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ABSTRACT
The effects of radiation drag force on the structure of relativistic electron–positron and electron–
proton outflows are considered within the one-fluid approximation for a quasi-monopole cold
outflow. It is shown that for a Poynting-dominated case, the drag force does not change the
particle energy inside a fast magnetosonic surface. In this region, the action of the drag results in
a diminution of the Poynting flux, not the particle flux. Outside the fast magnetosonic surface,
for intermediate photon density, the drag force may result in additional acceleration of the
plasma. This acceleration is the result of the disturbance of magnetic surfaces under the action
of the drag. At even larger distances, particles are not frozen into the magnetic field and the
drag force decelerates them efficiently.

In the case of extreme photon densities, the disturbance of magnetic surfaces becomes
large and the drag force changes the total energy flux significantly, the particles becoming
non-relativistic.

We find that for active galactic nuclei, the photon density is too low to disturb the parameters
of an ideal magnetohydrodynamic outflow. The drag action may result in additional acceleration
of outgoing plasma only for central engines with very high luminosities. For cosmological
gamma-ray bursts, the drag force can strongly affect the process of formation of a Poynting-
dominated outflow.
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1 I N T RO D U C T I O N

Magnetohydrodynamic (MHD) models are now developed intensively in theories concerning the magnetospheres of rotating supermassive
black holes (M ∼ 108–109 M�, B0 ∼ 104 G), which are believed to reside in the central engines of active galactic nuclei (AGN) and quasars
(Begelman, Blandford & Rees 1984; Thorne, Price & Macdonald 1986). In particular, it is the MHD model that is the most promising in the
problem of the origin and stability of jets. Indeed, the MHD approach explains both the energy source (the rotational energy of the compact
object) and the mechanism of the energy and angular momentum loss (for an overview, see e.g. Blandford 2002). Observational evidence
in favour of MHD models was recently found in the possible presence of toroidal magnetic fields in jets (Gabuzda et al. 1992; Gabuzda,
Pushkarev & Cawtorne 1999). Magnetically dominated outflows are also believed to be responsible for the energy transport in cosmological
gamma-ray bursts (Mézsáros & Rees 1997; Lee, Wijers & Brown 2000; van Putten & Levinson 2003), when energy is released in the merging
of black holes or neutron stars (M ∼ M�, B0 ∼ 1015 G).

It has been suggested that the density of photons in the vicinity of the central engine is so high that they may drastically change the
characteristics of the ideal MHD outflow. For example, they may result in extensive e+e− pair creation (Svensson 1984), acceleration of low-
energy pairs by the radiation drag force (Phinney 1982; Turolla, Nobili & Calvani 1986; Beloborodov 1999) and deceleration of high-energy
particles (Melia & Königl 1989; Sikora et al. 1996). In other words, a self-consistent consideration should take the drag force into account.

So far the two processes (the ideal MHD acceleration and the action of external photons) have been considered independently. The first
step to combine them was made by Li, Begelman & Chiueh (1992). In particular, it was shown how the equations can be integrated in a
conical geometry (which is impossible in the general case). On the other hand, the consideration was performed within the approximation of
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a fixed poloidal magnetic field. Under this assumption the fast magnetosonic surface of a cold flow is shifted to infinity (Michel 1969; Kennel,
Fujimura & Okamoto 1983; Lery et al. 1998). As a result, it was impossible to analyse the effects of radiation drag on the position of the fast
magnetosonic surface and the properties of the outflow outside this surface.

The main goal of this paper is to determine more carefully the radiation drag effects on a magnetically dominated outflow. Here we
consider a quasi-monopole outflow to analytically describe the effects of radiation drag, including simultaneously the disturbance of the
magnetic surfaces. For AGN, such geometry in the immediate vicinity of the central engine was recently confirmed by direct observations
(Junior, Biretta & Livio 1999). In other words, in the zeroth approximation (i.e. without drag) we use the analytical solution for a magnetically
dominated MHD outflow (Beskin, Kuznetsova & Rafikov 1998, hereafter Paper I), in which the fast magnetosonic surface is located at a finite
distance from the origin.

For simplicity we consider the following model of the radiation field in the vicinity of the central engine. First, we note that for
ultrarelativistic particles the energy of a photon propagating nearly along the particle trajectory remains almost the same after a collision.
This means that the drag force from these photons is small. Thus, only the isotropic component of the photon field contributes substantially
to the drag force. Hence, in our geometry with a strong central source of photons and a monopole outflow of particles, only a small fraction
of photons (the isotropic component of the photon field) interacts efficiently with the particles, producing inverse Compton photons with
energies E IC ∼ γ 2Eph.

The isotropic component can be produced, first, by the outer part of the accretion disc and, secondly, by external sources. It can be
modelled as

U = Uiso = UA

(
r

RL

)−n

+ Uext, (1)

where RL = c/� is the radius of the light cylinder, UA = U(RL) = Ltot/(4π R2
Lc) and n ≈ 3 (for more details see, e.g., Sikora et al. 1996).

Here the first term describes the radiation from the outer parts of the disc, r rad > r, while the second term corresponds to the homogeneous
external radiation. For AGN this can be due to clouds located at a distance rcloud ∼ 1 pc from the central engine and reradiating kLtot of the
total luminosity (k ∼ 10 per cent). In this case

Uext = k
L tot

4πr 2
cloudc

. (2)

However, this model only makes physical sense at distances less than rcloud, and the term vanishes at larger distances.
Finally, as some arguments exist both in favour of (Reynolds et al. 1996; Hirotani et al. 1999) and against (Sikora & Madejski 2000) the

leading role of e+e− plasma in relativistic jets, in the following we consider both electron–positron and electron–proton outflows.
In Section 2 we formulate the basic equations describing a quasi-monopole outflow of relativistic plasma in two-fluid and one-fluid

approximations. Then in Section 3 we analyse the main properties of an electron–positron outflow. A similar analysis for electron–proton
plasma is produced in Section 4. Finally, in Section 5 we consider the effects of radiation drag for real astrophysical objects.

