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Abstract. This paper analyzes the inter-relation be-
tween line-statistics and radiative driving in massive
stars with winds (excluding Wolf-Rayets) and provides
insight into the qualitative behaviour of the well-known
force-multiplier parameters kCAK, α and δ, with special
emphasis on α.

After recapitulating some basic properties of radiative
line driving, the correspondence of the local exponent of
(almost) arbitrary line-strength distribution functions and
α, which is the ratio of optically thick to total line-force, is
discussed. Both quantities are found to be roughly equal
as long as the local exponent is not too steep.

We compare the (conventional) parameterization ap-
plied in this paper with the so-called Q̄-formalism in-
troduced by Gayley (1995) and conclude that the latter
can be applied alternatively in its most general form. Its
“strongest form”, however (requiring the Ansatz Q̄ = Qo

to be valid, with Qo the line-strength of the strongest
line), is justified only under specific conditions, typically
for Supergiants with Teff >∼ 35 000 K.

The central part of this paper considers the ques-
tion concerning the shape of the line-strength distribution
function, with line-strength kL as approximate depth in-
dependent ratio of line and Thomson opacity. Since kL

depends on the product of oscillator strength, excitation-
and ionization fraction as well as on elemental abundance,
all of these factors have their own, specific influence on the
final result.

At first, we investigate the case of hydrogenic ions,
which can be treated analytically. We find that the expo-
nent of the differential distribution is −4/3 corresponding
to α = 2/3, as consequence of the underlying oscillator
strength distribution. Furthermore, it is shown that for
trace ions one stage below the major one (e.g., Hi in hot
winds) the equality α+δ ≈ 1 is valid throughout the wind.

For the majority of non-hydrogenic ions, we follow the
statistical approach suggested by Allen (1966), refined in
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a number of ways which allow, as a useful by-product, the
validity of the underlying data bases to be checked. Per
ion, it turns out that the typical line-strength distribution
consists of two parts, where the first, steeper one is domi-
nated by excitation effects and the second one follows the
oscillator strength distribution of the specific ion.

By summing up the contributions of all participating
ions, this direct influence of the oscillator strength distri-
bution almost vanishes. It turns out, however, that there
is a second, indirect influence controlling the absolute line
numbers and thus kCAK. From the actual numbers, we
find an average exponent of order −1.2 . . . − 1.3, similar
to the value for hydrogen.

Most important for the shape of the total distribu-
tion is the difference in line-statistics between iron group
and light ions as well as their different (mean) abun-
dance. Since the former group comprises a large number
of meta-stable levels, the line number from iron group ele-
ments is much higher, especially at intermediate and weak
line-strengths. Additionally, this number increases signifi-
cantly with decreasing temperature (more lines from lower
ionization stages). In contrast, the line-strength distribu-
tion of light ions remains rather constant as function of
temperature.

Since the line-strength depends linearly on the elemen-
tal abundance, this quantity controls the relative influence
of the specific distributions on the total one and the over-
all shape. For solar composition, a much more constant
slope is found, compared to the case if all abundances
were equal.

In result, we find (for solar abundances) that iron
group elements dominate the distribution at low and in-
termediate values of line-strength (corresponding to the
acceleration in the inner wind part), whereas light ions
(including hydrogen under A-star conditions) dominate
the high kL end (outer wind). Typically, this part of the
distribution is steeper than the rest, due to excitation
effects.
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Finally, the influence of global metallicity z is dis-
cussed. We extend already known scaling relations (re-
garding mass-loss, terminal velocity and wind-momentum
rate) with respect to this quantity. In particular, we
demonstrate that, besides the well-known direct effect
(kCAK ∝ z1−α), the curvature of the line-strength dis-
tribution at its upper end induces a decrease of α for low
metallicity and/or low wind density.

Summarizing the different processes investigated, the
force-multiplier parameter α becomes a decreasing func-
tion of decreasing Teff , increasing k1 = dv/dr/ρ and de-
creasing global metallicity z, consistent with the findings
of earlier and present empirical results and observations.

Key words: atomic data — stars: atmospheres — stars:
early type — stars: mass-loss

1. Introduction

Over the last three decades the idea of radiative driving
by metal-line absorption/scattering has been applied
with increasing success. Besides the original motivation
of explaining the supersonic outflows of OB-star winds
and predicting their strengths (Lucy & Solomon 1970;
Castor et al. 1975 (CAK)), a much wider domain of
sophisticated physical processes is considered now. To
name only a few recent and exciting developments,
there is, e.g., the possibility of compressing wind ma-
terial into the stellar equatorial zone and even creating
a disk due to the combined effects of (radial) line
and centrifugal force in case of large rotational rates
(Bjorkman & Cassinelli 1993) and the counteracting role
of non-radial line-forces which might inhibit this process
(Owocki et al. 1996). Another example (although originat-
ing from the very beginning: again Lucy & Solomon 1970)
would be the theory of line-force instability (Owocki &
Rybicki 1984, 1985) and its ongoing refinements (Owocki
& Puls 1996, 1999), which still awaits direct observational
proof.

Going extragalactic, it turned out that the observed
wind-momentum rate of supergiant winds allows for a
determination of distances (Kudritzki et al. 1995) and
may finally become an independent alternative to using
Cepheids as distance indicators on the intermediate dis-
tance scale up to the Virgo Cluster. Even further out, the
theory of radiative line driving and its possible instability
is providing a first step towards explaining the physics of
BAL-QSOs (Arav & Li 1994; Arav et al. 1994; Feldmeier
et al. 1997).

All of these investigations and theories have one thing
in common: Although the specific line transfer for obtain-
ing the radiation force per line is treated differently to
meet the required physics, the total line force arising from

thousands of contributing lines is calculated – either di-
rectly or indirectly – by means of a certain statistical de-
scription of the line distribution.

This procedure still follows the ingenious Ansatz by
CAK and improvements obtained by Abbott (1982),
which to its end requires the knowledge of only three
“numbers” kCAK, α and δ, the so-called force-multiplier
parameters, in order to extrapolate from the behaviour
of one line to the effects of the total line ensemble.

Unfortunately, the physical explanation of their origin
and the discussion of their behaviour under various physi-
cal conditions is rather unsatisfactory. The only exception
(to our knowledge) is the publication by Gayley (1995),
which provides a profound insight into the efficiency of
line driving (compared to electron scattering) and sug-
gests a modified parameterization of the line-force, which
however does not give any further clue concerning the in-
volved line-statistics itself.

Nevertheless and especially in view of the wide use of
the (improved) CAK- parameterization, the present sit-
uation is mostly unclear. This even more so, since it is
the actual numerical value of one or more of the force-
multiplier parameters which may allow for certain effects
to arise or rather to inhibit the process.

We want to mention here only two examples: The the-
oretical basis of the wind-momentum luminosity relation
relies on the parameter α (actually α − δ) to be close to
2/3, and a consistent calculation of a wind-compressed
disk (neglecting non-radial forces) requires a (maybe too)
large value of δ.

Recently, Kudritzki et al. (1998) have presented a
method and first results on how to obtain an improved
parameterization of the line-force by allowing for a depth
dependence of the force-multiplier parameters. However,
also this paper is based on a purely descriptive approach,
namely by calculating line-forces under various conditions
and then by fitting the result to the modified parameter-
ized expression. Although the final outcome of this project
will prove to be useful for many applications, the question
about the underlying physics still remains.

Since radiation driven wind theory has proven to work
under different conditions and the physics of radiation
driving is not only a black box process requiring the col-
lection (or guess!) of various values for kCAK, α and δ in
order to solve the hydro-equations, we feel that a more
thorough investigation of the underlying statistics, physics
and consequences has to be performed. The present paper
is intended to answer at least some of the obvious ques-
tions and is organized as follows. In Sect. 2, we review the
problem of how to calculate the line-force arising from an
ensemble of lines by means of the so-called line-strength
distribution function, where in a first step the “standard”
representation is used. Additionally, however, we investi-
gate also different distribution functions and interpret the
ensemble line-force in a more general way. In Sect. 3, we
turn to “reality” and present our method to derive NLTE
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line-distribution functions valid for the considered wind
plasma conditions. We show typical examples and com-
ment on Gayley’s (1995) Q̄- formalism. In Sect. 4, we try
to understand the fundamental physics which controls the
slope of the line-strength distribution function and hence
the actual value of α. Section 5 focuses on the conse-
quences if the plasma conditions are changed, especially
due to a different metallicity and/or mean wind density,
and Sect. 6 summarizes our results and gives some caveats
regarding the limits of our investigation.

2. The line-force from an ensemble of lines and the
line-strength distribution function

In this section, we review the basic physics of radiative
driving of an ensemble of lines and interpret the final out-
come in terms of a so-called “line-strength distribution
function”. To this end, we allow for a number of approx-
imations which will turn out to be of either minor im-
portance or will be relaxed during further proceedings.
Specifically,

– we will neglect the finite-disk effect and consider only
radially streaming photons. The corresponding modifi-
cation to the total line-force (cf. Friend & Abbott 1986
and Pauldrach; Puls & Kudritzki 1986) can be easily
incorporated afterwards;

– We will use the Sobolev approximation for calculating
the line-force of a single line, neglecting line-overlap,
the diffuse radiation field and curvature terms of the
velocity law. We will briefly comment on these restric-
tions and their consequences in Sect. 6. Since these
approximations are generally used in the considered
framework and may influence the results only under
very specific conditions, we accept them until further
discussion. Note already here, however, that by ne-
glecting the influence of line-overlap we can and will
describe only the situation for “normal” stars, whereas
the case of WRs requires additional considerations
(e.g., Lucy & Abbott 1993; Schmutz 1997; Springmann
& Puls 1998 and Owocki & Gayley 1999);

– The classification of lines to be either optically thin
or thick with interaction probabilities of τ or unity,
respectively, instead of using the “exact” expression
(1 − exp(−τ), see below) leads to an only marginal
error. We prefer this procedure throughout the major
part of our discussion since it yields more insight into
the relevant physical processes;

– Finally, we consider only stationary and one-
dimensional winds, since our reasoning is directed to
understanding the reaction of an ensemble of lines
projected from the behaviour of a single line, and the
usual procedure to allow for this projection is similar
in cases of time-dependent (e.g., Owocki & Rybicki
1984) or multidimensional (e.g., Owocki et al. 1994)
calculations.

2.1. The radiative acceleration provided by one line

Within these approximations and assumptions, the radia-
tive acceleration provided by scattering of photons in a
single line (transition frequency νi) to the material in a
spherically expanding shell of size dr, mass dm = 4πρr2dr
and velocity v(r) . . . v(r)+dv is given by the average trans-
ferred momentum per unit time and dm, i.e.,

gi
rad =

〈∆P 〉
∆tdm

=

=
1

4πρr2dr
Nνdν

hν

c

(
1− exp(−τS)

)
=

=
1

4πr2c2
Lννi

1
ρ

dv
dr
(
1− exp(−τS)

)
(1)

where Nνdν is the number of photospherically emitted
photons per unit time in the frequency range ν . . . ν + dν,
Lν the stellar luminosity and

〈∆P 〉 = Nνdν
hν

c
=

=
Lνdν
hν

hν

c
(2)

the average transferred momentum by line absorption or
scattering (radially streaming photons provided and ac-
counting for the cancellation of the foreaft-symmetric ree-
mission processes). Finally,

dν = νi
dv
c

(3)

is the frequency range which can actually contribute to
line scattering inside the shell via the Doppler effect, and(
1 − exp(−τS)

)
is the interaction probability for a line

optical depth (in Sobolev approximation)

τS =
χ̄iλi

dv/dr
(4)

χ̄i =
πe2

mec
gfi

(
nl

gl
− nu

gu

)
(5)

with χ̄i the frequency integrated line opacity, gf -value gfi

and nl, nu, gl, gu the occupation numbers and statistical
weights of the participating lower and upper level.

2.2. Line-strength and optical depth

To proceed further, we have to sum up the contribution of
all individual lines to obtain the total radiative accelera-
tion. To this end, we define the dimensionless line-strength
of a single line as

kL =
χν(νi)

√
π

σe
=

χ̄i

∆νDσe
=
χ̄iλi

ρ

1
sEvth

(6)

χν = χ̄iΦν ; Φν =
1√
π∆νD

e−(
ν−νi
∆νD

)2

.
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σe =: sEρ is the Thomson scattering opacity, ∆νD the
Doppler width of the line and vth the ionic thermal ve-
locity. From Eq. (6), the line-strength can be interpreted
twofold. On the one side, it is, except from a factor√
π, the maximum opacity of the considered line in units

of the minimum continuum opacity present in the wind
(=Thomson). Alternatively, it can be considered, except
a factor of 2N,N = 2 . . . 4, as the ratio of frequency in-
tegrated line opacity χ̄i to minimum frequency integrated
continuum opacity 2N∆νDσe.

One comment is necessary here: The incidence of vth

at this stage of reasoning seems to be “natural” in terms
of understanding the physical meaning of line-strength.
Moreover, it is actually needed if we require the latter
to be dimensionless, which is important for our future
statistical analysis. As it will turn out, however, vth will
reappear in various combinations with other quantities af-
ter summing up the line-strength contributions of differ-
ent metals, i.e., vth would be no longer unique due to its
dependence on atomic mass. Thus, from now on we will
concentrate on the most important aspect of vth in this
context, namely that it has a dimension (also noting that
its value is smaller than the sound-speed), however use a
value independent of atomic mass, in particular, the value
for hydrogen.

The relation of the so defined line-strength to Sobolev
optical depth is given by

τS =
σevth

dv/dr
kL = tkL (7)

where t is the optical depth parameter defined by CAK.
The advantage of using kL instead of opacities or optical
depths is that kL is a quantity which remains rather con-
stant throughout the wind (at least in the typical case of
frozen-in ionization), and whose distribution can be de-
scribed in an almost depth independent statistical way.
Before doing this, however, we will sum up the contribu-
tions of all individual lines, in the spirit outlined above,
i.e., by dividing lines into two categories. Optically thick
lines are those with τS ≥ 1 and interaction probability
“1”, whereas optically thin lines shall have τS < 1 and
interaction probability τS. Defining

k1 = kL(τS = 1) =
dv/dr
σevth

=
1

sEvth

dv/dr
ρ

= t−1 (8)

as the line-strength where the division τS = 1 is reached,
we find for the total line acceleration

gtot
rad =

sEvth

4πr2c2

k1

∑
ki

L≥k1

Lνiνi +
∑
ki

L<k1

ki
LLνiνi

 . (9)

The first term inside the bracket gives the contribution
by optically thick lines and depends only on the hydro-
dynamical structure via k1 ∝ (dv/dr)/ρ, whereas the sec-
ond term gives the optically thin line contribution and is
independent of the hydro-structure, however depends on
the specific line-strengths, i.e., atomic properties and level
population.

2.3. Line-strength distribution function and total
acceleration

2.3.1. Perfect power-law distribution

Before going into further detail and in concert with most
previous investigations related to this topic, we will as-
sume that the number of lines in a frequency interval
ν, ν+dν and line-strength kL, kL +dkL can be represented
by a power-law

dN(ν, kL) = −No fν(ν) kα−2
L dν dkL, (10)

with 0 < α < 1, where the frequential distribution shall be
independent from the line-strength distribution. The neg-
ative sign accounts for the fact that the number of lines
increases for decreasing line-strength. So far, the normal-
ization “constant” No is allowed to have some additional
depth dependence. With (10) and substituting the sums
in (9) by appropriate (double-) integrals with frequencies
from 0 . . .∞ and line-strengths from k1 . . .∞ and 0 . . . k1,
respectively, we find

gtot
rad =

sEvth

4πr2c2

{
k1

∫ ∞
0

∫ ∞
k1

Lνν |dN(ν, kL)| +

+
∫ ∞

0

∫ k1

0

kLLνν |dN(ν, kL)|
}

= (11)

=
sEvthNo

∫∞
0
Lννfν(ν) dν

4πr2c2

{ 1
1−αk

α
1 +

1
α
kα1

}
. (12)

Note, that in case of α < 0 the contribution from opti-
cally thin lines (second term) would diverge at its lower
boundary. From Eq. (12), two points are obvious: Both
the line-force provided by optically thick and by optically
thin lines scales with the same power α, and we can inter-
pret this exponent as the ratio of line-force from optically
thick lines to total force,

α =
gthick

rad

gtot
rad

, (13)

a result, which we will later on discuss carefully. Collecting
terms and using the radiative acceleration provided by
Thomson-scattering as a scaling factor,

gTH
rad =

sEL

4πr2c
(14)

with stellar luminosity L, we can express the total line ac-
celeration in terms of the so-called force-multiplier f.m.(r),

f.m.(r) =
gtot

rad

gTH
rad

= kCAKk
α
1 = kCAKt

−α, (15)

where the force-multiplier parameter kCAK is defined by

kCAK =

∫∞
0
Lννfν(ν) dν

L

vth

c

No

α(1− α)
. (16)

This result was given firstly by CAK. Note, however, that
they additionally assumed fν(ν) dν = dν/ν, in which case
the first factor in (16) is unity.
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“Exact” result. Let us now consider the error we have
made by dividing the lines into optically thick and thin
ones exclusively. Accounting for the definition of the line-
strength and its relation to the Sobolev optical depth, we
can reformulate the radiative acceleration provided by one
line, Eq. (1),

gi
rad =

sEvthLννi

4πr2c2
ki

L

1− exp(−τS)
τS

=

=
sEvthLννi

4πr2c2
k1

(
1− exp

(
−k

i
L

k1

))
. (17)

The first equation above can be interpreted as the product
of the radiative acceleration if the line were optically thin,
multiplied by the correction for self-shadowing due to the
actual optical depth τS (cf. also Gayley 1995). Integrating
over the line-strength distribution function without per-
forming the division at τS = 1, we obtain directly the
“exact” version of Eq. (12),

gtot
rad =

sEvthNo

∫∞
0
Lννfν(ν) dν

4πr2c2
Γ(α)
1− αk

α
1 (18)

with Gamma-function Γ(α). Thus, since 0 < α < 1 (by
assumption), the error introduced by our approximation is
given by 1/(αΓ(α)) = 1/(Γ(1+α)), i.e., an overestimation
of at most 13%.

2.3.2. Distribution functions with arbitrary dependence
on line-strength

In the previous section, we have shown that the assump-
tion of power-law distributed line-strengths with exponent
α−2 directly leads to an ensemble line-force being propor-
tional to kα1 , and that in this case α turns out to represent
the ratio of optically thick to total line acceleration, pro-
vided that 0 < α < 1.

