with brachytherapy, high total doses and/or hypofractionation.

#
Many patients experience declines in functional assessments, but the magnitude of the decline is variable.
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