2 BA S I C E QUAT I O N S

2.1 The two-fluid description

We consider an axisymmetric, stationary outflow of two-component cold plasma from the magnetosphere of a rotating body with a split
monopole poloidal magnetic field. This geometry can be realized in the presence of an accretion disc separating the ingoing and outgoing
magnetic fluxes (Blandford & Znajek 1977). In the hydrodynamic approximation, the structure of the flow is described by Maxwell’s equations
and the separate equations of motion for positively and negatively charged particles:

∇E = 4πρe, ∇ × E = 0,

∇ B = 0, ∇ × B = 4π

c
j,

(v±∇)p± = ±e

(
E + v±

c
× B

)
+ F±

drag,

(3)

where E and B are the electric and magnetic fields, ρ e = e(n+ − n−) and j = e(n+v+ − n−v−) are the charge and current densities, and v±

and p± are the velocities and momenta of the charged particles. Finally, F±
drag are the radiation drag forces which, for an isotropic photon field,

have the form

F±
drag = −4

3

v±

|v±|

(
me

m±

)2

σTUiso(γ ±)2, (4)

where γ ± are the Lorentz factors, m+ is the mass of the positively charged particles (positrons or protons) and m− = me is the mass of the
negatively charged particles. σ T = (8π/3)(e2/mec2)2 is the Thompson cross-section. To close system (3) the continuity equations ∇ (n± v±) =
0 should be added. It is enough to add the equation for one component, e.g.

∇(n+v+) = 0, (5)
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Radiation drag effects on magnetic outflows 589

because the continuity equation for the second component then follows from (5) and the current continuity equation ∇ j = 0 [which, in turn,
results from Maxwell’s equation ∇ × B = (4 π/c) j].

In the limit of infinite particle energy,

γ = ∞, v(0)
r = c, v(0)

ϕ = 0, v
(0)
θ = 0, (6)

so that

ρe = ρs
R2

r 2
cos θ, jr = ρsc

R2

r 2
cos θ, jθ = jϕ = 0, (7)

the monopole poloidal magnetic field

B(0)
r = B0

R2

r 2
, B(0)

θ = 0, (8)

is an exact solution of Maxwell’s equations. In this case,

B(0)
ϕ = E (0)

θ = −B0
�R

c

R

r
sin θ, (9)

E (0)
r = E (0)

ϕ = 0, (10)

which is just the well-known Michel (1973) solution. Here B0 and ρ s are the magnetic field and charge density on the surface r = R � RL,
and the angular velocity is � = 2πc |ρ s|/B0. The limit γ → ∞ corresponds to zero particle mass in the force-free approximation.

It is also convenient to introduce the electric field potential �(r, θ ), so that E = −∇� and

�(0) = −�R2 B0

c
cos θ (11)

and the flux function �(r, θ ), so that the poloidal magnetic field

Bp = ∇� × eϕ

2πr sin θ
(12)

and � (0) = 2π B0 R2(1 − cos θ ).
Then the dimensionless corrections η±(r, θ ), ξ±(r, θ ), δ(r, θ ), ε f (r, θ ) and ζ (r, θ ) for the case v �= c can be introduced in the following

form:

n+ = �B0

2πce

R2

r 2

[
λ − 1

2
cos θ + η+(r , θ )

]
, (13)

n− = �B0

2πce

R2

r 2

[
λ + 1

2
cos θ + η−(r , θ )

]
, (14)

v±
r = c

[
1 − ξ±

r (r , θ )
]
, v±

θ = cξ±
θ (r , θ ),

v±
ϕ = cξ±

ϕ (r , θ ), (15)

�(r , θ ) = �R2 B0

c
[− cos θ + δ(r , θ )], (16)

�(r , θ ) = 2πB0 R2 [1 − cos θ + ε f (r , θ )], (17)

and thus

Br = B0
R2

r 2

(
1 + ε

sin θ

∂ f

∂θ

)
, (18)

Bθ = −ε
B0 R2

r sin θ

∂ f

∂r
, (19)

Bϕ = B0
R�

c

R

r
[− sin θ − ζ (r , θ )], (20)

Er = −�B0 R2

c

∂δ

∂r
, (21)

Eθ = �R2 B0

cr

(
− sin θ − ∂δ

∂θ

)
, (22)

where λ � 1 is the multiplication parameter (λ = ens/|ρ s|, where ns is the number density of particles on the surface r = R). For λ < 1 the
approach under consideration is not valid. In the following, for simplicity, we consider the case λ = constant. Such a choice corresponds to a
constant particle-to-magnetic flux ratio κ = constant.

Switching to dimensionless variables, below we use the dimensionless radius x = r/RL = r �/c and the dimensionless drag force:

F±
d = 4

3

σTUiso

�mec
(γ ±)2. (23)
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Now, substituting (13)–(22) into (3) we obtain, to first order in all the correcting functions, the following system of equations:

− 1

sin θ

∂

∂θ
(ζ sin θ ) = 2(η+ − η−) − 2

[(
λ − 1

2
cos θ

)
ξ+

r −
(

λ + 1

2
cos θ

)
ξ−

r

]
, (24)

2(η+ − η−) + ∂

∂x

(
x2 ∂δ

∂x

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂δ

∂θ

)
= 0, (25)

∂ζ

∂x
= 2

x

[(
λ − 1

2
cos θ

)
ξ+
θ −

(
λ + 1

2
cos θ

)
ξ−
θ

]
, (26)

− ε

sin θ

∂2 f

∂x2
− ε

x2

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
= 2

x

[(
λ − 1

2
cos θ

)
ξ+
ϕ −

(
λ + 1

2
cos θ

)
ξ−
ϕ

]
, (27)

∂

∂x

(
ξ+
θ γ +) + ξ+

θ γ +

x
= −ξ+

θ F+
d

(
me

mp

)3

+ 4λσ

(
me

mp

)(
− 1

x

∂δ

∂θ
+ ζ

x
− sin θ

x
ξ+

r + 1

x2
ξ+
ϕ

)
, (28)

∂

∂x

(
ξ−
θ γ −) + ξ−

θ γ −

x
= −ξ−

θ F−
d − 4λσ

(
− 1

x

∂δ

∂θ
+ ζ

x
− sin θ

x
ξ−

r + 1

x2
ξ−
ϕ

)
, (29)

∂

∂x
(γ +) = −F+

d

(
me

mp

)3

+ 4λσ

(
me

mp

)(
− ∂δ

∂x
− sin θ

x
ξ+
θ

)
, (30)