In so far, it seems quite natural to consider line
strength distribution function and line force as inter-
changeable quantities and to identify the line-force expo-
nent instantaneously as a manifestation of the underlying
line-statistics. Although this perspective is widely spread,
a closer inspection of the above procedure immediately
necessitates a major caveat:

Due to the different weighting of line-strength in the
expression for the line-force (Eq. 11), gthin

rad ∝
∫
kLdN(kL)

and gthick
rad ∝

∫
dN(kL), a strict correspondence between

the exponent of line-strength distribution and force-
multiplier parameter can be expected a priori only if the
distribution follows a power-law over a large range of
line-strengths. If the distribution is curved in the log, this
equality remains questionable and has to be considered
with caution, even if one accounts for locally defined
values α = α(kL = k1).

To investigate this problem, we consider a generalized
line-strength distribution function

dN(ν, kL) = − f(kL, ν) dν dkL, (19)

with arbitrary (positive) function f(kL, ν), where we even
allow for a dependence of line-strength on frequency.
Then, by realizing that

〈N(kL)〉 =
∫ ∞
kL

dk′L

(∫ ∞
0

Lνν

L
f(k′L, ν) dν

)
(20)

is the flux (times frequency) weighted cumulative number
of lines stronger than kL, we can integrate the optically
thin contribution in (11) by parts and obtain, after adding
the optically thick contribution

gtot
rad ∝

∫ k1

0

〈N(kL)〉 dkL. (21)

Here we have assumed that the total (flux weighted) num-
ber of lines 〈N(0)〉 remains finite. (Actually, the much
weaker requirement that kL 〈N(kL)〉 → 0 for kL → 0 is
sufficient.)

Equation (21) can be alternatively expressed as

gtot
rad =

LsEvth

4πr2c2

{
k1 〈Nthick〉+

∫ k1

0

〈Nthin(kL)〉dkL

}
, (22)

with 〈Nthick〉 = 〈N(k1)〉 the weighted number of lines
stronger than k1 (which are then optically thick by defini-
tion) and 〈Nthin(kL)〉 the cumulative number of optically
thin lines (= 〈N(kL)〉 − 〈N(k1)〉). Figure 1 displays this
result graphically. Note, that in order to derive this result,
we have again used our approximation of replacing the in-
teraction probability 1− exp(−τS) by (1, τS), respectively.

Before we proceed further, let us mention that Eq. (22)
and Fig. 1 allow for an useful visualization of two extreme
cases. At first, assume that either the velocity gradient
is so small or the density so high that all lines are ef-
fectively stronger than/equal to k1. In this optically thick
case, k1 is situated in the left part of the previous fig-
ure, and 〈N(kL)〉 = 〈N(k1)〉 = const for all kL < k1 by
definition (no lines weaker than k1 present). The accel-
eration is then found from the rectangular area between
kL = 0 . . . k1, i.e., gtot

rad ∝ k1 and thus α = 1. From the
figure, it is also clear that the resulting acceleration is
enormously reduced compared to the case of all lines be-
ing optically thin (cf. also Eq. (17)), which is the other
extreme. In the latter case (arising for large velocity gradi-
ents or low densities), k1 lies at the rightmost point of the
abscissa, and all lines have strengths lower than k1. Hence,
the integral becomes independent of k1, and the radiative
acceleration obtains its maximum value with α = 0. In all
other cases, the α-parameter of the line-force corresponds
to the ratio of “dark” area (optically thick force) and the
sum of light and dark area (total force), cf. Eq. (13) for
the case of a strict power-law and Sect. 2.4 otherwise.

On the basis of our alternative and general expression (21)
for the line-force, we can now answer the question raised
above, namely under which conditions this line-force can
be represented by the CAK law gtot

rad ∝ kα1 , where α cor-
responds at least to some local exponent of our arbitrary
line-strength distribution function.
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kL

N

)

thick

k1

N(kL

Fig. 1. The line-force as integral of (flux weighted) cumulative
line number over line-strength; contribution by optically thin
(light) and optically thick lines (dark). Compare Eq. (22) and
text

To this end, we define two line-strengths k− < k1 <
k+, where k− and k+ are chosen in such a way that
N(kL) follows roughly a power-law in between, i.e., is
roughly linear with slope α− 1 in the log-log representa-
tion. Actually, this is almost always possible if the range
k− . . . k+ is not too large, say of order two dex. (Here and
in the following we assume that the wind is not too thin,
so that k1 lies well below the maximum line-strength.)

The number of lines at k+ is then N+, N− is N(k−)
(flux weighting always provided, however brackets sup-
pressed to simplify notation) and the distribution function
in between can be approximated by

N(kL) = N+k
1−α
+ kα−1

L ; k− < kL < k+

α = 1 +
log(N+/N−)
log(k+/k−)

. (23)

Since by definition N− ≥ N+ and k+ > k−, the maximum
value of α is constrained to be unity, which occurs in those
cases when the maximum line number is reached at a cer-
tain kL-value. α-values below zero are not excluded from
now on in our local description.

Under these conditions and using (22), the total line
acceleration is given by

gtot
rad ∝

∫ k−

0

N(kL) dkL +
∫ k1

k−

N+k
1−α
+ kα−1

L dkL

=

{
N̄{0,k−} −

N+

α

(
k+

k−

)1−α
}
k− +

(
N+k

1−α
+

α

)
kα1 (24)

(α 6= 0), where N̄{0,k−} is the appropriate average of
N(kL) in the range 0 . . . k−

N̄{0,k−} k− =:
∫ k−

0

N(kL) dkL. (25)

From Eq. (24), it is obvious that the ensemble line-force
can be represented by kα1 with local α, if and only if the
first term is small compared to the second one, where the
former is just the difference between actual and “fitted”
area (i.e., acceleration) in the range 0 . . . k−.

In Appendix A, we show that under fairly general as-
sumptions this is actually the case if α > 0, i.e., as long as
the local slope of the flux-weighted cumulative line-strength
distribution (in the log−log representation) is larger than
−1. In contrast, line distributions with a steep slope over
a large kL range will decouple from the line-force parame-
terization (cf. also Sect. 4.2.8), leading to effective α values
in the line-force (see below) different from those defining
the line-strength statistics.

2.4. Effective value of α

Usually, the force multiplier parameters are not derived
from the line-strength distribution function, however from
the line-force itself, i.e., accouting explicitely for the addi-
tional weighting with kL mentioned above.

Thus, in the following we postulate the line force to be
a function of kα1 with no a priori knowledge of α. Instead,
we define an effective value α̂1 by

α̂ =
d ln gtot

rad

d ln k1
=

dgtot
rad

dk1

k1

gtot
rad

. (26)

From this definition and using ensemble line-forces
calculated by summing up their individual components
(e.g., Abbott 1982; Pauldrach et al. 1994), we obtain by
straightforward differentiation (cf. Eq. 17)

dgtot
rad

dk1
=

sEvth

4πr2c2
d

dk1

∑
i

k1

(
1− exp

(
−k

i
L

k1

))
Lνiνi =

=
sEvth

4πr2c2

∑
i

(
1− exp

(
−k

i
L

k1

)
− ki

L

k1
exp

(
−k

i
L

k1

))
Lνiνi

≈ gtot
rad

k1
− gthin

rad

k1
=
gthick

rad

k1
, (27)

where we have performed our approximation
1 − exp(−τS) = (1, τS) for ki

L > k1, k
i
L < k1, re-

spectively, and neglected 2nd order terms. Hence, from
Eq. (26)

α̂ ≈ gthick
rad

gtot
rad

, (28)

we find the same result as in Eq. (13), however indepen-
dent of any underlying line statistics! Especially, this re-
sult does not rely on any separability of frequency and
line-strength2.

1 From here on, all line-force parameters derived from a given
or calculated force itself will be denoted with an additional cir-
cumflex, in contrast to those parameters related or resulting
from a specific line statistics.

2 The same result can be found by applying def-
inition (26) to our alternative expression for the
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In a first interpretation of α̂, Abbott (1980, his Eq. 10)
found a result different from our Eq. (28). This difference,
however, bases on Abbott’s implicit assumption that the
average (flux times frequency weighted) line-strength of
optically thin lines,

k̄thin =

∑
ki

L<k1
ki

LLνiνi∑
ki

L<k1
Lνiνi

(29)

does not depend on the hydro variable k1. If one relaxes
this assumption and accounts also for the variation of k̄thin

as function of k1, the nominator in Abbott’s Eq. (10) be-
comes unity and the same result for α̂ is recovered as given
in (28).

From this expression, it is obvious that α̂ must lie in
the range 0. . . 1. Combined with our previous notion that
the line-force can be parameterized in the form kα1 if the lo-
cal α value of the distribution function is larger than zero,
this leads to the result that we should have α̂(k1) ≈ α(k1)
for a large range of line-strengths as long as this condi-
tion is met. If the distribution has a significant steepness
locally, α̂(k1) > α(k1) is to be expected.

Furthermore, the value of α̂ is independent of k1 if and
only if the flux-weighted line-strength distribution follows
an exact power law with exponent α−2. In this case then,
α̂ = α globally. Otherwise, α̂ becomes a function of k1 and
thus a function of depth. An instructive example is given
in Appendix B.

2.5. The interpretation of α̂: Acceleration vs.
line-number ratio

It has often been argued that α̂ is closely related to the
number ratio of optically thick to thin lines, contrasted to
the above formulated acceleration ratio. In the following,
however, we will show that the former gives little (if any)
insight into the behaviour of α̂.

At first note that in view of Eq. (11) the optically thin
line-force can be expressed by
gthin

rad ∝ 〈Nthin〉 k̄thin. (30)
Thus, the product of (flux weighted) number of optically
thin lines times average line-strength 〈Nthin〉 k̄thin remains
bounded, although the number itself may formally di-
verge, e.g. for a typical power-law index α − 2 < −1. In
this case then, the average line-strength of optically thin
lines k̄thin approaches zero!

To avoid this possible divergence and also to keep the
computational effort as small as possible, one usually de-
fines a minimum line-strength kmin < k1 as a lower bound-
ary for the contributing lines, resulting in a modified ac-
celeration

gthin
rad (kmin) ∝ kα1

α

(
1 −

(
kmin

k1

)α)
. (31)

line acceleration (21), again independent from any
assumption for the line statistics. Note also, that
Gayley (1995) defined the effective α value at the criti-
cal point by the same expression.

If one allows for a relative error ε in the line-force and
supposes the power-law distribution function to be valid
throughout the range 0 < k <∞, one finds as a constraint
for kmin

kmin

k1
=
( ε

1 − α

) 1
α

. (32)

Hence and under “normal” conditions (k1 = O(1 000)), it
is sufficient to account for lines stronger than kmin = 1,
i.e., stronger than Thomson-scattering, if one calculates
the line-force (this was done, e.g., in Fig. A1). However,
in cases of high wind densities, this limit has to be low-
ered, since the contribution of weaker lines with kL < 1
becomes considerable then.

Using this cutoff, the number ratio of optically thick
to thin lines is given by
Nthick

Nthin
=

1
(k1/kmin)1−α − 1

→ 0 for kmin → 0. (33)

Thus, it depends strongly on k1 (usually increasing
throughout the wind) as well as on the value chosen for
kmin, contrasted to the accordingly modified acceleration
ratio
gthick

rad

gthin
rad

=
α

1− α
1

1− (kmin/k1)α
→ α

1− α for kmin → 0.(34)

The latter limit, of course, is only valid for α > 0. In conse-
quence, even for the simple picture of a perfect power-law,
the “knowledge” or anticipated behaviour of Nthick/Nthin

gives only little (if any) insight into the value of α̂. E.g.,
the expectation that Nthick/Nthin � 1 implies α̂ → 0 is,
in view of Eq. (33), by no means justified. As one exam-
ple of this kind of misinterpretation, we want to mention
the argument given by Kudritzki et al. (1987) to explain
the lower α̂-values resulting from NLTE-calculations for
winds with reduced metallicity. It was argued that this
effect can be “easily understood in terms of the metallic-
ity”, since the “ratio of strong to weak lines must decrease
accordingly” if the metallicity is lowered. With respect to
Eq. (33), this argument is simply wrong, since the plain
number ratio becomes inevitably smaller for a reduced
wind density (k1 larger) and thus cannot be used to give
any predictions concerning α̂. What really matters – if one
prefers a discussion in terms of line numbers – is the ratio
of optically thick lines to the average number of lines in
the range kL = 0 . . . k1,

α̂ =
〈Nthick〉〈
N̄{0,k1}

〉 , (35)

by means of Eq. (21). Further comments on the behaviour
of α̂ in a low metallicity environment are given in Sect. 5.

2.6. Relation to Gayley’s Q̄

As we have mentioned in the introduction, Gayley (1995)
considered the problem of radiative line driving in a con-
cept somewhat different from the conventional approach.
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After discussing the physical origin why radiative line
driving is so much more efficient than the radiative contin-
uum acceleration, he introduces the meanwhile well known
quantity Q̄ and relates it to the alternative modified CAK
approach. The reason that his approach seems to be some-
what favourable compared to the latter is his finding that
Q̄ should be much more constant than the line-force pa-
rameter kCAK, which is somewhat messed up with implicit
dependencies on α, cf. Eq. (16). By comparing with vari-
ous published values of force-multipliers, he concludes that
Q̄ should be of the order 1 000 to 2 000. In order to com-
pare to his approach and since in the remaining part of
the paper we are mostly concerned with the parameter α,
we will briefly relate his findings to our concept in the fol-
lowing, and comment on some problems if one considers
realistic line-distribution functions in Sect. 3.3.

At first note that Gayley’s line-strength parameter q
relates to our definition as

q =
vth

c
kL, (36)

where we have argued previously that in our notation vth

is evaluated for hydrogen, i.e., is temperature, however not
mass dependent.

Similarly, Gayley’s cutoff parameter Qo deviates from
our quantity kmax (Eq. B1) by the same factor. Noting
these correspondences and keeping our radial streaming
approximation, Q̄ is defined by

Q̄ =
∑

all lines

Lνiνi

L
qi =

vth

c

∑ Lνiνi

L
ki

L

→ vth

c

∫ ∞
0

∫ ∞
0

kL
Lνν

L
|dN(kL, ν)| (37)

which is nothing else than the force-multiplier if all lines
were optically thin (cf. Eq. 11). On the other hand, from
Eq. (16) we find an intuitive interpretation of kCAK, which
is roughly the fraction of the total stellar flux which would
be blocked already in the photosphere if all lines were op-
tically thick (assuming that each optically thick line blocks
a fraction Lν∆νD), divided by α. In so far, the physical
upper limit of kCAK is of order 1/α. (Much earlier, how-
ever, the lines would overlap in the wind, and this effect
would have to be accounted for, e.g. Puls 1987.)

With definition (37) and using a line-distribution func-
tion with exponential cutoff at Qo (cf. B1) in order
to prevent the number of strong lines from becoming
smaller than unity, Gayley showed the correspondence (his
Eq. (56))

kCAK =
1

1− α
(vth

c

)α
Q̄Q−αo =

Q̄

1− αk
−α
max (38)

in our notation. So far, the Q̄ formalism seems to be of no
major conceptual advantage compared to the CAK for-
malism. The interesting point, however, is the following:
For power-law distributed line-strength distribution func-
tions with (roughly) constant α and conditions valid for

hot winds, one easily finds (cf. Sect. 3.3 and Appendix C)
that

Q̄ ≈ Qo, (39)

a relation which was invoked by Gayley as a generally
valid Ansatz, i.e.,

kCAK =
1

1− α
(vth

c

)α
Q̄1−α. (40)

If this Ansatz were correct and since Q̄ is rather con-
stant (cf. also Sect. 3.2), all scaling laws for mass-loss
rates would become much easier to interpret and would
especially depend only on the quantity α via

Ṁ

L
∝ α

1− α F
1
α

c

( ΓQ̄
1− Γ

) 1
α−1

(41)

(Gayley’s Eq. (43), with stellar continuum flux Fc and
usual Eddington Γ). In contrast, the standard formulation
(in the same normalization) implies

Ṁ

L
∝ αvth

c
(kCAKFc)

1
α

((1− α)Γ
1− Γ

) 1
α−1

(42)

with a much more varying value of kCAK. (Actually, both
expressions have to be slightly modified for the so-called
δ-term accounting for ionization effects, if present, cf.
Abbott 1982 and Kudritzki et al. 1989). By comparing
both equations, the different philosophy of Q̄ and kCAK

is evident: the force-multiplier like quantity Q̄ acts on the
acceleration ratio Γ, whereas the flux-ratio like quantity
kCAK acts on the stellar flux!

If, on the other hand, Q̄ differs significantly from Qo,
Eq. (41) has to be modified by an additional factor Q̄/Qo,
and the gain of the Q̄ formalism were lost, since then the
variation in kCAK would be found again in a variation of
Qo. In how far this might be a problem will be discussed
in the next section, after we have described how we calcu-
late line-distribution functions and derive the appropriate
force-multiplier parameters.

3. Line-strength distribution functions for stellar wind
conditions and the validity of Gayley’s Ansatz

In the previous sections, we have shown that under quite
general conditions the summation of individual line accel-
erations leads to the CAK law gtot

rad ∝ kα̂1 , where α̂ follows
the local slope of the line-strength distribution function
as long as this is not too steep.

Although the limiting values of α̂ = 0 . . . 1 are obvious
by definition, nothing has been said so far concerning its
specific value. The importance of this quantity has been
pointed out in the introduction and shall be stressed once
more: To understand the basic wind physics and to be able
to obtain quantitative predictions (as, e.g., via Eqs. (41)
or (42)), a thorough discussion of the line-strength dis-
tribution and its dependence on different quantities such
as wind density, metallicity etc. is inevitable. Before doing
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this in Sects. 4 and 5, we will describe our method of calcu-
lating those distribution functions, derive force-multiplier
parameters and comment on the presumed equality of Q̄
and Qo.