∂

∂x
(γ −) = −F−

d − 4λσ

(
− ∂δ

∂x
− sin θ

x
ξ−
θ

)
, (31)

∂

∂x

(
ξ+
ϕ γ +) + ξ+

ϕ γ +

x
= −ξ+

ϕ F+
d

(
me

mp

)3

+ 4λσ

(
me

mp

)(
−ε

1

x sin θ

∂ f

∂x
− 1

x2
ξ+
θ

)
, (32)

∂

∂x

(
ξ−
ϕ γ −) + ξ−

ϕ γ −

x
= −ξ−

ϕ F−
d − 4λσ

(
−ε

1

x sin θ

∂ f

∂x
− 1

x2
ξ−
θ

)
, (33)

where

σ = �eB0 R2

4λmec3
� 1 (34)

is the Michel (1969) magnetization parameter describing the particle-to-electromagnetic energy flux ratio W part/W em = (mp/me)γ /σ . Hence,
for a Poynting-dominated flow we have γ � σ . As we see, the disturbances of the particle density η+ and η− enter equations (24)–(33) only
in the combination η+−η−. Therefore, the system (24)–(33) is closed, but the equation of mass continuity (5) is necessary to determine η+

and η− separately. The system (24)–(33) differs from that considered by Beskin & Rafikov (2000, hereafter Paper II) only by the additional
drag terms in the right-hand side of (28)–(33).

2.2 The one-fluid limit

Equations (24)–(33) describe the flow in the two-fluid approximation. We now reduce the complete system of equations (24)–(33) to consider
the one-fluid approximation. In the case of an electron–proton outflow there is a small parameter me/mp ∼ 10−3, which allows us to neglect
the electron mass and thus to proceed in a standard way to the one-fluid approximation. However, as demonstrated in Paper II, this can also
be performed in the electron–positron case for a magnetically dominated (σ � 1) dense (λ � 1) plasma. Because the non-hydrodynamic
components of the velocity are small in this case (cf. Melatos & Melrose 1996),

�ξ±
r

ξr
∼ λ−1σ−2/3,

�ξ±
θ

ξθ

∼ λ−1,
�ξ±

ϕ

ξϕ

∼ λ−1σ−2/3, (35)

we can set ξ+
i = ξ−

i = ξ i (i = r, θ , ϕ), where ξ i is the hydrodynamic velocity. In this limit we also have

δ − ε f

ε f
∼ λ−2σ−2/3. (36)

As a result, for a magnetically dominated outflow with σ � 1 and λ � 1 in the one-fluid approximation,

δ = ε f . (37)

Finally, taking equations (28) and (29) together with (37) in the limit λσ � 1 into consideration give another useful one-fluid relation:

−ε
1

x

∂ f

∂θ
+ ζ

x
− sin θ

x
ξr + 1

x2
ξϕ = 0, (38)

this equation being the same as in the drag-free case. On the other hand, as demonstrated in Paper II,

ξθ

ξϕ

≈ σ−1/3. (39)
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Radiation drag effects on magnetic outflows 591

Hence, in the one-fluid approximation one can set ξ θ = 0 so that

γ 2 = 1

2ξr − ξ 2
ϕ

. (40)

It is necessary to stress that in some cases the monopole geometry allows one to separately consider the set of equations describing the particle
energy and the set of equations resulting in the Grad–Shafranov (GS) equation, which determines the disturbance of magnetic surfaces. Thus,
here we can consider particle energy without formulating the general form of the GS equation. Some asymptotics of the GS equation are
discussed below.

3 T H E E L E C T RO N – P O S I T RO N O U T F L OW

3.1 Integrals of motion

In this section we consider the properties of the electron–positron outflow when mp = me = m. In our simple geometry with a (split) monopole
poloidal magnetic field in the zeroth approximation the particle motion can be considered as radial. It allows us to integrate some equations
along the r coordinate axis. This feature was first demonstrated by Li et al. (1992).

Indeed, combining (30) and (31) with (26) one can obtain in the one-fluid approximation

ζ = l(θ )

sin θ
+ 2ε

tan θ
f − 1

σ sin θ
(γ − γin) − 1

σ sin θ
lA

∫ x

x0

u(x ′)γ 2(x ′) dx ′, (41)

where γ in is the Lorentz factor near the origin, x0 = � R/c, and the integration constant l(θ ) describes the disturbance of the electric current
I(R, θ ) = IA[sin2θ + l(θ )] on the surface r = R. The integration constant must be determined from the critical conditions on singular surfaces.
The compactness parameter lA is defined by the relation

lA = 4

3

σTUA

mec�
, (42)

where UA = U(RL) is again the first term in (1) on the light cylinder r = RL. Finally, we also denote

lext = 4

3

σTUext

mc�
, (43)

so that (1) for x > 1 can be rewritten as

u(x) = x−n + lext/lA. (44)

For x < 1 it is natural to set u(x) = 1.
Expression (41) is just another way of writing the diminishing of the Bernouilli integral EB along a magnetic field line as a result of the

drag force. Within the Grad–Shafranov approach the full energy loss is determined by W = ∫
EB d�. Thus relation (41) can be rewritten as

EB(r ) = EB(R) − λ�

2πe

∫ r

R

Fdrag dr , (45)

where the energy flux per unit magnetic flux EB has the standard form EB = � I/2π c + γ mc2κ . Here I is the total electric current inside the
magnetic tube and κ is the particle-to-magnetic flux ratio (see, e.g., Beskin 1997 for details).

In the following we consider the case γ in ∼ 1, i.e.

γ 3
in � σ, (46)

when additional acceleration of particles inside the fast magnetosonic surface takes place (see, e.g., Paper I). In the case where γ 3
in � σ

corresponds to ordinary pulsars, the particle energy remains constant (γ = γ in) on any way up to the fast magnetosonic surface (Bogovalov
1997).