3.1. Data and basic approximations

3.1.1. Atomic data

The data base upon which this work is based has been
compiled over the last 15 years by A. Pauldrach in collab-
oration with one of us (M.L.). The wavelengths, gf -values,
photoionization cross sections and collision strengths for
a total of 149 ionization stages and 2.5 million lines are
stored (for the highest ionization stage of the elements see
Table 1). The considered elements are hydrogen to zinc
except lithium, beryllium, boron and scandium which are
too rare to play a role in radiative line driving. The origin
of the data has recently been described by Pauldrach et al.
(1998). Note, that each model ion considered in NLTE
consists of carefully chosen levels (typically of order 50),
which are sufficient to define the most important occu-
pation numbers required for calculating the line-force, as
long as the line list is complete. For light ions, the highest
considered level lies close to the ionization edge, whereas
for the heavy elements the cutoff was chosen in such a way
to include all meta-stable levels and levels above which are
significantly populated.

Of course, the completeness of the data in terms
of their potential contribution to radiative driving is
a critical issue. Apart from the high frequency cut-
off given by the highest represented ionization stages
(thereby effectively limiting the usefulness of the line
database for computing radiation pressure to stars with
Teff < 100 000 K) there is the question of how many
weak lines have to be represented to regard the list as
essentially complete. Comparisons have been made (see
Springmann 1997) with the line opacity data from the
Opacity Project (Seaton 1995) and the Kurucz data
(Kurucz 1995). After gaps in line opacity due to missing
data in the UV spectral range in our database were closed,
all three data collections now agree in their spectral line
opacity distribution.

Since the Kurucz data base is the most complete
now in existence we conclude that we are as complete
as presently possible. Furthermore, tests made by omit-
ting the weakest lines have shown that their contribution
is negligible so that further enhancements of line opacity
redward of 229 Å are not expected.

3.1.2. Approximate non-LTE occupation numbers

To determine the line-strengths for atomic transitions un-
der stellar wind conditions one has to know the occupation
numbers of the corresponding levels (see Eq. 5). To keep

Table 1. The highest ionization stage considered in our
database. Carbon to Calcium: “light ions”; Titanium to Zinc:
“iron group elements”

Elem. max. ion. Elem. max. ion. Elem. m. ion.

H i He ii

C v N vi O vi

F vi Ne vi Na vi

Mg vi Al vi Si vi

P vi S vii Cl vi

Ar viii K vi Ca vi

Ti v V v Cr vi

Mn vi Fe viii Co vii

Ni viii Cu vi Zn iii

matters simple we have employed the following assump-
tions (for a thorough discussion, cf. Springmann 1997):

Ionization equilibrium. The ionizing radiation field is ap-
proximated by Jν = WIν(Trad), where the intensity Iν is
taken either as Planck or from a Kurucz model atmosphere
(Kurucz 1995). Since the atmospheric conditions are spec-
ified at one point only, the dilution factor is a numerical
factor of order 1 ... 0.001. With the electron temperature
taken as a constant fraction of the effective temperature
(typically 0.8) and the radiation temperature as either the
effective one (Planck case) or lower (Kurucz fluxes), the
ionization equilibrium reads

n1,j+1ne

n1,j
= W

√
Te

Trad

(
n1,j+1ne

n1,j

)∗
Trad

×{ζ + η +W (1− η − ζ)} . (43)

The asterisk denotes thermodynamic equilibrium values
and ζ and η are the fraction of recombination processes
leading directly to the ground and meta-stable levels, re-
spectively. The underlying assumptions leading to this
equation (which goes back to unpublished notes by Leon
Lucy) are: The ionization balance is dominated by radia-
tive processes and given by the equilibrium of photoioniza-
tion processes from all levels and recombination processes
to all levels. Line transitions are considered as optically
thin (i.e., the action of line transitions on the level popu-
lations is neglected; see below). The frequency dependence
of the photoionization cross section is taken as a quadratic
decline from the edge value; tests have shown that for a
wide variety of parameterizations the error incurred does
not exceed 10%. Equation (43) has a smooth transition to
the LTE-Regime forW → 1. A similar equation (but with-
out the η-terms) has been employed by Schmutz (1991)
and Schaerer & Schmutz (1994).
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Level occupation numbers. Having determined the ioniza-
tion equilibrium, the distribution of the ions on the level
states follows the Abbott & Lucy (1985) prescription:
meta-stable states have equilibrium populations relative
to the ground state (nm/n1 = (nm/n1)∗Trad

), other levels
have a diluted population (ni/nl = W (ni/nl)∗Trad

) rela-
tive to either the ground state or a meta-stable state, de-
pending on which lower state corresponds to the strongest
downward transition. Excited levels which do not have a
direct downward transition to either the ground or a meta-
stable level are neglected. The transitions which have one
of the three classes of levels as lower levels (i.e., resonance
transitions, quasi-resonance transitions starting from a
meta-stable level and 1st order subordinate transitions)
contribute most of the line opacity. In this way it is possi-
ble to specify the level occupations without actually solv-
ing the rate equations.

This prescription for the the level occupations can be
justified by considering a 3-level atom neglecting collisions
and line optical thickness (in large distances from the star
the mean intensity in optically thick lines decreases faster
than in optically thin lines). This last assumption is hardly
important, however, since it mainly affects the upper lev-
els of a transition which have a negligible influence on the
line optical thickness. Meta-stable levels are not affected
since they are populated from higher levels (direct down-
ward transitions are forbidden by definition). Collisions
are important for high densities but here our prescription
ensures a smooth transition to LTE both for the ioniza-
tion and excitation structure. These assumptions are of
greater importance when computing complete wind mod-
els with a radial stratification in all variables whereas for
our present purposes they do not matter since we do not
consider a specific model.

The end result of all approximations compares
favourably with the much more detailed non-LTE-
calculations by Pauldrach et al. (1994) with respect to
both the ionization balance and the emergent flux (see
the example for the O4If star ζ-Pup in Springmann &
Puls 1998).

3.2. Line-strength distribution functions and
force-multiplier parameters for some examples

Having calculated the occupation numbers for all involved
levels, the line-strengths of all transitions in our data base
can be found by means of Eq. (6) and the distribution
functions derived. In the following sections, we will display
either the differential form, where we bin (if not stated
explicitly else) the number of lines ∆N per 0.5 dex in
line-strength and 5 kiloKayser (kK, 1 Kayser = 1 cm−1)
in frequency, or we show the cumulative line-strength dis-
tribution, i.e, the number of lines N(kL) with strengths
larger than kL. Flux (times frequency) weighted functions
differ by the additional weight νiFν/F , where F is the in-
tegrated flux, assumed to be Planck in this section (using

Table 2. Various force-multiplier parameters as function of Teff ,
for ne11/W = 10 and W = 0.33 (see text)

Teff log kCAK α̂ Q̄ Qo log kCAK

(Qo = Q̄)

50 000 −1.11 0.66 1939 2260 −1.06
40 000 −1.13 0.67 1954 1778 −1.15
30 000 −1.08 0.64 2498 3630 −0.97
20 000 −1.02 0.58 1597 5171 −0.72
10 000 −0.54 0.44 915 14505 −0.01

Fig. 2. Log force-multiplier as function of log t = −log k1, for
the models with Teff = 50 000 K (fully drawn) and 10 000 K
(dashed). For parameters, see Table 2. Asterisks and triangles
gives linear regression for α̂ in the range log t = −1 . . .− 6

appropriate Kurucz fluxes will change only some quantita-
tive, however not qualitative conclusions, cf. Sect. 4.2.8).
The local slope of this distribution, in the log-log repre-
sentation, then corresponds to α− 1.

Force-multipliers are calculated by explicitly summing
up the individual components (Eq. 17) as function of
given depth parameters t = k−1

1 and normalizing to the
Thomson acceleration. If we are interested also in δ̂, the
whole procedure is repeated for different values of ne/W

controlling the ionization/excitation balance3. α̂ and δ̂ are
then found from local logarithmic derivatives with respect
to t and ne11/W , where ne11 is the electron density in units
of 1011 cm−3.

Typical examples for the total variation of α̂ and δ̂
are given in Sect. 4, here we will constrain ourselves to
the case of a fixed value of ne11/W = 10,W = 0.33
and various effective temperatures in the range between
50 000. . . 10 000 K.

3 So far, we have not been concerned with δ̂. Before dis-
cussing this quantity in Sect. 4.1, we anticipate that the vari-
ation of ne/W (for given t) leads to a variation in total line

number ∝ No, which can be described by No(ne11/W )δ̂.
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Fig. 3. (Planck-)Flux weighted cumulative line-strength distri-
bution function, for the models with Teff = 50 000 K (fully
drawn) and 10 000 K (dashed). For parameters, see Table 2.
Vertical lines give line-strengths corresponding to Qo (calcu-
lated from Q̄, kCAK, α, cf. Eq. (38)) for the appropriate model.
Note, that the cutoff of the distribution functions lies exactly
at the calculated value!

Fig. 4. Frequential distribution of the strongest lines (log kL ≥
4) for the models of Fig. 3, in the range 200 to 10 000 Å. Lines
from hydrogen and helium are indicated by dots. Overplotted
is the frequential weight factor νFν/F , magnified by a
factor 10

At first, let us concentrate on the force-multipliers.
Table 2 gives the values of kCAK and α̂ as function of
temperature, which in this case were calculated by a lin-
ear regression log f.m. versus log t for the range log t =
−1 . . .− 6. Figure 2 shows the corresponding function for
the borders of our temperature range. The behaviour is
rather monotonic: kCAK increases with decreasing temper-
ature, indicating an increasing potential of flux-blocking,
and α̂ decreases from the canonical value 2/3 to 0.44
at the lowest temperature. Note, that the actual force-
multiplier shows an almost exactly constant slope in the

hot wind case, whereas for the cool temperature a curva-
ture is present.

3.3. Validity of Gayley’s Ansatz

For the models displayed, we have calculated Q̄ from
Eq. (37), and, by comparing with the corresponding value
of kCAK, derived the Qo value implied by (38). At first note
that Q̄ lies exactly in the range given by Gayley, and that
especially at the hotter temperatures the favourized value
of 2 000 is exactly met. Second, Q̄ decreases to lower tem-
peratures, again in concert with the findings by Gayley.
However, it is also obvious, that the (power-law) “equal-
ity” Qo = Q̄ (Gayley’s Ansatz!) is only met by the hotter
models, whereas for the cooler ones a mismatch beyond a
factor of ten is present.

The last panel in Table 2 gives the resulting kCAK-
value if Qo = Q̄ actually would have been set. Clearly,
this assumption leads to much too large kCAK’s, or, in
other words, the estimated mass-loss rates would be much
too high!

Let us firstly check whether the Qo-values derived from
our line-force parameterization (38) and Q̄ have anything
to do with reality. For this reason, Fig. 3 displays the
corresponding line-strength distribution functions, flux-
weighted and cumulative. At first note the strong corre-
spondence with the force-multiplier plot from above. For
the hot wind, the slope is almost constant, which is the
final reason that also the f.m. plot displays this behaviour,
as explained in Sect. 2. In contrast, for the cooler temper-
ature the distribution is curved, and the transition point
between a rather steep (low α) and a flatter slope is lo-
cated at the same line-strength as in the f.m. plot, namely
at log kL = 4 corresponding to log t = −4.

We have indicated the calculated values of Qo (trans-
lated to kL) by vertical lines. Obviously, they have the cor-
rect order of magnitude, which is also true for the other
three models which are not displayed. This result tells us
that at least globally the assumption of a power-law dis-
tribution (required to validate Eq. (38)) seems to be jus-
tified, although the precise numbers (which are important
for quantitative predictions since Ṁ/L ∝ Q−1

o if Qo 6= Q̄)
depend on the curvature of the distribution, of course.

Since we have displayed the flux (times frequency)
weighted distribution function required to calculate line-
forces, the value of 〈N(kmax)〉 gives some information
about the frequential position of the strongest line(s).
Whereas for the hotter atmosphere this number is close to
unity (i.e., the strongest lines are close to flux maximum),
the significantly lower value for the cooler atmosphere im-
mediately points to the fact that here the strongest lines
are disconnected from the maximum.

This obviously increasing mismatch between the posi-
tion of the strongest lines and the flux-maximum is, be-
sides the discussed influence of curvature terms, the pri-
mary reason for the “observed” difference between Q̄ and
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Qo (for details, see Appendix C). In Fig. 4 we have in-
dicated the frequential line distribution for all lines with
log kL > 4, overplotted by the according flux weighting
factor Lνiνi/L (magnified by a factor of ten for conve-
nience). In accordance with the previous figure, the lines
for the hotter model are almost uniformly distributed over
the total contributing frequential regime. The cooler one,
however, has its maximum density of strong lines in the
Wien-regime of the radiation field4. This behaviour bases
on the fact that (for all temperatures and “normal” com-
position) the strongest lines (excluding H/He) are the res-
onance lines of the CNO-group (Sect. 4.2.6) which are
located, independently of ionization, in the UV. (E.g., the
positions of the (second strongest) Cii and Ovi resonance
lines at ∼ 1030 Å are almost identical.) In consequence,
the average weight factor of the strongest lines which
dominate Q̄ is decreasing for decreasing temperature and
leads, as discussed in Appendix C, to an increasing ratio
of Qo/Q̄.

In conclusion, our comparison has shown that the prin-
ciple formalism provided by Gayley is valid to the same
degree of precision than the older CAK parameterization.
At least for the cooler stars, however, one has to account
for the presence of an average Q̄ (much) smaller than the
maximum line-strength Qo. In so far, the problem of a
rather unpredictable behaviour of kCAK (if one has no
tool to calculate it) is replaced by the simultaneously un-
known ratio of Q̄/Qo. Only in cases when the frequential
distribution is uniform and the line-strength distribution
has a constant slope, Qo = Q̄ can be set. Thus, only sim-
ple cases (hot Supergiant winds) can be treated by the
simple version of the formalism, whereas in all other cases
(thin, metal-poor or cooler winds) at least one of the above
problems prevents a blind application.

4. What determines the slope?

Having calculated the (flux weighted) line-strength distri-
bution and appropriate force-multipliers as function of lo-
cal variables, one could argue that the problem is solved,
since, after performing the required regressions with re-
spect to α̂ and δ̂ (see Kudritzki et al. 1998), these val-
ues can be tabulated and the hydro-equations solved. In
the following, we want to proceed a step further and try
to understand the basic physics which determines the
slope of the distribution in some detail. Note again that
the actual value of this quantity is decisive for all astro-
physical problems involving radiatively driven mass-loss
(cf. Sect. 1), and that only a thorough understanding of
the individual processes which determine this quantity en-
ables us to draw correct conclusions and to give quanti-
tatively correct predictions. Moreover and although it is

4 We note that the inclusion or neglect of the very strong,
however somewhat peculiar (Sect. 4.2.6) hydrogen Lyman lines
does not affect the discussed discrepancy.

empirically known that α is of order 0.4 . . . 0.6 in most
situations (leading to the aforementioned similarity of α
and α̂), there is no a priori reason that the steepness of the
line-strength distribution function lies in this range, and,
especially, that α > 0 over a large range of line-strengths.

From the definition of the flux-weighted line-strength
distribution, there are three essential quantities to be con-
sidered in order to predict its behaviour, namely the oscil-
lator strength distribution of contributing lines, the level
population of the absorbing/re-emitting levels and the ir-
radiating flux. In a first and more tutorial step, we con-
sider the most simple case being possible, namely the case
of pure hydrogen (or, more generally, hydrogenic ions),
which states the complete problem (including the influ-
ence of NLTE-effects) in an analytically understandable
way and leads to a number of interesting results.

4.1. gf - and line-strength distribution for hydrogenic ions

4.1.1. gf -distribution

The gf -value of a given transition between principal quan-
tum number n′ and n (summed over all contributing angu-
lar momenta, i.e. accounting for selection rules) is given
by the well known Kramers formula (neglecting Gaunt-
factors of order unity)

gf(n′, n) =
64

3π
√

3

( 1
n′2
− 1
n2

)−3
(

1
n3n′3

)
· (44)

At first, consider only resonance transitions n′ = 1, in
which case gf(1, n) ≈ C/n3 with C the numerical con-
stant in (44). The number of possible transitions up to a
certain principal quantum number n is

N(n) = n− 1 ≈
(

C

gf(1, n)

) 1
3

− 1, (45)

so that the (cumulative) number of transitions with gf -
values stronger/equal than a certain value gf reads

N(gf) =
(gf
C

)− 1
3 − 1. (46)

Thus, the resulting distribution function

dN
dgf

∝ −gf− 4
3 (47)

is given by a power-law, where the exponent corresponds
to an α-value of 2/3, i.e., is just the canonical value
which would lead to a mass-independent WLR and is con-
sistent with the observations of O-Supergiants (cf. Puls
et al. 1996).

Thus, from the above arguments one might con-
clude that the major problem is solved, and that the
calculated/observed α/α̂ values are dominated by the
oscillator-strength statistics. Note already here, however,
that the majority of driving lines (non-hydrogenic!) can-
not be described similarily, since the dominant ingredient
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Fig. 5. gf-distribution for hydrogen, calculated by Kramers-
formula (Eq. 44) for n′ ≤ 10 and n ≤ 200. Fully drawn:
Lines from all series with n′ ≤ 10; dotted: Reference line
with constant slope of −1/3 (with respect to log−log). Crosses:
Different series, starting with Lyman series (leftmost). Size of
crosses decreases with increasing n′. Triangles: analytic approx-
imation for small gf-values, Eq. (49)

in the above derivation – the rather simple and specific
dependency of atomic quantities (oscillator strength and
energy levels) on principal quantum number – is no longer
valid in more complex ions.

Two additional points are worth mentioning. First,
by using the “exact” Kramers law accounting for the
(1− n−2) term, the apparent slope at large gf -values be-
comes steeper than −4/3, leading to α < 2/3, which again
is consistent with the behaviour of “realistic” line-strength
distribution function.

Second, by accounting also for transitions between ex-
cited levels, one finds (see below) the same statistics, i.e.,
the exponent −4/3 (with lower values for large gf) is uni-
versal for hydrogen-like ions.

Figure 5 displays the cumulative gf -distribution func-
tion for principal quantum numbers n′ ≤ 10 (with suffi-
ciently large n ≤ 200), both for the individual series (n′

fixed) denoted by crosses as well as for all combinations
of n′, n (fully drawn). Following a steep increase from the
maximum value, the distribution displays a rather con-
stant slope (in the log) of −1/3 (cf. Eq. 46) over four dex,
before it reaches its final, constant value resulting from
running out of lines (depending on the maximum value
chosen for n). This behaviour compares well to our case
“A” discussed in Appendix A. Concerning the individual
series, the higher ones follow exactly the predicted slope
from the approximation given below (49), whereas the
high gf -tails of the lower series have a somewhat steeper
slope, as discussed above. Note also, that the gf -values
from the higher series are generally larger than those from
the lower ones.

A simple expansion of Eq. (44) clarifies the behaviour
of the gf distribution for not too large gf -values: To first

Fig. 6. Cumulative line-strength distribution function for hy-
drogen (see Eq. 50). “Atomic model” as in Fig. 5, gf-values
from Kramers-formula and excitation in LTE. Triangles: ana-
lytic approximation for small kL; dotted: Te = 40 000 K; short
dashes: Te = 30 000 K; dashed-dotted: Te = 20 000 K. Long
dashes and asterisks: Te = 30 000 K, only Lyman series. Fully
drawn: flux-weighted line distribution (T = 30 000 K), all lines,
flux approximated by Planck-function

order, the upper level n for given gf -value and lower level
n′ results to

n(gf, n′)/n′ =
(
gf

C

)− 1
3

+O

(
gf

C

) 1
3

. (48)

Thus, the total number of lines with gf -values larger than
a certain one is given by

N(gf) =
n′max∑
n′=1

n(gf, n′)− n′ =
n′max∑
n′=1

n′

((
gf

C

)− 1
3

− 1

)
=

=
n′max(n′max + 1)

2

[(
gf

C

)− 1
3

− 1

]
, gf � C, (49)

where C is the numerical constant in Eq. (44) and n′max

the maximum lower level of the considered transitions,
which controls the vertical offset of the distribution func-
tion. Note, that the last equation (all transitions) com-
pares exactly to Eq. (46) (only resonance lines), except
from the generalization to n′max > 1.

4.1.2. Line-strength distribution in LTE

Although it is quite interesting that the gf -distribution
follows an exponent of−4/3, our final interest is, of course,
the behaviour of the line-strength distribution, i.e., the
influence of excitation has to be accounted for. Figure 6 vi-
sualizes the corresponding function in the LTE approxima-
tion for three different temperatures, Te = 20 000, 30 000
and 40 000 K, as well as the following analytical result,
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which is derived in Appendix D:

N(kL, Te) = k
− 1

3
L

(
C′e−

hν1
kTe
) 1

3 f(Te)−

− n′max(n′max + 1)
2

, kL < C′e−
hν1
kTe . (50)

(For the definition of C′ ∝ n1/ρ with n1 the ground-state
occupation number and f(Te), see Eq. D5.) Obviously,
also the line-strength distribution follows the “canonical”
power-law dN/dkL ∝ −k−4/3

L , which is, of course, the final
consequence of the primary dependence of gf ∝ n−3 for
each series. Excitation plays only a minor role, control-
ling the function f(Te) and thus the vertical offset (or, in
other words, the normalization constant): the higher the
temperature, the more lines are present if the ionization
structure would remain constant, i.e., if n1/ρ would not
change. Again, we have compared the analytical predic-
tion with the numerical simulation (Fig. 6), which gives
a perfect agreement in the valid range and even beyond!
Note also, that the asymptotic behaviour N(kL) ∝ k

−1/3
L

is consistent with our requirement that kL 〈N(kL)〉 → 0
for kL → 0, which has to be fulfilled in order to validate
Eq. (21).

4.1.3. Flux weighting

The next question which arises in our simple example is
that concerning the influence of flux-weighting. One might
note, also in a more general context, that this “final op-
eration” in our course of deriving radiative accelerations
(enough irradiating photons have to be present!) leads to
the actual possibility to perform quantitative simulations:
Since we have seen, that the strongest kL values arise from
IR-transitions between excited levels (cf. the high line-
strength end of Fig. 6), without a final flux-weighting we
would have to account for atomic models which were by
far too large to be treated numerically!

Fortunately, the flux irradiating these strong IR-
transitions is small, and the primary contribution
to the line-force is only due to transitions near the
flux maximum, a fact which is exploited a priori in
our simplified NLTE-calculations (cf. Sect. 3.1.2 and
Abbott & Lucy 1985). With respect to the hydrogen
atom under consideration, we expect therefore the
Lyman series (including the Balmer series for A-stars)
to be the major contributor for radiative momentum.
To this end, the long-dashed curve in Fig. 6 displays
the line-strength distribution for the Lyman-Series only
(Te = 30 000 K), together with the analytical approxima-
tion (asterisks), whereas the fully drawn one corresponds
to the final, flux (times frequency) weighted distribution
accounting for all considered lines: Obviously, our expec-
tation is met precisely. Note, however, that Fig. 6 serves
only as a tutorial and overestimates the real situation by
far, since due to line convergence near the ionization edge

only a few lines (n <∼ 10) can be treated as individual
ones, thus cutting the distribution function at this value.

4.1.4. Influence of NLTE-effects: The parameter δ

So far, we were concerned only with the slope of the
line-strength distribution and its relation to the line-force
parameter α̂. Almost nothing has been said on the nor-
malization constant No (Eq. 10), which controls the abso-
lute value of the acceleration due to its relation to the
total line number. We have pointed out that No may
have an additional depth dependence, which transforms,
via Eq. (16), into a depth dependent line-force parame-
ter kCAK. This additional depth dependence originates, of
course, from the behaviour of the mass absorption coeffi-
cient χ̄i/ρ present in the definition of the line-strength kL.
Although this ratio remains more or less constant if we
consider the primary source of radiative driving, namely
resonance lines and lines with a lower meta-stable level
from main ionization stages (denoted in the following by
“j”), there will be always a “contamination” by lines from
excited levels and, most important, by lines from minor
ionization stages.

Since Hi is such a trace ion in hot star winds, we will
investigate the effects of this depth dependence in our tu-
torial chapter. It is well known (e.g. Mihalas 1978, p. 125)
that the NLTE ground state departure coefficient of a
trace ion one stage below the major one in a spherical
atmosphere is primarily a function of the inverse of the
dilution factor

W (r) =
1
2
[
1−

(
1− (R∗/r)2

) 1
2
]
.

One finds that

n1,j−1 ∼
ne

W
njΦ(Te), (51)

if nj is the population of the dominant ion (here: Hii),
Φ the Saha-Boltzmann factor and the radiation temper-
ature at the ionization edge is not too different from the
electron temperature. Equation (51) simply states that
in a spherical atmosphere the ground-state of ion (j − 1)
becomes overpopulated ∝ 1/W , since the radiation field
controlling the ionization is diluted with respect to the
LTE-situation, whereas the recombination operates at its
usual value. Note, that the above equation, with a couple
of refinements, allows also for the approximate solution
of the equations of statistical equilibrium in a spherical
wind, as was described in Sect. 3.1.2.

Since nj varies in concert with the local density, the ra-
tio n1/ρ becomes a function of ne/W , which finally leads
– besides an additional temperature dependence – to a
variation of No as (cf. Eq. 50)

No ∝
(ne

W

) 1
3
. (52)

In a mixture of major and minor ionization stages, as
present in a stellar wind, we have, of course, a different
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Fig. 7. Iso-contours of force-multiplier parameters α̂ and δ̂
as function of log(ne/W ) and −log t = log k1, for hydrogen
with ten levels. Te = 40 000 K, dilution factor W evaluated
at r/R∗ = 5., 4., 3., 2.5, 2., 1.75, 1.50, 1.25 and 1, respectively.
Fully drawn: α̂, dashed: δ̂. Thick curves enclose the region of
0.55 < α̂ < 0.75. A trajectory throughout a typical wind would
stretch from the lower right corner to the upper left one

dependence. However, the notion that also in this case
the ionization structure is primarily controlled by the fac-
tor ne/W (with exponents different from unity if one in-
cludes trace ions of stages j + 1, j − 2 etc.) lead Abbott
(1982) to the introduction of the famous δ-term to the
force-multiplier, which in terms of our line-strength dis-
tribution function reads

dN(ν, kL, r) = −No

(ne11

W

)δ
f(ν, kL) dν dkL, (53)

with ne11 the electron density in units of 1011 cm−3 and
No now independent of depth. Equation (52) shows that
for hydrogen5 δ should be of order 1/3. More generally
and using the fact that the appropriately scaled variable
for all considerations is k̃ ∝ kL/C

′ (Eq. D2), a plasma
dominated by trace-ions of stage j−1 must have a δ-value
which is just the negative of the line-strength exponent in
the N(kL)-distribution, i.e, δ = −(α− 1) or

α+ δ = 1, trace ions of stage (j − 1) only! (54)

Figure 7 verifies this equation for a number of different
conditions. We have calculated the force-multiplier arising
from hydrogen in a hot stellar wind plasma under different
conditions (see caption), and obtained the effective values
α̂, δ̂ by first order derivatives. Although α̂ varies from 0
. . . 1, the equality (54) is almost perfectly reproduced. On
a first glance, it is somewhat puzzling that α̂ is so much
varying although the according line-strength distribution
has an almost constant slope. In the situation described
here (trace ion of stage (j−1)), however, we have a strong
dependence on local conditions, kL ∝ ρ/W , contrasted to

5 If Hi is a trace ion.

the usual case of kL ≈ const throughout the wind for the
(resonance) lines of major ion species. Thus, there is only
a small strip in the k1, (ne/W ) plane where we do not en-
counter the case of all lines being either optically thick
(α̂ → 1) or optically thin (α̂ → 0). Even in those cases,
however, Eq. (54) is still valid!

Finally, α̂ = 1 and δ̂ = 0 holds generally (i.e., for
any type of ionization/excitation) in the optically thick
case, since then the dependence of line-force on occupa-
tion numbers vanishes completely and only the relation
gtot

rad ∝ k1 〈Nthick〉 survives.
We want to finish this section with two summarizing

comments: First, we have shown that for hydrogen (gener-
ally: hydrogenic ions) the gf - distribution gf(n′, n) ∝ n−3

(for each series) leads quite naturally to a line-strength
distribution function with a slope corresponding to α ≈
2/3. Second, the dependence of the line-strength on the
specific type of ionization (major one or trace ion) gives
rise to a depth dependent normalization constant No, fi-
nally leading to the δ term in the force-multiplier and line-
strength statistics. Since δ is of order 1/3 for trace ions of
stage j − 1 (which are usually the dominating species of
minor ions, cf. Sect. 4.2.5) and δ = 0 for major ions, the
effective value of δ resulting from an appropriate mixture
should be a small, positive number6.

4.2. Arbitrary ions

Since the predominant radiative acceleration in hot star
winds is certainly due to non-hydrogenic ions (e.g., from
iron-group elements), we turn now to the line-strength
statistics of these elements.

To our knowledge, there are only two previous inves-
tigations related to this topic. On the one hand, Learner
(1982) found a line-strength distribution with a typical
power-law index corresponding to α = 0.5 by means of
experimental data (mostly ionization stages i and ii), a re-
sult recently used by Wehrse et al. (1998) in their stochas-
tic approach of line transfer in moving atmospheres. The
first step, however, was taken by Allen (1966, 1974) who
performed a thorough analysis of line distributions of
neutral elements, aimed at the goal of establishing a
“statistical spectroscopy”. His approach provides a signif-
icant understanding of the resulting statistical description
especially under LTE conditions. The basic philosophy,
however, has turned out to be extremely useful also re-
garding the problem under our consideration, at least if
some additional considerations are taken into account.
Before we comment on these, we will firstly introduce
the basic concept and convince ourselves that it is ap-
plicable for our purposes. Note that the following results,
which allow to understand the line-strength statistics of

6 Under very specific conditions, the effective δ̂ can even be-
come negative.
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individual ions in an almost completely analytical way
(as a function of level density, oscillator-strength distribu-
tion, ionization potential, temperature etc.), will turn out
to be useful also for future investigations related to line-
blanketing/blocking calculations. Finally, by a comparison
between actual data and analytic simulations based on our
results, the degree of completeness of present atomic data
bases can be easily checked.

4.2.1. Allen’s approach

Following Allen (1966, 1974) and neglecting subtleties, the
first important assumption concerns the number of en-
ergy levels in the energy range x, x + dx, which will be
described by the distribution p(x) dx. Although there are
certain irregularities, the basic trend of p(x) is to increase
with excitation energy, and Allen adopted – per ion – a
power-law

p(x, per dx) = a 10x/σ (55)

in the range 0 < x < ie with (effective) ionization en-
ergy ie. Note that this parameterization can be validated
for rather complex ions (see the tests performed below),
is however much less appropriate for hydrogenic ions due
to their specific dependence of energy on level number
(cf. the examples given by Allen 1966, Fig. 3). Thus, the
approach presented here and the one given in the previous
section are almost mutual exclusive.

With the above distribution, the number of lines be-
tween energies x1 and x2 and per excitation ranges dx1

and dx2 is

∆N(x1, x2, per dx1,dx2) = j p(x1) p(x2), (56)

where j ≤ 1 shall be the “selection” factor accounting
for selection rules (typically of order 0.2. . . 0.3 for iron
group elements). Since the transition frequency is given by
ν = x2 − x1, when we calculate in appropriate units (say,
kiloKayser = “kK”), the number of lines with lower levels
between x1, x1 + dx1 and transition frequencies ν, ν + dν
is

∆N(x1, ν, per dx1,dν) = ja2 10
2x1+ν
σ . (57)

In his further derivation, Allen assumed the logarithm
of the gf -values (log gf =: r) to be equally distributed
within the range rmax > r > rmin, with rmax − rmin of
order 3 dex. This assumption, being equivalent to a gf -
distribution |dN/dgf | ∝ gf−1, will be relaxed in the fol-
lowing. Instead, we consider a distribution with arbitrary,
however constant exponent γ, again independent of fre-
quency (and excitation energy), so that the number of
lines with log gf -values within r, r + dr is given by

∆N(x1, ν, r,per dx1,dν,dr) =
ja2

w
10

2x1+ν
σ +r(1−γ), (58)

where w is the normalization constant with respect to the
adopted gf -statistics,

w =
10rmax(1− γ) − 10rmin(1− γ)

(1− γ) ln 10
, γ 6= 1

w = rmax − rmin, γ = 1. (59)

Now we define the line intensity by

l = −log
[
gf exp

(
−1 000x1hc

kT

)]
=
x1

t
− r (60)

if we measure energies and frequencies in kK and the tem-
perature in units of 625 K, t = T/625 K (not to be con-
fused with the optical depth parameter defined by CAK).

Note that by introducing the line intensity in this way,
one implicitly assumes that the plasma is in LTE and that
all levels connected by lines play an equally important role,
if one uses this quantity as the primary statistical variable.
Note also that under LTE conditions l is closely related
to the negative logarithmic line-strength if the wavelength
dependence of kL is ignored.

If we convert the x1-dependence of ∆N into an l-de-
pendence and integrate over dr, we find the number of
lines for given line intensity and transition frequency as

∆N ( l, ν, per d l,dν) =

=
ja2t

w
10

2lt+ν
σ

∫ r̃max

rmin

10( 2t
σ +1−γ)rdr =

=
ja2t

Aw ln 10
10

2lt+ν
σ

(
10Ar̃max − 10Armin

)
(61)

A =
(

2t
σ

+ 1− γ
)
. (62)

(Here and in the following, we always assume A 6= 0. The
case A = 0 can be treated by a somewhat different expan-
sion). In case of γ = 1, the second term in the difference
can be neglected with respect to the first one, and we re-
cover the result given by Allen,

∆N( l, ν, per d l,dν)
γ=1
=

ja2σ

2w ln 10
10

2t
σ (l + r̃max)+ ν

σ . (63)

The difference between r̃max and rmax is the following.
Whereas rmax relates to the maximum log gf -value for
the considered ion, r̃max is the maximum value which
is possible for given l and ν and underlies the following
restrictions:

r < rmax = −lmin

x1 + ν < ie, i.e.,

r <
ie − ν
t
− l

→ r̃max = Min
(
ie − ν
t
− l, −lmin

)
, (64)

where the transition occurs at

lT =
ie − ν
t

+ lmin. (65)



J. Puls et al.: Line statistics and radiative driving. XIV. 39

Let us first consider the implications of this restriction in
the case of γ = 1. In the following, the line-number ∆N is
always to be understood as function of ( l , ν) per interval
d l and dν.

log∆N
l<lT,γ=1

= log
ja2σ

2w ln 10
+

2t
σ

(l − lmin) +
ν

σ
(66)

log∆N
l≥lT,γ=1

= log
ja2σ

2w ln 10
+

2ie
σ
− ν

σ
· (67)

The interpretation of these expressions is straightforward.
If the r-values are equally distributed between rmax and
rmin, the log of ∆N should increase linearly between
lmin . . . lT, where the slope is controlled both by the slope
of the level density and the temperature. For all line inten-
sities larger than lT, the number of lines should become
constant, until r̃max ≈ rmin and the number of lines ap-
proaches zero for l > (ie − ν)/t− rmin.

In order to check this and the following predictions, we
have calculated the line intensity statistics for Feii (com-
prising roughly 200 000 lines) from our present data base
(Sect. 3.1). Instead of using the actual gf -values, however,
we firstly simulated different distributions by a Monte-
Carlo process, with random variable x ∈ (0, 1],

x =

∫ gfmax

gf gf−γdgf∫ gfmax

gfmin
gf−γdgf

gf(x)
γ 6=1
= gfmax

[
1− x

(
1−

(
gfmin

gfmax

)1−γ)] 1
1−γ

, (68)

gf(x)
γ=1
= 10rmax + x(rmin − rmax). (69)

and replaced the actual gf -value by the value drawn from
the above distribution, with gfmax = 1 and gfmin = 10−7.
Thus, by this simulation we primarily investigate in how
far the assumptions leading to Eq. (57) are justified and
inspect the validity of the overall approach, under the re-
striction of gf -distributions with constant slope.

In the following plots, we display the result for the fre-
quency with the highest line-density, namely ν = 65.5 ±
2.5 kK corresponding to λ = 1538 . . .1667 Å, and the
vertical line gives the transition line intensity lT, with
ie ≈ 130 kK.

The first series (Fig. 8) has been calculated for the case
discussed above, namely γ = 1, and three different tem-
peratures T = 5 000, 10 000, 15 000 K. As predicted, the
constant, temperature dependent slope and the kink at lT
are present, as well as the constant line number for l > lT,
until the maximum possible l (as function of t, see above)
is reached and ∆N → 0.