The other two integrals of motion, namely the conservation of angular momentum separately for electrons and positrons, can be obtained
from equations (30)–(33):

γ +(1 − x sin θξ+
ϕ ) = γ +

in − lA

∫ x

x0

u(x ′)(1 − x ′ sin θξ+
ϕ )(γ +)2 dx ′ − 4λσ (δ − ε f ), (47)

γ −(1 − x sin θξ−
ϕ ) = γ −

in − lA

∫ x

x0

u(x ′)(1 − x ′ sin θξ−
ϕ )(γ −)2 dx ′ + 4λσ (δ − ε f ). (48)

In the one-fluid approximation this gives

γ (1 − x sin θξϕ) = γin − lA

∫ x

x0

u(x ′)(1 − x ′ sin θξϕ)γ 2(x ′) dx ′. (49)

At large distances, where γ � γ in, we have

ξϕ ≈ 1

x sin θ
. (50)

It can be seen from (49) that the presence of the drag force (the term proportional to lA) makes this approximation more accurate.
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3.2 Fast magnetosonic surface

Substituting ζ from (41), ξ r from (40), and ξ ϕ from (49) into (38) we obtain the following equation to determine the position of the fast
magnetosonic surface r = rF:

−ε
∂ f

∂θ
+ 2ε

tan θ
f + l(θ )

sin θ
− 1

σ sin θ
(γ − γin + J ) − sin θ

[
1

2γ 2
+ (γ − γin + J1)2

2x2γ 2 sin2 θ

]
+ γ − γin + J1

x2γ sin θ
= 0, (51)

where

J = lA

∫ x

x0

u(x ′)γ 2(x ′) dx ′, (52)

J1 = lA

∫ x

x0

u(x ′)γ 2(x ′)(1 − x ′ sin θξϕ) dx ′. (53)

However, in accordance with (49) and thereafter, the terms J1 and γ in can be neglected far from the origin of the flow r � RL. Also, since
l(θ ) ∼ σ−4/3 (see Paper I), the term with l(θ ) can also be omitted. Hence, one can write down the following algebraic equation for the Lorentz
factor γ :

γ 3 − σ

(
P + 1

2x2

)
γ 2 + 1

2
σ sin2 θ = 0, (54)

where

P = − J

σ
+ 2ε f cos θ − ε sin θ

∂ f

∂θ
. (55)

This differs from the drag-free case by the additional term J/σ .
Equation (54) allows us to determine the position of the fast magnetosonic surface r = rF and the energy of particles on this surface

γ F = γ (rF). Indeed, as the fast magnetosonic surface is the X-point, we find the exact solution for coinciding roots

γF = σ 1/3 sin2/3 θ, (56)

which does not depend on P at all, or thus on the drag force. On the other hand, both the numerator and the denominator of the derivative
dγ / dx must be equal to zero on the surface r = rF:

x
dγ

dx
= γ σ (xdP/dx − x−2)

3γ − σ (2P + x−2)
. (57)

It gives

(P + x−2)F ≈ σ−2/3, |P|F ≈ |x−2|F. (58)

Now using (55), one can see that the conditions for weak and strong drag are, respectively, lA � lcr and lA � lcr, where

lcr = σ 1/3. (59)

In other words, for lA � lcr the flow remains the same as in the drag-free case, and

xF ≈ σ 1/3 sin−1/3 θ, (60)

(ε f )F ≈ σ−2/3. (61)

On the other hand, for a high enough photon density lA � lcr one can obtain, for n = 3,

xF ≈
(

σ

lA

)1/2

= σ 1/3

(
lcr

lA

)1/2

, (62)

(ε f )F ≈ lA

σ
. (63)

Thus, as we can see, the energy γ Fmc2 does not depend on the drag. The disturbance of the magnetic surfaces increases with increasing lA,
but remains small for lA � σ .

For a very dense photon field, according to (41) and (63), the disturbance of the magnetic surfaces becomes of the order of unity for
lA ∼ lmax where

lmax = σ, (64)

i.e. when the disturbance of the Bernouilli integral �EB = EB(r) − EB(RL) (45) is of the order of the total energy flux EB, or in other words
when the drag force substantially diminishes the total energy flux of the flow. However, this means that the disturbance of the magnetic
surfaces becomes large when the energies of particles in the vicinity of the fast magnetosonic surface become non-relativistic. This feature is
well known for a drag-free flow both within numerical (Sakurai 1985; Bogovalov 1997) and analytical (Bogovalov 1992; Tomimatsu 1994;
Paper I) considerations. Of course, our analysis within the small disturbance approach can only demonstrate the tendency. For this reason,
within our approach σ = constant. In reality, since σ = EB/(mc2κ), a decrease of the energy flux also results in a decrease of σ .
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Radiation drag effects on magnetic outflows 593

Finally, it is necessary to stress that the results depend significantly on the assumed model of the isotropic photon density. In particular,
for the general power-law dependence of the photon density for n < 3 in (44), one can obtain for the position of the fast magnetosonic point
and the disturbance of the magnetic surfaces

xF ≈ σ 1/3

(
lcr

lA

)1/(5−n)

, (65)

(ε f )F ≈
(

lA

σ

)2/(5−n)

(66)

instead of (62) and (63). This takes place for lA > lcr, where lcr is the photon density capable of disturbing the magnetically dominated outflow:

lcr = σ (n−2)/3. (67)

A large disturbance (ε f )F ∼ 1 can only be realized for a very high photon density lA > lmax, where again

lmax = σ. (68)

For n � 3 [when the value J defined by (52) is determined by the lower limit of integration and does not depend on n] we have (ε f )F ≈ lA/σ ,
xF ≈ (σ/lA)1/2, lcr = σ 1/3, and lmax = σ , i.e. the same as for n = 3. According to (41), (ε f )F ∼ 1 occurs when �EB/EB ∼ 1 for all values
of n.

3.3 The structure of the flow at small and large distances

3.3.1 Inner region

First, we consider the structure of the flow well within the fast magnetosonic surface r � rF. As one can see from (54), for r � rF

γ ≈ sin θ

(2P + 1/x2)1/2
. (69)

In particular, for lA � lcr one can neglect the term P in the denominator. On the other hand, for lA � lcr in the immediate vicinity of the fast
magnetosonic surface the negative term −J/σ in P should to be taken into consideration. As a result, the particle energy increases abruptly
up to the value ∼ σ 1/3. Nevertheless, for r � rF the value P can be omitted for the arbitrary compactness parameter lA. It also means that for
r � rF it is possible to neglect the first two terms in (38). Thus, in the internal region r � rF we have

ξr = ξϕ

x sin θ
. (70)

Now, using relations (50) and (70), one can obtain

γ 2 = γ 2
in + x2 sin2 θ ≈ x2 sin2 θ, (71)