Next, we consider the case of γ 6= 1. Here, we have to
perform the following distinction. Let us first assume that(

2t
σ + 1− γ

)
is not significantly smaller than 2t/σ, i.e.,

γ <∼ 1.15 in the case of Feii. Then, we can neglect again
the 2nd term in the difference in Eq. (61) with respect to

the first one, and obtain, accounting for the restrictions
concerning r̃max,

log∆N l<lT= log
ja2σ(

2 +
σ

t
(1− γ)

)
w ln 10

+
2t
σ

(l − lmin)

+
ν

σ
− (1− γ) lmin,

(
γ <∼ 1 +

2t
σ

)
(70)

log∆N
l≥lT= log

ja2σ(
2 +

σ

t
(1− γ)

)
w ln 10

− (1− γ) l

+
2ie
σ
−ν
σ

+(1−γ)
ie−ν
t

,

(
γ <∼ 1+

2t
σ

)
. (71)

These equations are similar to the case γ = 1
(Eqs. 66, 67), except from the offset and one deci-
sive difference: For line intensities larger than lT, the
line number is no longer constant, but becomes directly
coupled to the oscillator strength statistics via the term
−(1 − γ) l. Thus, a declining line number is expected
for γ < 1, whereas for γ (slightly) larger than unity
the distribution function should increase. Note, that the
predicted slope for l > lT is independent of temperature!

Figure 9 impressively verifies our predictions. Here,
we have simulated an oscillator strength distribution with
γ = .66 (left panel), whereas in the middle one γ = 1.15
was assumed. Note the abrupt change in the slope at
l ≈ lT.

Finally, we consider the case of a rather steep gf -dis-
tribution γ > 1 + 2t/σ, e.g. γ >∼ 1.8 for Feii. Then, the
gf -distribution is dominated by its lower end, and the val-
ues taken at rmin are dominating both the normalization
constant and the difference term, in contrast to the sit-
uation discussed above. Accordingly, r̃max and lT do no
longer play any role, and we obtain a line number statis-
tics

log∆N
γ large

= log
ja2σ(γ − 1)
σ

t
(γ − 1)− 2

+
2t
σ

(l + rmin) +
ν

σ
(72)

with uniform, temperature dependent slope 2t/σ. Note,
that the only γ dependence shows up in the offset. The
right panel in Fig. 9 gives the corresponding result, for
γ = 2 and rmin = −3, which was used in order to obtain
a statistically significant number of lines at the high gf
end. Obviously, no kink is present any longer, and the dis-
tribution lies parallel to the low-l part of a corresponding
(γ = 1)–distribution, overplotted as rectangles.

So far, our investigations can be summarized as fol-
lows. Allan’s approach (extended for γ 6= 1) has been vali-
dated for a complex ion in those cases when γ is constant,
and the slope of the distribution function can be predicted:
At low intensities (corresponding to high line-strengths),
it is controlled both by the level density as a function of
excitation energy (slope σ) as well as by the population of
these levels (excitation temperature t), resulting from our
LTE assumption. In this domain, the oscillator strength
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Fig. 8. ∆N statistics for Feii as function of line intensity, for three different temperatures (cf. text). Lines are counted per 5 kK
in frequency and per 0.5 dex in intensity. The vertical line displays lT (Eq. 65). gf-distribution calculated by Monte-Carlo
simulation adopting γ = 1, cf. Eq. (69)

Fig. 9. As Fig. 8, for T = 10 000 K and γ = 0.66 (left), γ = 1.15 (middle) and γ = 2.0 (right). For the right panel, log gfmin = −3
was used, and the results of the corresponding (γ = 1)–distribution are overplotted as rectangles

distribution seems to be of no importance for the slope,
since – for γ <∼ 1+2t/σ – the line number is primarily con-
trolled by the highest gf -value, and for γ > 1+2t/σ by the
lowest one, both of which do “only” control the offset of
the distribution. For large line intensities (weak lines!),
we encounter a certain inter-relation between energetic
neighbourhood to the ionization limit and maximum pos-
sible gf -value (cf. Eq. 64), which causes a slope dominated
by the gf -distribution, provided γ is not too large. In the
opposite case, finally, the small gf -values become decisive
over the complete range, and the slope of the distribution
retains its previous slope for all l values.

Thus, it seems that we have to know only the princi-
pal behaviour of the gf -distribution to predict the LTE
line intensity/line-strength statistics for a certain ion.
Unfortunately, Fig. 10 shows that this is at least not so
simple. Here, we have plotted log∆N using the actual os-
cillator strengths. As is obvious, this distribution looks
rather different from the cases discussed so far, primarily
in the domain l > lT.

The reason for this different functional behaviour be-
comes evident from Fig. 11, displaying the actual run of
the oscillator strength distribution in the considered fre-
quency interval as well as for “all” lines of Feii and all
lines (for the atoms H to Zn, cf. Sect. 3.1) present in our
data base.

Fig. 10. As Fig. 9, for T = 10 000 K and actual gf-distribution

At first note that the specific shapes of the particular
distributions are extremely similar, where the major dif-
ferences concern the total line number N(gfmin) and the
highest gf -value being present. In contrast to the case of
hydrogenic ions, however, the distribution does no longer
show a more or less constant slope, but is curved. At
the high gf -end, the distribution is rather steep, with an
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Fig. 11. Cumulative line number as function of logarithmic os-
cillator strength r. Asterisks: Feii, in the interval λ = 1538
. . . 1667 Å (as in Fig. 8); triangles: Feii, all lines of our data
base; crosses: all lines of elements H to Zn present in our data
bases. For comparison, a reference line with constant slope (in
the log) of −1/3 (corresponding to γ = 4/3) is indicated

approximate slope γ >∼ 2 over the first 2.5 dex, and may be
described afterwards again by the canonical value γ ≈ 4/3,
before our line list becomes incomplete (for log gf < −5).
To our understanding, the steep increase results from the
very strong lines connecting the (effective) ground states
with low lying levels. These lines follow statistics different
from the other ones, a feature which we have also found
in case of hydrogenic ions (cf. also the related discussion
in Allen 1966).

4.2.2. Frequency integrated distribution functions

Although the gf -distribution is significantly curved lead-
ing to certain subtleties in the intensity distribution if con-
sidered in a specified frequency range (as it was done, e.g.,
in Fig. 10), it might be suspected that on a larger aver-
age the description should become more uniform again.
Note, e.g., that the largest part of the distribution func-
tion (0 >∼ log gf >∼ −4) can be described by a more or less
constant slope, with a significantly steeper one only over
the first two decades, which consequently comprise only
few lines.

In order to check this hypothesis and to proceed to-
wards our aim at describing flux-weighted line-strength
distribution functions under stellar wind conditions, we
will follow our analytical description assuming constant
slope γ. From now on, however, we will concentrate on
the distribution of “all” lines per ion, i.e., we will consider
frequency integrated distribution functions. Most impor-
tant to this regard is the frequency dependence of the
threshold value lT (Eq. 65), dividing the two different do-
mains of influence, namely either by excitation and/or by

gf -distribution. Since lT decreases with frequency, lines
with higher frequencies (transitions from the lowest lev-
els, dominating the line-force) should be much more cou-
pled to the oscillator strength distribution than lines with
lower frequencies.

After considering the limitations resulting from the fre-
quency and line intensity dependence of rmax (cf. Eq. 64),
the distribution function Eq. (61) can be integrated over
frequency, and the result is given by

∆N(l) ∝ sign(A) 10
2lt
σ ×

× F (l, t, σ, ie, xmax, νmax, γ, lmin, rmin) (73)

A =
(

2t
σ

+ 1− γ
)

lmin < l < lmax =
xmax

t
− rmin.

The functional behaviour of F is given in Appendix E,
xmax is the highest energetic level considered (acting as
lower one for the lines accounted for) and νmax the max-
imum integration frequency chosen. In those cases where
the level and line list are complete (or the complete ones
are used), we have xmax = νmax = ie. Note, that the distri-
bution actually depends on certain ratios, e.g., t/σ, ie/σ,
xmax/σ and νmax/σ and not on the absolute numbers.

Summarizing the results concerning F derived in
Appendix E, we find that the frequency integrated
distribution behaves rather similarly to the frequency
dependent one. In total, three different slopes are pos-
sible, namely 2t/σ, t/σ and γ − 1, were the occurrence
and position of the former two are controlled by the
value of γ being larger or smaller than a critical value
γcrit = 1 + 2t/σ.

Under typical conditions, however, the function con-
sists of only two parts, namely a steeper, excitation-
dominated one with slope 2t/σ, and a second one with
slope γ − 1, similar to the frequency dependent distribu-
tion. The division is given at line intensity l = xmax/t −
log gfmax, when we consider only those lines with a lower
energy level below the cutoff energy xmax introduced
above. Furthermore, in case of a frequency integration be-
tween 0 and νmax < ie, the function preserves its shape
for all νmax < ie − xmax, an effect which we have called
the “saturation effect”.

In principle, the constant of proportionality in Eq. (73)
depends also on temperature and level distribution for the
specified ion as well as on the exponent of the oscillator-
strength distribution. However, in the following we derive
this constant from the requirement that the total line
number is known (and to be found from the cumulative
line number at lmax, which is the maximum possible line
intensity).

In order to check the validity and applicability of the
above expressions, we have performed a number of test
calculations in the same spirit in the previous section,
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Fig. 12. Frequency integrated line intensity distribution func-
tions of Feii at T = 15 000 K. Frequency range 0 < x <
65 kK (see text) and resolution 0.5 dex in intensity. Oscillator
strengths simulated by Monte Carlo with γ = 1.0, 0.66, 1.15
(asterisks, diamonds and triangles). Curves display the analyt-
ical result according to Eq. (73) with ie = 130 kK, ie/σ = 1.7,
xmax = 63 kK, lmin = 0 and rmin = −7, where the latter two
quantities have been also used in the Monte Carlo simulations

i.e., for our atomic model of Feii and simulating the gf -
distribution by a Monte Carlo process.

For our specific atomic model, we have ie ≈ 130 kK
(lines with larger energies resulting from levels ionizing to
excited levels of Feiii were removed “by hand” in order to
simplify the test), and, from our constraint of consider-
ing only those levels which under NLTE-conditions have
large enough occupation numbers to form lines of signif-
icant strength (see Sect. 3.1 and next section), we have
xmax = 63 kK. For reasons of consistency, the integration
was performed in the corresponding range 0 < ν < 65 kK.
From a first comparison, it turned out that ie/σ = 1.7,
which is also consistent with the average slope of the level
distribution. The normalization constant was chosen in
such a way that a total line number of logN = 4.35 was
reached in the considered frequency range.

Since all other quantities defining the frequency inte-
grated distribution functions are given as parameters of
the Monte Carlo simulation (γ, lmin = 0, rmin = −7), a
comparison of the analytical result and the simulated line
intensity distribution should coincide for all temperatures
and all values of γ, if the above expression were correct.
An example is given in Fig. 12, and the agreement is obvi-
ous, note in particular the predicted steep slope for strong
lines and the dependence of the weak lines’ distribution
on γ7.

7 A likewise agreement has been found for simulations at T =
5 000 and 10 000 K.

Fig. 13. As Fig. 12, using actual oscillator strengths (asterisks).
Overplotted is the analytical result according to Eq. (73) with
ie, ie/σ and xmax as before; lmin = −0.75 and rmin = −4.25
(see text). Fully drawn: γ = 1.33; dotted: γ = 1.03; dashed:
γ = 1.63

In the next figure, we have investigated the most
interesting question in this respect, namely how far
the analytical description can deal with the real case.
We have considered the same situation as above, how-
ever used the actual oscillator strengths. Thus, by this
comparison we can check our hypothesis whether the
frequency integrated distribution is less influenced by
curvature effects than the distribution defined at specific
frequencies, and ask for the effective γ-exponent of the
underlying oscillator strength distribution.

Compared to the last simulations, we have changed
only the parameters lmin and rmin in the analytical expres-
sion, and tried to fit the actual distribution (asterisks) by
varying the value of γ. The choice of the former quanti-
ties relates to the oscillator strength distribution function
of Feii (Fig. 11, triangles), with a maximum log gf -value
( = −lmin) of 0.75 and the distribution becoming incom-
plete at rmin = −4.25. Figure 13 gives the results for three
different values of γ.

Two points are worth noticing. First, the actual dis-
tribution can be fitted extremely well by our analytical
approach (the same degree of precision was reached at
different temperatures), and the effective γ is of the order
1.3, i.e., again representing the “canonical” value. This is
not too surprising since a major part of the distribution
actually follows this slope (Fig. 11). Second, a comparison
with the other simulations with different γ illuminates the
role of this quantity: Although (and in agreement with
our findings for the frequency dependent line statistics)
the slope of the distribution for strong lines remains al-
most unaffected by γ and is much more influenced by
temperature via excitation, the width of the distribution
and its vertical offset depend strongly on this quantity!
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This behaviour is readily understood, if one remem-
bers the fact that γ primarily controls the distribution of
weak lines: for γ = 1, the number of these lines remains
constant (until lmax), whereas for γ < 1 it decreases with
increasing l and vice versa for γ > 1. This is not only true
for frequency dependent distribution functions but even
more for integrated ones, since the threshold line inten-
sity lT decreases with increasing frequency. The presence
of this effect is particularly demonstrated by our simula-
tions for the high temperature case shown here for this
reason.

An additional constraint for the resulting distribution
is the conservation of total line number: If γ < 1 and the
number of lines is small for large l , this has to be compen-
sated for by a larger number of lines at low l. In contrast,
for larger γ and a consequently increasing number of weak
lines the number of strong lines has to be smaller. Finally,
also the width of the distribution at maximum ∆N is af-
fected, since this region becomes flat for γ = 1, and the
according width displays a maximum.

For reasons of brevity, we have presented here only the
case of Feii, due to its importance for radiative driving and
its large number of lines leading to a low degree of statis-
tical noise. Of course, we have checked our approach also
for different ions (e.g., belonging to the CNO-group), and
found a satisfactory agreement in any case.

Thus, the frequency integrated line intensity distribu-
tion of various ions can be described analytically assuming
a power-law distribution for the gf -values, and we have il-
luminated the role of the corresponding exponent above.

The results presented here may turn out to be useful
also in another regard. Since the dependency of the fre-
quency integrated line-intensity distribution on the var-
ious parameters is understood, the procedure can be
inverted to check for the completeness of atomic data
bases. This check can be easily performed, since the cal-
culation of the distribution function (per ion) is simple,
involving only Boltzmann excitation. From an analysis of
the turn-over points and the width of the distribution (as
a function of input temperature), it is thus possible to de-
rive, e.g., the effective values of xmax and gfmin, and data
gaps will show up immediately. By a variation of νmax,
it will be also possible to constrain the completeness as
a function of frequency, at least in those cases where the
aforementioned “saturation effect” does not play a role.

4.2.3. From line intensity to line-strength distribution
functions

The next important step concerns the transition from line
intensities to line-strengths, where we have the following
relation (cf. Eq. (60) vs. 6):

10−l = gf

(
nl/gl
n1/g1

)∗
(74)

kL
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πe2
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=

=
(
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) πe2
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λ

(1 + IHeY )σTg1vth
. (75)

The asterisk denotes the LTE-value with respect to the
ion’s ground-state “1”, bl is the NLTE departure coeffi-
cient of the lower level of the considered transition – again
defined with respect to the ground-state (cf. Sect. 3.1.2),
Xjk the ionization fraction of ion “j” with abundance (rel-
ative to hydrogen) εk of element “k”. IHe is the number
of free electrons per Helium atom, Y the Helium abun-
dance, g1 the statistical weight of the ion’s ground-state
and σT the cross-section of electron scattering. Note, that
the thermal speed vth refers to the nominal value for hy-
drogen (cf. Sect. 2.2). In the above equation, we have ne-
glected the contribution of stimulated emission.

Inserting typical parameters, this relation can be ex-
pressed as

log kL ≈ −l + 6 + logSljk (76)

Sljk =
(
blXjk

εk
εFe�

) [
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1 000 Å

]
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] [
g1
4

] [
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27 km s−1

] , (77)

i.e., log kL ≈ −l+6 for iron ions in hot star winds if the ion-
ization fraction were unity and NLTE-effects were small.
From the definition of Sljk it is obvious, that – per ion –
the only quantities which vary as a function of considered
transition are bl and λ. Thus, it should be possible to re-
late the line-strength distribution function of a given ion
to the corresponding line intensity distribution function,
since the (effectively) contributing range in wavelength
(factor λ) is not too large (this even more, if we consider
flux-weighed quantities) and the variation of the depar-
ture coefficients is moderate as well, if we recall the scal-
ing relations of important NLTE levels (Sect. 3.1.2). Thus,
the variation concerns only those excited levels which are
connected to a ground or meta-stable level and is propor-
tional to the dilution factor of the chosen reference point
(or a steeper function of r, if optical depth effects of lines
were to be included). These levels, however, play a role al-
most only in light ions, whereas all decisive lines of heavy
ions are connected directly to meta-stable levels (and the
ground state).

Before we can relate the line intensity to the line-
strength distribution function, we have to account for a
parameter which is essential concerning this objective.
Whereas for the (complete) distribution of line intensities
all levels up to the ionization edge are significant (exci-
tation by Boltzmann law), the line-strength distribution
accounts for a lower number of levels and lines, namely
those which are actually occupied under NLTE conditions.
These are mainly those lines with a lower level attributed
to one of the three categories defined in Sect. 3.1.2.

In other words, NLTE effects introduce an effective
cutoff for contributing (lower) levels, xmax < ie, already
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introduced in Eq. (73). As discussed in Appendix E, this
quantity (instead of the ionization potential in the LTE-
case) now controls the transition value between the exci-
tation vs. oscillator strength dominated part of the dis-
tribution function, i.e., this point is shifted significantly
towards higher line-strengths. In consequence, the appar-
ent distribution resembles that of an ion with low-lying
ionisation potential! Of course, only part of this effect be-
comes visible in the following, since the level lists in our
data base have been designed a priori to be complete only
up to essentially occupied levels.

An example for the correspondence of line-strengths
vs. line intensities is given in Fig. 14. The asterisks
display the NLTE (Sect. 3.1) line-strength distribution for
Feiv, and the fully drawn curve shows the corresponding
analytical line intensity distribution, however plotted as a
function of − l−0.1, with cutoff energy at xmax = 170 kK
(for details, see caption). Note, that the highest level in
our data base lies at 210 kK, and ie ≈ 440 kK.

From the perfect agreement, it is evident that the line-
strength distribution can be actually described in anal-
ogy to our previous results for line intensities, where –
in view of Eq. (76) – the “average” shift is given by
logS = −6.1, and this shift originates mainly from the
rather low ionization fraction of Feiv at 40 000 K, of order
10−5. In this example, the distribution is not “saturated”,
i.e., νmax > ie−xmax, which should lead to two distinctive
slopes in the first part of the distribution, namely 2t/σ and
t/σ (Appendix E). Even this subtle effect is visible in the
actual distribution!

4.2.4. Summation over all contributing ions

As we have understood now, the distribution function per
ion consists of a steep and a flatter part, were the transi-
tion is controlled by the ratio xmax/t. The major problem
left is the summation over all contributing ions, since, of
course, each ion has its own specific Sjk value. Thus, even
if the line intensities were similarly distributed for each
ion, the transformation (= horizontal shift) to the line-
strength space might produce unpredictable results if all
ions are considered in parallel, as required, e.g., for the
calculation of the line-force.

To facilitate the investigations, we have performed
some test calculations before considering the real case,
again by using the actual atomic models and NLTE oc-
cupation numbers (ionization and excitation have been
calculated according to Sect. 3.1), however simulating the
oscillator strength distribution via Monte Carlo.

Moreover, at first we have concentrated on ions with
should behave rather similarly due to their electronic
structure (here: Ti to Cu, in the following “iron group
elements”, and later the “light ions”, C to Ca) and as-
sumed an equal abundance in order to distinguish between
ionization and abundance effects. The chosen abundance

Fig. 14. Asterisks: (Frequency integrated) Line-strength distri-
bution function for Feiv, Teff = 40 000 K, dilution factor
W = 0.5, ne/W = 1012 and resolution 0.5 dex in line-strength.
Fully drawn: Analytical line intensity distribution function,
plotted over − l − 0.1 (i.e., logS ≈ −6.1). Parameters (except
xmax, which results from the calculated distribution) consis-
tent with our data base: γ = 1.0, ie/σ = 6.5, ie = 440 kK,
νmax = 400 kK, xmax = 170 kK, lmin = −0.7, rmin = −5.5 and
logN(lmax) = 4.1

resembles the maximum solar value for elements of the
iron group, namely for Fe itself (log ε = −4.5).

Figure 15 (asterisks) gives the resulting frequency
integrated line-strength distribution function for those
iron group elements and a simulated gf -distribution with
γ = 1, rmax = 0 and rmin = −7, for the same atmospheric
conditions as in Fig. 14. Obviously, three different groups
are present, which can be easily disentangled due to our
knowledge of γ (input for Monte Carlo simulation).

This is done in Fig. 16, by means of our analytical
description (Eq. 73) and at first in line intensity space.
Note, that the displayed solution is only one of a number
of other possibilities: For low-lying values of xmax, which
have been derived from the onset of the flat γ = 1 distri-
bution and result from the effective “NLTE cutoff”(here:
≈ 140 kK) and as long as the function is “saturated”,
which is the case in our example, the actual value of the
ionization energy is unimportant (cf. Eq. E8). Decisive is
only the parameter σ, controlling the steeper part of the
distribution function via (2)t/σ.

After summing up the three different components and
plotting them as a function of − l + 6, the line-strength
distribution found in Fig. 15 (asterisks) can be easily sim-
ulated and is displayed by the bold line in this figure.
Thus, although the actual function consists of a variety
of contributing ions (at least 20 important stages in the
considered case), only a small number of clearly different
groups behaving similarly amongst each other is finally
present. The first group consists of dominant ionization
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Fig. 15. Asterisks: Line-strength distribution function for the
elements Ti to Cu (all ionization stages), with equal abun-
dances log ε = −4.5. Oscillator strength distribution simulated
by Monte-Carlo with γ = 1. Fully drawn: Analytical result of
line intensity distribution (summing up the three components
of Fig. 16), plotted as function of − l + 6

stages (logS ≈ −1), the second one of minor stages com-
parable to Feiv in Fig. 14 (logS ≈ −6), and the third
one comprises the weakest lines from ions with negligi-
ble populations (logS ≈ −12). Before commenting on this
similarity in behaviour, let us firstly demonstrate that our
findings are not only by chance.

Figure 17 shows the same situation as displayed in
Fig. 15 (asterisks), with the only change of γ from 1 to
0.8. Actually, even without simulating the new function,
it is clear that our argumentation still holds. Again, we can
distinguish three groups, and, consistent with our earlier
findings, the plateaus from Fig. 15 related to γ = 1 have
changed into declining slopes related to the new slope of
γ = 0.8. If we now apply the identical parameters as in
Fig. 16 (accounting, of course, for γ = 0.8) and overplot
the summed result, we find again a satisfactory agreement.
This clearly indicates that the combination of parameters
chosen for the individual components are of the correct
order, and that the line-strength distribution function ac-
tually consists of three different components, with similar
effective cutoff energies.

Figure 18 (asterisks) displays now the actual case, i.e.,
without any manipulation of the oscillator strengths. A
comparison with the γ = 1.0 simulation (Fig. 15) shows
that the differences are only small: Again, three distinct
distributions are visible, where the transition from group
one to two (roughly at log kL ≈ 0) is no longer as pro-
nounced as before. This might indicate that the actual
gf -distribution for the lines of this group is steeper than
γ = 1.0 The second group, however, is consistent with γ =
1.0, as is obvious from the plateau at log kL = −3 . . .− 8.

Fig. 16. Analytic line intensity distribution functions for the
three components visible in Fig. 15. Common parameters:
γ = 1.0, ie = 800 kK, νmax = 400 kK, xmax = 140 kK, lmin =
0, rmin = −7. Note that the actual value of ie is unimportant
as long as νmax < ie − xmax (see text). Individual parameters:
strong lines (fully drawn): ie/σ = 8, logN(lmax) = 4.25, “ion-
ization shift” (see Eq. (76) and text) logS = −1; weak lines
(dotted): ie/σ = 2.5, logN(lmax) = 5.3, logS = −6; very weak
lines (dashed): ie/σ = 8, logN(lmax) = 6.0, logS = −12

The details of this figure give an the answer to the
question raised above, namely, why the sum of rather com-
plex individual distributions (for the dominant iron group
ions at Teff = 40 000 K, see caption) can be described in
such simple terms as above.

From the last panel, it is obvious that ionization stages
v and vi represent the first group, and stage iv is identi-
cal with the second one. Additionally, from the sharp de-
cline of the bold line (sum of stages iv, v, vi) at the end
of the plateau, where the complete distribution function
including all ions is rising again, it is clear that the third
group (not analyzed here) consists of “real” trace ions
(mostly stage iii).

The upper three panels show the distribution of the
individual species amongst the various ionization stages
(as well as the appropriate sums). Neglecting certain
subtleties, all elements of a given ionization stage behave
similarly. Thus, we can speak of line-strength distribution
functions of specific ionization stages instead of individual
ions (equal abundances provided).

The origin of this similarity bases on the only minor
differences (in a statistical sense) in atomic structure of
the iron group elements under consideration, especially
with respect to ionization rates (giving rise to similar ion-
ization fractions), a rather low lying effective cutoff energy
and a level density parameter σ which is small enough to
induce the steep increase in the first part of the distri-
bution. Note already here that the according slope (the
steeper one!) is roughly equal for all kinds of ions and con-
sequently also for the summed distributions, independent
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Fig. 17. As Fig. 15, however with exponent γ = 0.8 and cor-
responding line intensity distributions, plotted as functions of
−l+ 6. Parameters of individual line intensity distributions as
in Fig. 16

of temperature (provided, of course, the abundances were
equal). This equality is clearly shown in Figs. 18, 19 and 20
and translates to a similarity in 2t/σ, being of order unity.
Since the value of 2t varies from 32 to 160 in the appropri-
ate units (corresponding to 10 000 . . . 50 000 K), this in-
dicates that the (effective) level-density parameter σ (the
smaller, the steeper is the level-distribution as function of
energy) has to vary in concert with these numbers. With
respect to the cases discussed already as well as from the
argument that an increase in ionization stage/potential in-
evitably leads to an increase of σ (fewer levels distributed
over a larger energy interval), this behaviour is not sur-
prising at all.

In addition to this similarity in excitation dominated
slope, the gf -distributions are similar as well, with γ be-
tween 1. . . 1.3 (< γcrit ≈ 2), dominating the individual
distributions after the first two or three decades of steep
incline.

In consequence, the total line-strength distribution has
a “staircase”-like structure, where each staircase corre-
sponds to a specific stage and is controlled by the sequence
excitation/oscillator strength distribution. The horizontal
width of these staircases depends mostly on the prevalent
ionization fraction.

4.2.5. Temperature dependence

Since “only” the first seven to ten decades of line-strength
are important for line-driving, only those trace ions do
contribute to the total distribution which have a signifi-
cant ionization fraction (and abundance, cf. Sect. 4.2.6)
not below roughly 10−4 . . . 10−5 as well as a larger num-
ber of lines than the dominant ionization species. In the

Fig. 18. Asterisks: Actual line-strength distribution function
for the elements Ti to Cu (all ionization stages), with equal
abundances log ε = −4.5, compared to the most important in-
dividual components. Atmospheric parameters as in Fig. 14.
Lower panel: contribution by most important ions of stage iv

(dotted), v (dashed) and vi (dashed-dotted), as well as the
sum of these three components (bold line). Upper panel: most
important individual components of ionization stage iv. Fe
(fully drawn), Ni (dotted), Cu(dashed), Co (dashed-dotted),
Mn (dashed-dotted-dotted and Cr (long-dashed), as well as
the sum of these ions (bold). Second panel: same as above,
however for ionization stage v and elements Fe, Ni, Cu, Co,
Mn and sum of them. Third panel: ionization stage vi for Fe,
Ni, Cu and sum
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other case, i.e., if the line number is smaller, these trace
ions are barely visible in the summed distribution: Then,
the γ − 1 power-law increase of lines from major species
(which extends rmin ≈ 5 . . . 7 decades in line-strength from
the turnover point to the “left”) dominates the essential
part of the distribution.

Especially for iron group elements, the (total) line
number per ion increases strongly with decreasing ioniza-
tion stage due to the increasing complexity of electronic
structure. Thus, at higher temperatures a significant con-
tribution from trace ions of lower stages is actually pos-
sible, since these have the required larger line number.
At the lower temperature end of radiatively driven winds
(roughly Teff ≈ 8 000 K), however, all (important) trace
ions have necessarily a higher degree of ionization than the
major ones and consequently do not (or only marginal)
contribute to radiative driving.

This effect is clearly visible in Fig. 19, where we have
plotted the line-strength distribution for iron group ele-
ments (again using equal abundances) as function of tem-
perature. At the lowest temperature displayed (Teff =
10 000 K, bold line), the enormous line number from ion-
ization stages ii and iii dominates the first twelve decades.
Trace ions (below log kL = −5) have too few lines (as well
as negligible ionization fractions) to be of any importance.
At 20 000 K (dotted), the situation is slightly different.
Here, stages iii and iv are essential, however a 2nd peak
shows up indicating the presence of stages ii. This trend
continues to higher temperatures, e.g., for the case dis-
cussed above (Teff = 40 000 K, asterisks), two kinds of
trace ions become visible, namely stage iv in the middle
part and stage iii with even more lines at weakest line-
strengths. At the highest temperature (Teff = 50 000 K,
dashed-dotted), the dominant species are vi and partly
vii. Ions from stage v contribute significantly, whereas
stage iv with its typical γ = 1 distribution is visible only
at weakest line-strengths. Thus and in total, we see a clear
dominance of one or two major ionization species in the
complete temperature regime.

Let us now concentrate on the decisive part of the dis-
tribution (down to, say, log kL = −2). With decreasing
temperature, the maximum line-strength kmax increases,
which is primarily related to the presence of low-lying
meta-stable levels acting as quasi ground states, which are
missing in the higher ionization stages. Most important,
however, is the difference in total line-number! Whereas
at the hottest temperatures the transition point occurs at
a line number log∆N ≈ 3, at lower temperatures a factor
of 10 more lines are present at this point. This difference,
of course, bases on the increasing number of lines with de-
creasing ionization stage ∆N ∝ a2σ ∼ 1/σ ∼ 2t (Eq. (61),
Allen (1966), his Eq. (3.6) and accounting for 2t/σ ≈ 1).
Note, however, that the position of the transition point
itself (xmax!) and both slopes (before and after) remain
essentially unaffected.

Fig. 19. Line-strength distribution function for the elements Ti
to Cu, with equal abundances log ε = −4.5, as a function of
temperature (remaining atmospheric parameters as in Fig. 14).
Teff = 10 000 K (fully drawn), 20 000 K (dotted), 30 000 K
(dashed), 40 000 K (asterisks, cf. Fig. 18) and 50 000 K (dashed-
dotted). For comparison, the straight line shows a power-law
distribution with slope corresponding to γ = 1.2

Fig. 20. As Fig. 19, however for the light ions C to Ca and equal
abundances log ε = −4.5

So far, we have concentrated on iron group elements.
As we will see soon, light ions play an equally important
role, although the total number of lines from those ele-
ments is significantly smaller. Figure 20 shows the cor-
responding line-strength distribution, again with equal
abundances and as function of temperature. In contrast
to above, the maximum value of kL remains rather con-
stant, since the strongest lines are formed by resonance
transitions, so that excitation effects are unimportant for
the definition of kmax. The largest differences occur at in-
termediate line-strengths. They are connected to the large
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Fig. 21. Summing up the line-strength distribution functions for iron group elements and light ions. Atmospheric parameters as
in Fig. 14, for a temperature of 40 000 K (left) and 10 000 K (right panel). Upper row: Distribution functions for iron group
elements (asterisks) and light ions, (triangles), assuming equal abundances log ε = −4.5. The dashed line gives the total line-
strength distribution function. α (40 000 K) = 0.41, α (10 000 K) = 0.34, derived fron least square fit to cumulative distribution
in decisive kL-range. Lower row: As above, for solar abundances and including H, He. α (40 000 K) = 0.57, α (10 000 K) = 0.48

number of resonance lines from lower ionization stages in
the region around 600 Å (convergence to ionization edges),
whereas the corresponding lines of the higher stages are
situated well below our frequential cutoff at 250 Å. On the
whole, however, the distribution functions are much more
similar when the temperature is varied, compared to the
iron group case, and the overall line number is smaller
everywhere. The reason for this difference is readily un-
derstood, if we account for the vanishing number of meta-
stable levels in light ions, so that the group of lines with a
meta-stable level as lower one (which comprises the major-
ity of lines for iron group elements) is completely missing.
Again, the excitation dominated part shows (virtually) no
reaction on temperature, i.e., 2t/σ ≈ 1 as discussed above.

4.2.6. Total line-strength distribution functions and the
influence of relative abundances

In Fig. 21, we have added now the contribution of light and
heavy ions, both for the case of a hot wind at 40 000 K as
well as for a rather “cool” wind at 10 000 K. Additionally,
we study the influence of accounting for realistic abun-
dances, e.g., a solar mixture. Most importantly, by giv-

ing up the uniform composition, the distribution function
of heavy elements is shifted to the left (to lower line-
strengths), since all contributing elements behave rather
similarly (Fig. 18), however the (solar) abundance of ele-
ments different from Fe is smaller than the value log ε =
−4.5 adopted so far. Accordingly, the light ions’ distribu-
tion function is shifted (to a lesser extent) to the right (ε
larger than for Fe on the average).

Thus, the difference between maximum line-strengths
is increased if a solar composition is accounted for. The ef-
fect seems to be especially large for the cooler wind, where
kmax (light ions) is increased by 2 dex: At these tempera-
tures, the Hydrogen Lyman lines (and, to a lesser extent,
the Heii Lyman lines), which are insignificant at hotter
temperatures, show up at largest line-strengths, both be-
cause of the larger ionization fraction of neutral hydrogen
(and Heii) as well as their much higher abundance, com-
pared to the metals.

Additionally, the resulting distribution functions (solar
case) show even less structure than in the case of uniform
abundance, simply because there is a larger scatter of the
product (Xjkεk) (Eq. 75), which leads to a larger varia-
tion of Sljk (Eq. 76) and consequently to a smoothing of
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any inherent (“staircase”) structure which is still visible
in the case of uniform abundances (e.g., Fig. 20).

Accounting now for these differences as a function of
abundance as well as the intrinsic differences in the line
statistics of iron group elements vs. light ions discussed
previously, it becomes evident what controls the slope of
the total line-strength distribution.

At first and for large line-strengths, the distribution is
dominated by the behaviour of light ions, and it is the
steeper, excitation influenced part of their distribution
which plays the important role. Since a variety of abun-
dances is present, the distribution is smoother and wider
(more, however less pronounced staircases!). Thus, the ac-
cording slope is flatter than the value of unity found in the
case of equal abundances. Since the local slope translates
to α = 1 − s with s = |dlog∆N/ dlog kL|, α becomes
larger than zero in this domain (see also Fig. 25). For a
cool plasma, the influence of the γ = 4/3 distribution of
H (Sect. 4.1) flattens the curve additionally.

On the other hand, the left part of the distribution
(low kL) is controlled by iron group elements, due to their
much larger line number. To obtain a situation where the
light ions were of any influence in this range would require
a mixture with a very small abundance of heavy elements,
compared to the CNO group (Pop. III stars?).

The specific influence of the solar composition (actu-
ally, only the ratio and not the absolute numbers is rele-
vant!) is evident from a comparison of both rows in Fig. 21
and the corresponding dashed lines, giving the total distri-
bution functions. As discussed above, this abundance ra-
tio introduces a larger separation of the two components.
If the abundances were equal (upper row), the transition
region between strong and weak line-strengths controlled
by the light and heavy ions, respectively, is rather small.
Thus, below the cutoff (effective xmax!) of the light ions,
the distribution is suddenly dominated by the distribution
of the heavy elements with their much larger line number,
and the steep slope (order unity) of the first part of the
total distribution function is continued, until finally the
gf -dominated part becomes visible.

For solar abundance ratios (lower row), the intermedi-
ate range is much wider, and, accordingly, the transition
to the flatter, gf -dominated part from iron group elements
occurs in a rather smooth way. In connection with the fact
that for a mixture of abundances the first part is flatter
anyway, we find α > 0 for almost all kL, since α = 1 − s
with s < 1 in the first part, α ≈ 2 − γ with γ = 1 . . . 1.3
for the lowest contributing line-strengths and has values
in between at intermediate strengths.