ξϕ =
√

γ 2
in + x2 sin2 θ − γin

x sin θ
√

γ 2
in + x2 sin2 θ

≈ 1

x sin θ
, (72)

ξr =
√

γ 2
in + x2 sin2 θ − γin

x2 sin2 θ
√

γ 2
in + x2 sin2 θ

≈ 1

x2 sin2 θ
, (73)

in full agreement with the ideal MHD approximation. Hence, one can conclude that: in the internal region r < rF the radiation drag does not
affect the particle motion. Here the universal value of the Lorentz factor (71) corresponds to the drift velocity, and it depends on no external
disturbances. Indeed, using the frozen-in condition E + v × B/c = 0, we obtain for the drift velocity

U 2
dr = c2 E2

B2 = c2

(
B2

ϕ

E2
+ B2

r

E2

)−1

. (74)

In our case, however, according to (16)–(22), we have

B2
ϕ ≈ E2, B2

r ≈ E2/(x2 sin2 θ ). (75)

These relations immediately lead to the previously stated asymptotic behaviour (71). In particular, this means that disturbance of the magnetic
surfaces plays no role in the determination of the particle energy. For this reason, it is possible not to consider the radiation drag corrections
to the field structure for r � rF.

3.3.2 Outer region

In the other limit, well outside the fast magnetosonic surface (r � rF) equations (41), (38), (24)–(25) and (40) can be rewritten in the form

ζ = ε
2

tan θ
f − 1

σ sin θ
γ − 1

σ sin θ
lA

∫ x

x0

u(x ′)γ 2(x ′) dx ′, (76)
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ζ = ε
∂ f

∂θ
+ sin θξr , (77)

ε
∂

∂x

(
x2 ∂ f

∂x

)
− 1

sin3 θ

∂

∂θ

(
sin4 θξr

) = 0, (78)

γ 2 = 1

2ξr
, (79)

where we neglect the small values l(θ ), γ in/γ and ξ ϕ , and set δ = ε f . As we can see, the only correction compared with the drag-free case is
the last additional term in (76). Without the drag force the system (76)–(79) results in a very slow increase in the particle energy (γ ∝ ln1/3r)
and actually in the absence of collimation, ε f ∼ σ−2/3 ln1/3r (Tomimatsu 1994; Paper I). Unfortunately, because of the non-linearity of the
system (76)–(79), in the general case it is impossible to reduce it to the GS equation for the magnetic disturbance ε f only. For this reason, in
the following we only present an asymptotic representation of the GS equation.

(i) Low photon density lA � lcr.
In this case the action of drag results in a small correction to the particle energy. Only at very large distances, where the first term in (44) can

be neglected, does the drag significantly change the energy of particles. Indeed, for the decreasing component of the isotropic photon density
[u(x) ∼ x−n in 44] and for an almost constant particle energy the drag term in (76) does not increase with the distance r. Here increasing
the drag term is due to the homogeneous part of the photon density (lext/lA in 44). Clearly, this can be realized at large enough distances
[r > RL(lA/lext)σ (3−n)/3], where the contribution from external photons is the leading one. Thus, we see that the action of the drag force can
be significant for a high enough density of external isotropic photons in the vicinity of the compact object.

Now we consider this asymptotic region in more detail. Neglecting the term containing γ in (76) and the first term in (44), one can obtain
for the generalized GS equation

ε
∂

∂x

(
x2 ∂ f

∂x

)
− 1

sin3 θ

∂

∂θ

[
2ε sin2 θ cos θ f − ε sin3 θ

∂ f

∂θ
− sin2 θ

σ
lext

∫ x

x0

γ 2(x ′) dx ′
]

= 0. (80)

One can seek the solution of this equation in the form

ε f (x, θ ) ∝ xαδ , γ (x, θ ) ∝ xαγ . (81)

Substituting these expressions into (80) we obtain

ε f (x, θ ) = k1(θ )l1/2
ext σ−1/2x1/2, (82)

γ (x, θ ) = k2(θ )l−1/4
ext σ 1/4x−1/4, (83)

where k1(θ ) ∼ k2(θ ) ∼ 1 describe the θ dependence. This takes place for r > rh, where

rh = RLl−1
ext σ

−1/3. (84)

For rF < r < rh the action of drag is negligible.
As we see, for r > rh the drag force results in a decrease of the particle energy and an additional collimation of the magnetic surfaces

outside the fast magnetosonic surface. These asymptotic solutions, however, do not seem to be realized in reality. Indeed, as one can check,
rh ∼ (106–108)RL > rcloud. However, for r > rcloud the model that we adopted for the homogeneous component of the photon density is no
longer valid and thus the asymptotic solutions (82) and (83) do not apply. This conclusion is made under the assumption that the homogeneous
component is produced by the reradiating clouds surrounding the central engine. One could imagine producing a homogeneous component
of the photon density in the host galaxy. However, in this case the photon density Uext is too low and thus the collimation distance rh is too
large for our approach to be valid in the region r ∼ rh.

The characteristic radial dependence of the particle energy in the presence of the drag is demonstrated in Fig. 1(a). One can conclude that
for a low photon density: the action of the drag force is very weak unless photon field is present out to distances r ∼ rh. In the latter case the
drag force efficiently reduces the particle energy beyond r ∼ rh.

It is necessary to stress here an important property of the fast magnetosonic surface for lA < lcr. Introducing a small disturbance of the
particle energy resulting from the drag

γ = γ0 + �γ, (85)

where γ 0 is the Lorentz factor of particles without the drag force, one can obtain from (76)–(79)

− sin2 θ
�γ

γ 3
0

+ ε
∂� f

∂θ
− 2ε cos θ� f + 1

σ
�γ = J

σ
. (86)

As equation (78) results in ε� f ∼ �γ /γ 3
0, we see that outside the fast magnetosonic surface (where γ 0 > σ 1/3)

mc2�γ ≈ −
∫

Fdrag dr . (87)
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Radiation drag effects on magnetic outflows 595

Figure 1. The radial dependence of the Lorentz factor γ (r) for low (a) and high (b) photon densities for n = 3. The dashed lines correspond to the drag-free case.