Again: If there were no difference in the abundance of
light and heavy ions, the total distribution function would
be steeper (significantly smaller α) and much more curved
compared to the solar case.

From Fig. 21 it becomes also clear why the derived α̂
values decrease for decreasing temperature (cf. Table 2)8.
At lower temperatures (right panel), there are simply
more iron group lines present (esp. Feii, iii, iv), com-
pared to the rather constant line number of light ions.
Thus, by lowering the temperature, the line-distribution
becomes progressively steeper, especially at intermediate
line-strengths, which reduces the corresponding α’s (see
also Sect. 5.1).

4.2.7. The actual role of γ

One might now question in how far the underlying
gf -distribution is of any importance for the final result,
since it is much more the (relative) difference in abun-
dance and especially in line number between iron group
elements and light ions which leads to the “observed”
line statistics. Accordingly, it is much more the mixture
of different contributing ions with different ionization
fractions and abundances, which plays a role, whereas
the gf -dominated part of any specific ionization stage
becomes visible only at the lowest end of contributing
line-strengths.

To answer the above question, we have simulated
the line-strength statistics resulting from different gf -
distributions, again by Monte-Carlo, and compare the out-
come with the actual situation in Fig. 22, both for the
hotter and the cool wind. In contrast to the case of in-
dividual ions or to the case of uniform abundances (e.g.,
Figs. 15 and 17), the slope of the distribution in the de-
cisive kL > 1 range seems to be almost unaffected by
the various gf -distributions, neglecting certain subtleties
(e.g., the expected presence of small staircases for γ ≤ 1)
which are insignificant for any result derived from the cu-
mulative distribution (Fig. 22, lower panel).

What really differs, is the vertical offset of the different
distributions, where this offset is monotonically increasing
for decreasing γ, and the actual case (asterisks) is met al-
most precisely for γ between γ = 1.3 (Teff = 10 000 K) and
γ = 1.2 (Teff = 40 000 K), in agreement with the average
situation (Fig. 11). This behaviour is readily understood
if we remember the discussion at the end of Sect. 4.2.2:
In addition to controlling the slope of the weaker lines for
individual ions, γ controls the absolute line number ∆N .
In mathematical terms, this occurs via the γ-dependent
normalization constant in Eq. (61) (note, that w = w(γ)).
The physical interpretation is given in the discussion re-
ferred to: If the number of weak lines decreases for de-
creasing γ, the number of strong lines must consequently
grow. This is the effect we observe in Fig. 22.

Thus, the final role of γ is an important, however im-
plicit one. Due to its relevance for the vertical offset and

8 The argument given here remains also valid for flux-
weighted distribution functions, which are the actual basis for
deriving force-multipliers.
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Fig. 22. Total line-strength distribution function for solar abun-
dances, with different gf-distributions. Asterisks: actual case,
lines: Monte Carlo simulation with constant exponent γ =
1.5 (dotted), 1.0 (dashed) and 0.8 (dashed dotted). rmax =
2, rmin = −6. Upper panel Teff = 40 000 K, γ = 1.2 (fully
drawn). Middle panel Teff = 10 000 K, γ = 1.3 (fully drawn).
Lower panel: as upper one, however cumulative line number.
The slope remains almost unaffected by any change in γ!

with respect to derived force-multiplier parameters, it is
much more decisive for the value of kCAK (or Q̄) than for
the local slope α and consequently α̂.

4.2.8. Flux-weighted line-strength distribution functions
and the difference of α̂ vs. α

Our final task in order to describe the radiative line ac-
celeration is to weight the line-strength distribution func-

tions obtained so far by the appropriate flux distribution
Lνν/L. This is done in Fig. 23, both for the model with
equal as well as with solar abundances. With respect to the
shape of the distribution, no dramatic effects are encoun-
tered, if we compare the non-weighted distributions (lines)
with the corresponding flux-weighted ones (symbols). In
terms of our discussion in Appendix E concerning the “sat-
uration” effect, this is by no means surprising. The ma-
jor impact of flux-weighting is at moderate line-strengths,
where the weighted distribution becomes slightly flatter,
since a number of high-frequency resonance lines of minor
ions are blended out due to missing flux.

The corresponding force-multiplier parameters α̂ and
δ̂ are displayed in Fig. 24 as iso-contours in dependence
of log k1 and log(ne/W ) (see Eq. (26) and the according
derivative with respect to ne11/W ). Compared to our find-
ings from the last section, nothing new has to be added:
For solar composition, the resulting α̂ values are much
more constant and larger than for the simulation with
equal abundances. By inspection of the displayed values
for δ̂, we find that they are rather small (much lower than
the value of 1/3 found for hydrogenic trace ions), indi-
cating the dominance of major ionization stages and the
frozen in ionization of stellar winds.

In order to account for more realistic fluxes, we
have calculated additionally the case of an irradia-
tion by Kurucz fluxes (consistently used also in the
ionization equilibrium). Although some quantitative
differences become visible (which turn out to be im-
portant for a correct description of B-star winds, cf.
Petrenz 1999), the general effects are small and do not
change any qualitative conclusion derived so far.

Since we have included now all ingredients required
to calculate line-force and force-multiplier parameters,
we can come back to one of the problems stated in
Sect. 2, namely the difference of α̂ (derived from the line-
acceleration itself) and the local slope of the flux-weighted
distribution function, α. In accordance with our analytical
results from Sects. 2.3.2 and 2.4, Fig. 25 displays the fol-
lowing, by means of our Teff = 40 000 K model: For not too
large k1 respectively kL, both numbers are fairly similar.
At the steep end of the distribution, however, where the
local slope (symbols) becomes large (excitation dominated
part of light ions) and α = 1 − s converges to small val-
ues (solar abundances) or values <∼ 0 (equal abundances,
2t/σ ≈ 1, cf. Sect. 4.2.6) the effective force-multiplier pa-
rameter α̂ remains positive (as it should, by definition).
Thus, even at large k1, kL (i.e., in the outer wind part), the
value of α̂ remains much more constant as if it were cou-
pled to the local slope. Nevertheless, especially for equal
abundances the decrease of α̂ at large line-strengths is sig-
nificant! This decrease in α̂ can have severe consequences
for low metallicity or thin winds, as we will see in the
following section.
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Fig. 23. Cumulative flux (times frequency) weighted line-
strength distribution function for atmospheric parameters as
in Fig. 14 and T = 40 000 K. Flux assumed to be Planck.
Asterisks: solar, triangles: equal abundances. For comparison,
the unweighted cumulative line-strength distribution func-
tions (corresponding to the left panel in Fig. 21) have been
overplotted. Dashed: solar, dashed-dotted: equal abundances

Fig. 24. Iso-contours of force-multiplier parameters α̂ and δ̂ as
function of log(ne/W ) and −log t = log k1. Radiation field
Planck, Te = 40 000 K, dilution factor W = 0.33. Fully drawn:
α̂, dashed: δ̂. Thick curves stress the values α̂ = 0.55, 0.65 and
0.75. Upper panel: solar abundances; lower panel: equal abun-
dances

Fig. 25. Comparison of α̂(k1) and local slope of flux-weighted
line-strength distribution function. Model as in Fig. 24,
log(ne/W ) = 12. Dashed: α̂ (solar), dashed-dotted: α̂ (equal
abundances). Asterisks (solar) and triangles (equal abun-
dances) give local slope as a function of kL, corresponding to
the distributions displayed by similar symbols in Fig. 23

5. Metallicity effects, thin winds and scaling relations

Having understood the origin of the specific shape of the
line-strength distribution function and its impact on the
force-multiplier parameters in detail, we are now able to
consider the question raised at the beginning of this pa-
per, namely in how far the situation changes for different
wind conditions. We will concentrate here on principal ef-
fects which are valid under fairly general circumstances.
In particular, let us firstly consider the consequences if the
overall metallicity is changed.

5.1. The direct effect

Due to its definition (6), the line-strength scales with
metallicity (under the realistic assumption that the ion-
ization balance is not severely modified) as

kL(ε) ∼ z nl(�)
ρ
∼ zkL(ε�) (78)

where z is the actual abundance ε relative to its solar
value, z = ε/ε�. Thus, the major effect of changing the
metallicity is a shift of the according line-strength distri-
bution functions (in the log − log representation) to the
“left” (for z < 1) or to the “right” (for z > 1).

Figure 26 verifies this behaviour for some exemplaric
atmospheric conditions (Teff = 40 000 K and 10 000 K, re-
spectively) and three different metallicities, namely z = 1
(solar), z = 0.1 (roughly SMC) and z = 3 (typical for the
Galactic center). The shift to lower/higher line-strengths
is clearly visible. Only for the largest line-strengths at
Teff = 10 000 K the distributions seem to be unaffected
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Fig. 26. Cumulative flux weighted line-strength distribution
function for Teff = 40 000 K (upper panel) and 10 000 K (lower
panel), dilution factor W = 0.5 and ne/W = 1012. Asterisks:
solar abundance; dashed: z = 0.1; dashed-dotted: z = 3.0.
Radiation field Planck

by metallicity, which is not surprising since the participat-
ing lines are transitions from the hydrogen Lyman series
(cf. Sect. 4.2.6).

If we try to translate the shift in metallicity (affect-
ing the independent variable kL) into the corresponding
shift of the dependent variable < N(kL) >, this relates
to a modification of the vertical offset of the distribution,
i.e., of the normalization constant, or, in other words, of
the total number of contributing lines. In case of a perfect
power-law then, the normalization varies according to

dN(ν, kL)(ε) = −No(ε) fν(ν) kα−2
L dν dkL

No(ε) = No(ε�)z1−α. (79)

Since the force-multiplier parameter kCAK is proportional
to No (Eq. 12), it should scale according to

kCAK(z) ∼ z1−α (perfect power-law). (80)

With respect to Q̄ and from its definition (37), obviously

Q̄(z) ∼ z (81)

is predicted (cf. Gayley 1995), (almost) independent from
the specific shape of the line distribution.

In Table 3 we have calculated the f.m. parameters for
the same “models” as in Fig. 26. The last column shows
the validity of the linear dependence Q̄ ∼ z for the hotter
atmospheres, whereas for the cooler ones Q̄ remains much
more constant. If we remember that Q̄ is dominated by
lines of maximum strength (Sect. 2.6 and Appendix C),
this behaviour results from the fact that the strongest
driving lines in this temperature domain are those from
hydrogen and thus remain rather unaffected by a change
of global metallicity. Again, the conceptual simplicity of
the Q̄-approach is hampered by additional effects becom-
ing obvious only by means of detailed calculations.

Table 3. Force-multiplier parameters as a function of Teff and
metallicity z, for ne/W = 1012 and W = 0.5. Values de-
noted with “(1)” derived from regression in the range log t =
−1 . . . − 6 (as in Table 2); values with “(2)” refer to a range
log t = −1 . . .− 5 with optical depth parameter t

Teff z log k
(1)
CAK α̂(1) log k

(2)
CAK α̂(2) Q̄

40 000 3.0 −0.98 0.68 −0.98 0.69 5817
1.0 −1.12 0.67 −1.15 0.69 1941
0.1 −1.28 0.62 −1.42 0.67 196

10 000 3.0 −0.41 0.47 −0.52 0.52 997
1.0 −0.51 0.43 −0.64 0.47 767
0.1 −0.87 0.36 −0.96 0.40 663

The other columns display the kCAK and α̂ values
derived by linear regressions to the calculated force-
multipliers, both in the range of log t = −1 . . . − 6 (“1”)
as well as in the range of log t = −1 . . . − 5 (“2”) with
optical depth parameter t = k−1

1 . From the differences, it
is immediately clear that the assumption of a more or less
perfect power-law is only valid for the hotter atmosphere
and low to intermediate line-strengths, consistent with
the run of α̂(k1) shown in Fig. 27. Thus, the predicted
scaling of kCAK (Eq. 80) is only verified for case “2” at
40 000 K, whereas in all other cases the reaction of kCAK

is much weaker.
One should note, however, that the primary influence

of kCAK regards the definition of the mass-loss rate. Thus,
kCAK is most important in the subcritical region of the
wind, where k1 is low (and t is large), and the contributing
range in k1 is also small (typically 2 dex). Under those con-
ditions, however, a power-law distribution with α̂ ≈ α(k1)
can be always justified (cf. Sect. 2.3.2), so that the effective
kCAK-value controlling the mass-loss rate should actually
scale with (80), provided we compare winds of similar den-
sity. In so far, the variations displayed in Table 3 are an
artefact of the much larger range of regression applied.

5.2. The indirect “α̂”-effect for low metallicity and thin
winds

Besides the obvious direct effect that the cumulative num-
ber of lines varies in concert with z, we have to account for
an additional complication: By comparison of the various
α̂ values derived by linear regression, we find that also α̂
is a function of metallicity, especially for cooler temper-
atures. Regarding the difference between actual (Fig. 27)
and “power-law” fitted values, the depth-dependent val-
ues of α̂ are typically smaller than the mean for large k1,
whereas they are larger or similar at low k1-values. (Due
to the dominance of hydrogen lines with their α = 2/3
statistics, for the cooler atmosphere we even encounter an
– otherwise untypical – steep increase of α̂ towards maxi-
mum k1).
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Fig. 27. As Fig. 26, however for α̂ (derived from force-
multiplier) as function of k1. Solar abundances: fully drawn

The reason for the outlined behaviour is, again, the
steep decline of the line-strength distribution at its upper
end, due to the excitation effects discussed extensively in
Sect. 4.2, and the horizontal shift of the distribution as a
function of metallicity. Thus, for lower z the steeper end
of the distribution becomes visible at lower values of k1,
and α̂ can be roughly expressed as

α̂(log k1, z) ≈ α̂(log k1 − log z, z = 1), (82)

neglecting certain subtleties arising from non-metallic
lines.

Whereas kL is an (almost) density independent quan-
tity, k1 = dv/dr/ρ ∝ v2

∞R∗/Ṁ scales with the inverse of
the mean wind density (times v∞/R∗). Thus, in addition
to the metallicity shift (argument of rhs in Eq. (82)), the
range of log k1 present in the wind is also shifted compared
to solar conditions. Since a reduced metallicity yields a re-
duced wind density, this shift is towards higher k1, i.e., a
low-metallicity wind plasma “doubles” the effect of low-
ering α̂. In contrast, enhanced metallicities have almost
no effect on α̂, since the corresponding shift is towards
lower k1, where the line-strength distribution function has
a more constant slope.

Of course, the described process is also present if the
wind-density is low for other reasons, e.g. because the lu-
minosity is low. Compared to supergiant winds then, the
k1 range to be considered is shifted towards higher values,
and α̂ is accordingly lower.

In conclusion, thin and fast winds as well as low metal-
licity winds tend to have lower α̂-values than high density
or high metallicity winds, both on the average as well as
locally. Once more, the reason for this effect is the curva-
ture of the line-strength distribution function, especially
at highest line-strengths, which is also the answer to the
problem raised at the end of Sect. 2.5 concerning the ori-
gin of the lower α̂-values calculated in a low metallicity
environment. If, on the other hand, a perfect power-law

were present, α̂ ≈ α ≈ const, independent on wind density
and metallicity.

As a consequence of the variations of α̂ as a function
of k1, α̂ varies throughout the wind, since k1 changes by
typically three dex from inside to outside9. Hence, any ex-
act hydrodynamic solution requires depth dependent force-
multipliers (cf. Kudritzki et al. 1998)

At this point of reasoning, we like to reiterate our find-
ings in a somewhat different context. From our experience,
the behaviour of the line-force in a low-density environ-
ment is frequently misinterpreted. E.g., after having cal-
culated the according f.m. parameters – with the result of
α → 0 in the outermost wind part –, there seems to be
a common concern whether this is not only an artefact of
an incomplete line-list at lower gf -values. Actually, how-
ever, almost the opposite effect is present! If, e.g. in B-
dwarf winds, the density becomes so low that log t <∼ −7
(corresponding to log k1 >∼ 7), all lines contribute to the
line-acceleration at their optically thin limit, grad ∝ Q̄.
Thus, the strongest (however optically thin) lines have
the largest influence and the numerical value of the to-
tal force does not depend on any incompleteness of the
line list at low gf -values. The fact that α tends to zero
in this case is, as explained already in Sect. 2.3, given by
the independence of the line-force on any variation of t (or
k1).

With respect to the horizontal shift “to the left” in
a low-metallicity environment, this independence on k1

can start even earlier, i.e., the line-force becomes satu-
rated (α → 0) at lower values of k1. Even in cases of
a higher metallicity (where the effects of an incomplete
line-list may become obvious at least in principle), the ac-
tual range of contributing kL values is normally much too
small that this might become a real problem.

5.3. Scaling relations

Including now the aforementioned finite disk cor-
rection factor and accounting for ionization effects
No ∝ (ne11/W )δ, we can summarize the resulting scaling
relations for Ṁ and v∞ as function of metallicity, which
arise if a metal dependent line-force is used to solve the
hydrodynamic equations (for actual solution methods, cf.
PPK and Kudritzki et al. 1989) and the f.m. parameters
were constant throughout the wind:

Ṁ ∼ (z1−α̂)
1
α′

(
L

L�

) 1
α′
(
M

M�
(1− Γ)

)1− 1
α′

×

× g(kCAK(z = 1), α̂, α′) (83)
9 Only for the CAK velocity law with exponent β = 0.5 this

value remains constant, whereas the inclusion of the “finite disk
correction factor (Friend & Abbott 1986; PPK) as well as the
observations (Puls et al. 1996) give considerably larger values
β = 0.8 . . . 1.3.
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v∞ =
α̂

1− α̂ vesc f(α̂, δ̂) (84)

α′ = α̂− δ̂ (85)

g ≈
(

α̂

1− α̂

) α̂
α′ (

3 10−5 kCAK(1− α̂)
) 1
α′ . (86)

M is the stellar mass and vesc the escape velocity, cor-
rected for the Eddington factor Γ. f(α̂, δ̂) is a decreas-
ing function of δ̂−1, and has a value of roughly 2.2 if
δ̂ is small (cf. Kudritzki et al. 1989). The function g fi-
nally accounts for the (moderate) dependence on terms of
order α̂, on the proportionality to k

1/α′

CAK, and, most im-
portant (and frequently forgotten), on the scaling factor
Γ ≈ 3 10−5(L/L�)/(M/M�) , since the mass-loss rate ac-
tually depends on the Eddington factor Γ1/α′ and not on
L1/α′ itself. Note, that the variation of g has to be consid-
ered in any comparison where α̂ is different (e.g., A-star
vs. O-star winds, see below).