On the other hand, within the fast magnetosonic surface we have

mc2|�γ | �
∫

Fdrag dr , (88)

in full agreement with (71). This means that inside the fast magnetosonic surface decreasing the total energy flux EB results from decreasing
the electromagnetic energy flux rather than the particle flux. Outside the fast surface the photons act upon the particle directly. In other words,
for lA < lcr the fast magnetosonic surface separates the regions in space where particles are strongly or weakly frozen into the electromagnetic
field.

(ii) High photon density lA > lcr.

For a high photon density lA > lcr the drag force significantly changes the energy of the outgoing particles. As shown in Fig. 1(b),
increasing the particle energy continues outside the fast magnetosonic surface up to the maximum value

γmax ≈
(

lA

lcr

)4(n−2)/(5n−n2)

σ 1/3. (89)

For n < 2 there is no additional acceleration. Only at larger distances (r > rcr) does the radial dependence of the energy of the outgoing plasma
become similar to the previous case.

Indeed, outside the fast magnetosonic surface one can neglect the term sin θξ r in (77). As a result, the system (76)–(79) can be rewritten
in the form

ε
∂ f

∂θ
− ε

2

tan θ
f = − 1

σ sin θ
γ − 1

σ sin θ
lA

∫ x

x0

u(x ′)γ 2(x ′) dx ′, (90)

ε
∂

∂x

(
x2 ∂ f

∂x

)
− 1

2 sin3 θ

∂

∂θ

(
sin4 θ

γ 2

)
= 0, (91)

which results in

∂

∂x

(
x2 ∂γ

∂x

)
+ lA

∂

∂x

(
x2−nγ 2

) = σ

2 sin3 θ

[
2 cos θ

∂

∂θ

(
sin4 θ

γ 2

)
− sin θ

∂2

∂θ 2

(
sin4 θ

γ 2

)]
. (92)

For lA > lcr the Lorentz factor γ increases with x, and the right-hand side in (92) can be omitted. This gives

x2 ∂γ

∂x
+ lAx2−nγ 2 = C(θ ), (93)

where the integration constant C(θ ) ≈ lAx2−n
F γ 2

F for lA � lcr actually does not depend on the boundary conditions dγ /dx at x = xF. In the
following we do not consider the θ dependence.

Now analysing equation (93), one can find that for xF � x � xcr, where

xcr ≈
(

lA

lcr

)8/(5n−n2)

xF, (94)

the particle energy increases as

γ (x) ≈ σ 1/3

(
x

xF

)(n−2)/2

(95)

for arbitrary n. As to the disturbance of magnetic surfaces ε f , it remains approximately constant: ε f ≈ (lA/σ )2/(5−n).
On the other hand, in the saturation region x � xcr, where one can now neglect the term lAx2−nγ 2 in (93), we have

γ (x) = C

(
1

xb
− 1

x

)
, (96)

where xb ≈ xcr. One can easily check that the maximum energy γ max ≈ C/xcr ≈ σ 1/3(xcr/xF)(n−2)/2 corresponds to (89). As demonstrated in
Fig. 2, the analytical estimate (89) is in good agreement with the numerical integration of equation (93).
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Figure 2. Saturation energy γ maxmc2 determined by a numerical integration of (93) for n = 3 and 4 (points). The lines correspond to the analytical estimate
(89). For lA = lmax, n � 3 we have γ sup = σ 7/9.

3.3.3 Physical interpretation of particle acceleration

At first glance, it is quite unexpected that a drag force can result in an acceleration of particles (so even the word ‘drag’ itself is not appropriate
any more). As was demonstrated, additional acceleration can be realized for a highly magnetized outflow when the photon density decreases
rapidly with radius (n > 2). This acceleration occurs as a result of the action of the drag force on to magnetic surfaces. Thus, acceleration is
only obtained when the disturbance of the magnetic surfaces is taken into account self-consistently.

To understand the nature of the additional particle acceleration in the supersonic region r > rF, it is necessary to return to the system (90)
and (91). As one can see, equation (91) actually plays the role of the GS equation, describing the force balance in the direction perpendicular
to the magnetic surfaces. It contains no drag term, because the drag force acts along the magnetic surfaces. Indeed, as was shown before
(Bogovalov 1998; Okamoto 1999; Beskin & Okamoto 2000), in the asymptotic region r � rF the transfield GS equation can be written down
as Fc = Fem, i.e. as a competition between the centrifugal volume force

Fc = nmc2γ + S/c

Rc
(97)

and the electromagnetic volume force

Fem = ρe Eθ + 1

c
j‖ Bϕ ≈ 1

8πr sin2 θ

∂

∂θ

[(
B2

ϕ − E2
θ

)
sin2 θ

]
, (98)

where S ≈ (c/4π)Eθ Bϕ is the Poynting flux. Now using the expression for the curvature radius Rc (Begelman & Li 1994; Beskin & Okamoto
2000),

1

Rc
= ε

r sin θ

∂

∂r

(
r 2 ∂ f

∂r

)
(99)

and the condition

B2
ϕ − E2

θ ≈ 1

γ 2
B2

ϕ (100)

resulting from the relativistic Bernouilli equation (see, e.g., Bogovalov 1998), for a magnetically dominated flow S � nmc3γ we recover
relation (91).

On the other hand, the Bernouilli equation (90) describes the change of the total energy flux (45) due to the drag force. As was shown
above, for lA > lcr in the vicinity of the fast magnetosonic surface the leading terms in the energy equation (90) are those containing ε f and
lA. This means that here the drag force again acts mainly on the electromagnetic (Poynting) flux S. The drag diminishes the θ -component of
the electric field Eθ , i.e. it disturbs the equipotential surfaces δ(r, θ ) =constant. However, since in the one-fluid approximation the magnetic
surfaces ε f (r, θ ) = constant must follow the equipotential surfaces, decreasing the electric field Eθ also results in a change of the curvature
of magnetic field lines. As the condition Fc = Fem can now be rewritten in the form

γ 2 ≈ 4π j‖
cEθ

Rc ≈ Rc

r
, (101)

we see that increasing the curvature radius Rc faster than r results in an increase in the particle energy. In our case such an acceleration is due
to the rapid decrease (n > 2) of the isotropic photon density with the distance r.

Thus, we see that for high enough photon density there is an additional acceleration of outgoing plasma outside the fast magnetosonic
surface. On the other hand, as for lA > lmax (64) the drag force significantly diminishes the total energy flux E, one can conclude that this
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acceleration may only take place up to the energy

Esup ∼ σ 1/3

(
lmax

lcr

)4(n−2)/n(5−n)

mec
2 (102)

for 2 < n < 3. On the other hand, Esup ∼ σ 7/9mec2 for n � 3. This energy is always much lower than σmec2, corresponding to the total
conversion of electromagnetic energy into particle energy.

4 T H E E L E C T RO N – P ROTO N O U T F L OW

In this section we briefly consider the results of the analysis of the electron–proton outflow. As the procedure is quite similar to the electron–
positron case, here we present the principal relations only.

The main difference from the electron–positron case, which occurs due to the large mass ratio, is that the drag force acts on the electron
component only, and the mass flow is determined entirely by protons. As a result, the energy conservation law has the form

ζ = 2ε

tan θ
f − (λ + cos θ/2)γ − + (mp/me)(λ − cos θ/2)γ +

2λσ sin θ

− lA

2λσ sin θ

∫ x

x0

[(
λ + 1

2
cos θ

)
(γ −)2 +

(
me

mp

)2 (
λ + 1

2
cos θ

)
(γ +)2

]
u(x ′)γ 2(x ′) dx ′

≈ 2ε

tan θ
f −

(mp

me

)
γ

2σ sin θ
− 1

2σ sin θ
lA

∫ x

x0

u(x ′)γ 2(x ′) dx ′, (103)

where now γ = γ +. The conservation of angular momentum (47) and (48) looks like

γ +(1 − x sin θξ+
ϕ ) = γ +

in − lA

(
me

mp

)3 ∫ x

x0

u(x ′)(1 − x ′ sin θξ+
ϕ )(γ +)2 dx ′ − 4λσ

me

mp
(δ − ε f ), (104)

γ −(1 − x sin θξ−
ϕ ) = γ −

in − lA

∫ x

x0

u(x ′)(1 − x ′ sin θξ−
ϕ )(γ −)2dx ′ + 4λσ (δ − ε f ), (105)

resulting in ξ ϕ = 1/x sin θ . Since for r � rF we again have ξ r = ξ ϕ/(x sin θ ), we return to the universal dependence

γ ≈ x sin θ. (106)

Equation (54) determining the energy on the fast magnetosonic surface now has the form

γ 3 − 2σ
me

mp

[
2ε f cos θ − ε sin θ

∂ f

∂θ
− 1

2

lA

σ

∫ x

x0

u(x ′)γ 2(x ′) dx ′ + 1

2x2

]
γ 2 + me

mp
σ sin2 θ = 0. (107)

Hence, for arbitrary lA the Lorentz factor of particles can be presented in the form

γF =
(

2me

mp

)1/3

σ 1/3 sin2/3 θ. (108)

Now, for lA < l(p)
cr the position of the fast magnetosonic surface and the disturbance of magnetic surfaces on the fast magnetosonic surface

are

xF ≈
(

2me

mp

)1/3

σ 1/3 sin−1/3 θ, (109)

(ε f )F ≈
(

2me

mp

)−2/3

σ−2/3, (110)

where for n < 3 we have

l (p)
cr =

(
mp

me

)(5−n)/3

σ (n−2)/3 (111)

and for n � 3 we have l(p)
cr = (mp/me)2/3σ 1/3. On the other hand, for lA > l(p)

cr we return to the relations xF = (σ/lA)1/2, (ε f )F = lA/σ for
n � 3, but for n < 3 now

xF ≈
(

σ

lA

)1/(5−n)

, (112)

(ε f )F ≈
(

lA

σ

)2/(5−n)

. (113)

As we see, for the disturbance of magnetic surfaces and the position of the fast magnetosonic surface remain the same as for the electron–
positron outflow. In particular, the terminating compactness parameter lmax = σ is again determined by electrons.
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Thus, one can conclude that inside the fast magnetosonic surface r < rF the Lorentz factors of all particles are given by the universal
relation (106). Hence, our results demonstrate that the drag force does not affect the structure of the flow inside the fast magnetosonic surface
for both the electron–positron and the electron–proton cases. However, the position of the fast magnetosonic surface and the critical value of
the photon density depend on the mass of the outgoing particles, and for the electron–proton case they are determined by protons.

At large distances r > rF for lA < l(p)
cr the particle energy actually remains the same as on the fast magnetosonic surface [γ (r > rF) ≈

γ F], while for lA > l(p)
cr the Lorentz factor increases up to the maximum value

γmax ≈ γF

[
lA

l (p)
cr

]4(n−2)/(5n−n2)

(114)

for n < 3. This takes place up to the distance r ≈ rcr, where

rcr = rF

[
lA

l (p)
cr

]8/(5n−n2)

. (115)

Clearly, this additional acceleration can only be realized for σ > mp/me. Then, for n = 3 we have

Esup ∼
(

mp

me

)2/9

σ 7/9mec
2. (116)

5 D I S C U S S I O N A N D A S T RO P H Y S I C A L A P P L I C AT I O N S

We have demonstrated how for a simple geometry it is possible to determine a small radiation-drag-force correction to the one-fluid ideal
MHD outflow. The disturbance of magnetic surfaces was self-consistently taken into consideration. As a result, it is possible to characterize
the general influence of the drag action on the magnetic field structure for an ideal magnetically dominated quasi-monopole cold outflow and
to determine under what circumstances radiation drag is important.

As demonstrated above, the characteristics of the flow are determined by two main parameters, namely the compactness parameter lA

(42) (which is proportional to the photon density) and the magnetization parameter σ (34). If the photon density is low, so that the compactness
parameter is small lA � lcr(σ ), the action of the drag force is negligible, while for a high photon density lA � lcr(σ ), particles are additionally
accelerated outside the fast magnetosonic surface.

In particular, for lcr � lA � lmax increasing the drag force results in an increase in the outgoing plasma energy Emax ≈ γmaxme,pc2, but
the disturbance of magnetic surfaces is small (εf � 1). For lA ∼ lmax an increase in the photon density results in increasing collimation up
to values εf ∼ 1, but the particle energy remains near the saturation value Esup. Finally, for a very high photon density lA � lmax an effective
collimation of magnetic surfaces becomes possible, but in this case the drag force substantially diminishes the flux of electromagnetic energy
inside the fast magnetosonic surface. As a result, for lA � lmax almost all the energy of the electromagnetic field is lost via the inverse Compton
interaction of particles with external photons. For this reason, the very existence of a magnetically dominated flow becomes impossible. The
dependence of the maximum particle energy Emax = γmaxme,pc2 on the compactness parameter lA is shown in Fig. 3.

We now consider several astrophysical applications.

5.1 Active galactic nuclei

For AGN (the central engine is assumed to be a rotating black hole with mass M ∼ 109 M�, R ∼ 1014 cm, the total luminosity L ∼
1045 erg s−1, B0 ∼ 104 G) the compactness parameter lA (42) can be evaluated as

lA ≈ 30M−1
9

(
�R

c

)
L45. (117)

Figure 3. Dependence of the maximum particle energy Emax on the compactness parameter lA both for electron–proton (a) and electron–positron (b) outflows
for n = 3. Here mp is a proton mass. The decrease of the particle energy for a very large compactness parameter lA is due to decreasing the total energy flux EB.
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In the Michel magnetization parameter σ (34)

σ ≈ 1014λ−1 M9 B4

(
�R

c

)
, (118)

the main uncertainty comes from the multiplication parameter λ, i.e. in the particle number density n. Indeed, for an electron–positron outflow
this value depends on the efficiency of pair creation in the magnetosphere of a black hole, which is still undetermined. In particular, this
process depends on the density and energies of the photons in the immediate vicinity of the black hole. As a result, if the hard-photon density
is not high, then the multiplication parameter is small (λ ∼ 10–100; Beskin, Istomin & Pariev 1992; Hirotani & Okamoto 1998). In this
case for (� R/c) ∼ 0.1–0.01 we have σ ∼ 109–1012, so that lcr ∼ 103–104. On the other hand, if the density of photons with energies Eγ >

1 MeV is high enough, direct particle creation γ + γ → e+ + e− results in an increase in the particle density (Svensson 1984). This gives σ

∼ 10–103, and hence lcr ∼ 10 for an electron–positron outflow.
From a theoretical point of view, the most interesting result here is the possibility of an additional acceleration of particles outside the

fast magnetosonic surface. Indeed, for a high enough photon density (lA ∼ 10–100, i.e. for L ∼ 1046–1048 erg s−1) and a small magnetization
parameter σ ∼ 10–100, the compactness parameter lA can exceed the critical value lcr for an electron–positron outflow. In this case, according
to Fig. 1(b), our analysis suggests that the kinetic luminosity of the relativistic jet should be proportional to l2/3

A ∝ Ltot, where Ltot in the total
luminosity of the central engine. Kinetic luminosity is not easily determined from observations. However, observational evidence suggests
that the radio luminosity of the jets is positively correlated with the luminosity of the central engine and the scatter of this correlation decreases
towards larger luminosities (Baum, Zirbel & O’Dea 1995).

For an electron–proton outflow the magnetization parameter (34) can be rewritten in the form (Camenzind 1990)

σ = mp

me

(
�R

c

)2
B2

0 R2

cṀ

≈ 3 × 104

(
�R

c

)2

B2
4 M2

9

(
Ṁ

0.1M�yr−1

)−1

, (119)

where Ṁ = 4πnmp R2c is the mass ejection rate. Hence, for a high ejection rate (Ṁ > 0.1 M� yr−1) the magnetization parameter σ <

mp/me. In this case there is no acceleration of plasma. On the other hand, for low ejection rate Ṁ < 0.1 M� yr−1 the magnetization parameter
becomes too large for the drag force to be efficient.

Thus, the drag force can only substantially disturb the MHD parameters of a Poynting-dominated outflow either for a very high luminosity
of the central engine (Ltot � 1045 erg s −1) or for an electron–positron outflow. In all other cases the action of the drag force remains negligible.
In particular, the additional acceleration of particles outside the fast magnetosonic surface is not efficient.

5.2 Cosmological gamma-ray bursts

For cosmological gamma-ray bursts (the central engine is represented by the merger of very rapidly orbiting neutron stars or black holes with
M ∼ M�, R ∼ 106 cm, total luminosity L ∼ 1052 erg s−1, B0 ∼ 1015 G; see, e.g., Lee, Wijers & Brown 2000 for details) the compactness
parameter lA is extremely large:

lA ∼ 1017

(
�R

c

)
L52. (120)

On the other hand, even for a superstrong magnetic field of B0 ∼ 1015 G (which is necessary to explain the total energy release) the magnetization
parameter σ is small (σ < 1–10), because within this model the magnetic field itself is secondary and its energy density cannot exceed the
plasma energy density. Thus, one can conclude that for these characteristics of cosmological gamma-ray bursts the density of photons is very
high so that lA � lmax and the drag force can make it difficult to form a Poynting-dominated outflow. A self-consistent analysis should take
into consideration other physical processes such as high optical thickness resulting in the diminishing of the photon density, radiation and
particle pressure, etc. Nevertheless, in our opinion, our conclusion may substantially restrict some recent models of cosmological gamma-ray
bursts.

5.3 Radio pulsars

For radio pulsars the central engine is a rotating neutron star with M ∼ M�, R ∼ 106 cm, total luminosity of the surface LX ∼ 1033–1037 erg
s−1 and B0 ∼ 1012 G. In this case the magnetization parameter σ ∼ 104–106, corresponding to relativistic electron–positron plasma, is known
with rather high accuracy (see, e.g., Bogovalov 1997). This gives lcr ∼ 102–103, and the compactness parameter

lA ∼
(

�R

c

)
L35 (121)

remains small (<1) even for the most energetic (LX ∼ 1037 erg s −1) fast (�R/c ∼ 10−2) pulsars such as Crab and Vela. Thus, one can conclude
that the drag force does not substantially disturb the magnetically dominated outflow from radio pulsars.

Thus, the drag force does not affect the wind characteristics (particle energy, magnetic field structure, etc.) of pulsars. However, interaction
of outflowing relativistic particles with thermal photons can be important in other ways. In the wind region (r � RL) even a weak interaction
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with photons can result in a detectable flux of inverse Compton gamma-ray photons (Bogovalov & Aharonian 2000). On the other hand, near
the surface of the star (r � RL), inverse Compton photons are important in the pair creation process (Kardashev, Mitrofanov & Novikov 1984;
Zhang & Harding 2000).
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