In case of depth dependent parameters, Ṁ relates to
the conditions at the critical point (log k1 = 2 . . . 3 for not
too thin winds), where α̂ and δ̂ do not vary heavily. The
terminal velocity, however, is dependent on some average
value of (α̂, δ̂) between the location of the critical point
and large values of k1, and will be typically smaller com-
pared to using the α̂ values present at the critical point,
because of the reasons outlined above.

In any case, to first order we find the metallicity effect
as

Ṁ ∼ z
1−α̂
α′ ; v∞ ∼

α̂

1− α̂(z), (87)

which, in case of O-star winds (small δ̂) yields the often
quoted scaling relation for the mass-loss rate Ṁ ∼ √z
since α̂ ≈ 0.6.

Due to the metallicity dependent factor α̂/(1 − α̂),
one can expect lower terminal velocities in a metallicity-
deficient environment. This is just what has been found
by comparing O-star terminal velocities in the Galaxy and
the Clouds, cf. Fig. 28. For a detailed discussion, we re-
fer the reader to the papers by Garmany & Conti (1984),
Kudritzki et al. (1987), Haser et al. (1993) and Walborn
et al. (1995).

Finally and with respect to the wind-momentum lu-
minosity relation (Kudritzki et al. 1995; Puls et al. 1996),
our findings imply (leading terms only)

logDmom = log(Ṁv∞(R∗/R�)
1
2 ) ∼

∼ 1
α′

logL/L� +
1− α̂
α′

logz + 2 log
(

α̂

1− α̂

)
+

+
1
α′

log
(
3 10−5 kCAK(z = 1) (1− α̂)

)
+ . . . , (88)

where, of course, in case of α̂(z!) 6= 2/3 an additional cor-
rection for mass effects might be necessary.

From the presently available data, it is clear that at
least in the SMC a different offset is visible (due to the

Fig. 28. Terminal velocities of O-type stars in the Galaxy and
the Magellanic clouds. Data from Haser (1995) and Puls et al.
(1996)

Fig. 29. Wind momentum (in cgs units) and luminosity of galac-
tic and SMC supergiants and two A-supergiants in M 33. Open
square: M 33 A-supergiant with galactic metallicity. Cross:
Extremely metal poor A-supergiant in the outskirts of M 33.
(From McCarthy et al. 1995)

second term in the above equation, resulting from the “di-
rect” effect (cf. Fig. 29, and also Puls et al. 1996; Kudritzki
1997). Whether there is actually a different slope (as a con-
sequence of a reduced α′), is not certain due to the small
number statistics for SMC O-stars. To clarify the situa-
tion, more objects have to be analyzed. This work is well
under way in our group.

Contrasted to the above uncertainty concerning
the reduction of α̂ in a metal poor environment,
the observational status quo with respect to the
difference of A-star vs. O-star winds is much more
promising. From the latest results by Kudritzki et al.
(1999), the WLR for Galactic A-Supergiants (in a
temperature range Teff = 8 400 . . . 9 400 K) reads
logDmom = 0.38−1logL/L� + 14.22, to be compared with
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the relation valid for Galactic O-Supergiants (from Puls
et al. 1996), logDmom = 0.65−1logL/L� + 20.40.

Note at first that the observed slope (interpreted as
α′ = α̂ − δ̂ = 0.38) lies exactly in the range to be ex-
pected for A-type winds, cf. Tables 2 and 3. Second,
from the difference in the offset compared to O-stars
(∆logDo = 6.18), we can calculate the average value of
the parameter kCAK(A-SG) using Eq. (88), the values
found for α′ from the WLRs and the appropriate values
for α̂ and kCAK(40 000 K) from Table 3. In result, we find
log kCAK(A-SG) =−0.84. This number is reasonable when
compared to our theoretical prediction logkCAK(10 000 K)
= −0.51 (Table 3) at ne/W = 1012, accouting for the
fact that A-Supergiants have lower densities at the criti-
cal point (smaller Ṁ and larger radii) than their O-type
counterparts. In so far, the difference found is a conse-
quence of the δ-term, which is implicitely included in the
value of kCAK derived in our comparison.

Thus, we conclude that our theoretical predictions con-
cerning the run of α̂ (and kCAK) with respect to temper-
ature are correct, and, additionally, in Sect. 4 we have
explained the reason for this behaviour.

6. Summary and discussion

In this paper, we have tried to analyze various aspects
concerning the relation between line-statistics and radia-
tive driving in massive stars with not too thick winds (i.e.,
we have excluded the problem of WR winds).

In the following, we will summarize our results, point
to additional aspects which have not been discussed in the
previous sections and give some caveats where necessary.

In Sect. 2, we found an alternative interpretation
of the total line-force as the integral of the cumulative
flux weighted line-strength distribution function over line-
strength, which allowed for an instructive visualization of
the line-force and further investigations: For arbitrary dis-
tribution functions, the local logarithmic slope α(kL)10 can
be identified with the f.m. parameter α̂(k1), if this slope
is not too steep around kL = k1 (essentially, α has to
be larger than zero). If the latter condition is violated
locally, α̂ should follow at least the basic trend of α, how-
ever remaining larger/equal than zero with respect to its
definition as the ratio of optically thick to total line accel-
eration. (A steep increase with α < 0 over a larger range
of line-strength well below kL = k1, finally, would pro-
hibit the parameterization of the f.m. in its usual form
∝ kα̂1 completely.) These statements were checked for var-
ious conditions throughout the paper, and turned out to
be fulfilled always.

In order to understand the principal behaviour and nu-
merical value of α̂ itself and to allow for predictions con-
10 Actually, α is not the local slope itself, however α = 1− s,
if s is the negative exponent of the according cumulative dis-
tribution function.

cerning its behaviour under different conditions, we have
performed a rigorous discussion of the line-strength distri-
bution as function of atmospheric conditions. This discus-
sion relied on our extensive data base and an approximate
NLTE description, provided in Sect. 3.

For some typical atmospheric conditions, we checked
at first the applicability of Gayley’s (1995) Q̄-approach.
As long as the dependence on the maximum line-strength
Qo is correctly accounted for, a perfect consistence with
the older CAK approach using the parameter kCAK is
found. We concluded, however, that the Q̄ formalism is
only advantageous in those cases when the maximum line-
strength Qo is of the same order as Q̄, a prerequisite which
was assumed by Gayley to be valid always. By means of
our detailed calculations, however, this assumption could
be validated only for hot winds (Teff >∼ 35 000 K). For
cooler ones, the difference between Q̄ and Qo is signifi-
cant and was attributed to the increasing mismatch be-
tween the frequential positions of the strongest lines and
flux-maximum. In those cases, a “blind” application of the
final scaling relations provided by Gayley (which include
the assumed equality) will inevitably lead to erroneous
conclusions.

In Sect. 4, we turned to the central question concern-
ing the slope (or shape) of the line-strength distribution
function. At first, we considered the (simpler) case of hy-
drogen (or hydrogenic ions) and derived the important
result that the according slope in the essential kL range
is almost exactly −1/3, so that α = 2/3. This result was
shown to be the final consequence of the corresponding
oscillator strength distribution, in particular the depen-
dence gf ∝ n−3 with n the principal quantum number of
the upper level of the contributing transitions. The pre-
dicted behaviour is actually seen at the hydrogen-Lyman
dominated, high line-strength end calculated for distribu-
tion functions under A-type conditions. Additionally we
showed that, if neutral hydrogen is a trace ion, the corre-
sponding δ term (resulting from the ne/W dependent part
of the normalization constant No) is of order 1/3, and that
for arbitrary trace ions one stage below the major one the
equality α+ δ ≈ 1 should hold in general.

In order to derive line-strength distribution functions
for arbitrary metallic ions, we followed the approach sug-
gested by Allen (1966), modified for the inclusion of non-
uniform oscillator strength distributions. This approach
and the above one are mutually exclusive, due to the
rather specific behaviour of level density as function of
energy in hydrogenic ions.

At first, we considered the so-called line-intensity
distribution, which is the LTE analogon to (NLTE-)line-
strength distribution functions for specific ions. By a
number of Monte-Carlo simulations for the oscillator
strength distribution we have convinced ourselves that the
principal description, resulting in predictions of ∆N as
function of line intensity, is valid both for the frequency
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dependent as well as the frequency integrated line
intensity distribution.

We showed that three different slopes are possible,
namely 2t/σ, t/σ and γ − 1, if t is the temperature in
units of 625 K, σ is the slope of the level-density with
respect to energy and γ the negative exponent of the dif-
ferential oscillator strength distribution function. In de-
pendence of γ being larger or smaller than a critical value
γcrit = 1 + 2t/σ, specific predictions for the line inten-
sity distribution functions can be made, which depend
uniquely on the properties of the level- and line-lists. Thus,
by comparing these analytical results with actual distribu-
tion functions, it is very easy to test for the completeness
of the underlying data base of specific ions.

Under “normal” conditions, the resulting frequency
integrated distribution function consists of two regimes,
namely a steeper, excitation-dominated one with slope
2t/σ, and a second one with slope γ − 1. The division
is given at a line intensity l = xmax/t− log gfmax, if only
those lines with a lower energy level below a certain cut-
off energy xmax are considered. Thus, the direct influence
of γ regards only the slope of the weaker lines’ distri-
bution. Additionally, however, γ has an indirect impact
which turns out to be of major relevance for the final re-
sult: By affecting the normalization constant of the line
intensity distribution, it controls the absolute number of
lines as function of intensity (or strength).

By translating our findings from line intensity to line-
strength distributions, two important points have to be
considered: The final distribution function consists of
a number of contributing ions, so that the product of
ionization-fraction times relative abundance becomes im-
portant. Second, under stellar wind conditions, NLTE ef-
fects have to be accounted for.

In order to separate NLTE/ionization- from abun-
dance effects, we investigated at first the case of equal
abundances and considered two groups of elements,
namely “iron group” and “light” elements, respectively,
which should behave rather similarly amongst each other
due to their similar electronic structure. NLTE effects
were treated in our approximate way by allowing for only
three participating classes of lines, namely those with a
lower ground- or meta-stable level and those lines directly
connected to the former.

Under these assumptions, it turned out that the major
difference between line intensity and -strength distribution
is (in the log-log representation) a horizontal shift due to
ionization, and the appearance of a low effective value for
xmax, giving rise to a rather narrow excitation dominated
range. Within the specific subgroups, the individual ions
behave rather similarly, so that the total distribution func-
tions can be described in fairly simple terms (“staircase
structure”), since only two or three different ionization
stages contribute to the interesting range (six to eight dex)
in kL. Iron group elements display a significant increase in
line number with decreasing temperature due to their in-

creasing complexity in electronic structure, whereas light
ions show a comparable number of lines for all considered
temperatures. The excitation dominated slope was found
to be of order unity for both subgroups, independent of
temperature, and relates to the increase of σ (lower level
density) with increasing ionization stage. Additionally, the
maximum value of kL reached by iron group elements is
smaller than for light ions (lines to meta-stable levels vs.
lines to ground-states).

The latter effect – difference in maximum line-strength
between iron-group and light ions – is essentially increased
if one accounts for (relative) solar abundances. Thus, at
large line-strengths the resulting total distribution is de-
termined by transitions from light ions (plus hydrogen
at cooler temperatures), whereas for intermediate and
lower kL the iron group elements (most important: Fe
itself due to its abundance) dominate the distribution.
Consequently, at highest line-strengths the distribution
is rather steep (excitation dominated part of light ions’
distribution), however smaller than unity due to the va-
riety of abundances present. The intermediate region is
primarily controlled by the difference in line number be-
tween both groups and by the temperature dependence
of the iron group contribution (as mentioned above, the
light ions’ distribution function remains rather constant):
For hotter temperatures, there are fewer iron group lines,
thus the slope is smaller and α accordingly higher; for
lower temperatures, the iron group line number is much
larger, inducing a larger slope and smaller α. This explains
the decrease of α (and α̂) with decreasing temperature.
At lowest line-strengths (kL ≤ 0), finally, the oscillator
strength distribution dominates the slope. The staircase-
like structure “observed” for equal abundances is smeared
out by the actual abundance pattern.

The deeper wind region is controlled by the line-
distribution at lower kL values. Thus, the mass-loss rate
follows the radiative acceleration by iron group elements.
Since increasing kL means also increasing distance from
the star, the outer velocity law and especially the ter-
minal velocity is controlled by light ions11. Here, details
of the distribution (e.g., decreasing α̂) are essential for a
quantitative description.

Our results explain easily the contribution of various
elements to the depth dependent force-multiplier as shown
by Pauldrach (1987, Fig. 10). They also explain the ex-
treme sensitivity of terminal velocities on subtle effects
(small variations in temperature, density and composition,
cf. Pauldrach et al. 1990, Fig. 8) having a decent influence
on the light ions distribution function. Note that only a
small number of lines affect the acceleration in the outer
11 After this study has been finished, we received a preprint
by Vink et al. (1999) who have investigated the so-called bi-
stability jump in hot star winds. By calculating the force-
multipliers in a way similar to our approach, they reached the
same conclusions concerning the relative importance of iron
group elements vs. light ions with respect to Ṁ and v∞.
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part of the wind! In so far, the large observed variance in
v∞/vesc for O-star Supergiants (Howarth & Prinja 1989)
is not surprising at all.

We have stressed the importance of relative abun-
dances, esp. with respect to the their mean value for
the two groups of elements. If there were no differences,
the line distribution would be much more curved (and
the corresponding slopes more depth- and temperature-
dependent) compared to solar conditions. Note that dif-
ferent mean values (e.g., in Pop. III stars) might result
in wind properties which are significantly different from
“present-day” objects.

Regarding the total distribution function, the direct
influence of γ concerning the slope (as discussed above
for the cases of hydrogenic or individual ions, respecively)
is almost completely lost. (Only at weak line-strengths
(log kL < 0), which are marginally contributing to the
line-force, the γ−1 slope becomes visible again.) We have
seen that a variety of different oscillator strength distri-
butions lead to almost the same shape of the resulting
line-strength statistics. What survives, however, is the in-
direct influence: The lower the value of γ, the more lines
are present in the decisive kL range! Thus, γ controls the
vertical offset of the distribution, or, in other words, kCAK

respectively Q̄. By comparing with the actual case, it turns
out that the effective value of γ is of order 1.2 to 1.3, i.e.,
is similar to the corresponding value for hydrogenic ions,
although the specific value for certain ions can be different
(e.g., Feiv has γ ≈ 1).

Since the line acceleration results from the flux (times
frequency) weighted line-strength distribution, we have
briefly shown the influence of the corresponding operation
(cf. also Abbott 1982). Although some differences between
flux-weighted and “normal” distribution become visible
and turn out to be of importance for quantitative calcu-
lations under specific conditions, the principal behaviour
and all prior conclusions are not affected:

Unfortunately and contrasted to the case of hydrogenic
ions which are controlled almost exclusively by the un-
derlying oscillator strength statistics, there is no single
process which dominates the final shape of the total line
strength distribution. Summarizing our above results, the
most important properties which have to be considered
instead are
– the horizontal offset in the distribution of light and

heavy ions, as function of relative abundance;
– the different number of lines from both groups and

their specific dependence on temperature;
– the fact that the distribution at its high kL end is con-

trolled by excitation effects for the predominant ion
species;

– the total line number depending on the (average) os-
cillator strength distribution.

As a consequence of these effects, we have explained the
following properties which should be valid under typical
conditions (relative abundances are solar):

α̂(k1) decreases with decreasing Teff , increasing k1 and de-
creasing global metallicity z,

where the latter effect relies on the argument that a
change in z simply shifts the line-strength distribution
horizontally. From these considerations, it is obvious that
low metallicity and/or low density winds (from dwarfs)
should have a smaller average α̂ than high metallicity and
denser winds, with the implication of lower terminal veloc-
ities and a steeper wind-momentum luminosity relation.
Present observations are consistent with any of the above
theoretical considerations.

In most cases, the variation of α̂ (and the correspond-
ing δ̂) throughout the wind is essential and has to be
accounted for at least in consistent hydrodynamical solu-
tions aiming at a quantitative description; the usual power-
law with constant α̂, δ̂, however, may be justified in hotter
(O-star) winds which tend to have more constant f.-m. pa-
rameters than cooler ones.

In view of this summary, one might question about
the central ingredients which are inevitable to allow for
a radiation force ∝ kα̂1 , with α̂ a rather constant func-
tion over the contributing range of k1. Most important
to this regard is the requirement that the slope of the
line-distribution function is not to steep over several dex
in line-strength. Otherwise, the line-force can no longer
be described in the presumed way, and all scaling re-
lations derived here or elsewhere would change. (E.g.,
Gayley 1995 considered a Gaussian line-strength distribu-
tion as an “academic” example.) Thus, a different world
might be possible only if the gf -distribution were much
steeper as it actually is and the level-density were much
higher. If only the first condition were met and σ reason-
ably large, the distribution would be controlled by 2t/σ
globally, since γ > γcrit, and α = 1 − 2t/σ > 0 again. If,
on the other hand, σ were much smaller, however γ as it
is, no dramatic effects are to be expected since xmax re-
mains small, as a final consequence of the dilution of the
radiation field and density in an expanding medium.

Thus, although the shape of the line-distribution is
determined by various processes, it would require a signif-
icantly different atomic physics (or coupling constants) in
order to prevent radiation driven winds to behave as we
think they do.

We finish this paper with one important comment.
Although our results for line-strength distribution
functions are valid under rather general circumstances (at
least, if one accounts for a consistent description of the
ionizing and illuminating radiation field), the performed
transition to radiative accelerations (and scaling laws!)
presumes at least two conditions to be valid:

First, the effects of line-overlap should be marginal or
at least describable by some (almost) depth-independent
correction factor (applied to kCAK or Q̄, e.g. Puls 1987).
In case of stratified ionization structures with increased
efficiency of multi-line scattering, which are attributed to
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Fig. A1. Schematic sketch of two different kinds of line-number
distributions, case A (left) and B (right). Note the log−log
representation necessary to derive the local slope α−1, in con-
trast to the linear representation of Fig. 1 required to calculate
the line acceleration. Note also that the displayed minimum
line-strength is log kL = 0. For an explanation of the various
symbols, see also Sect. 2.3.2

be responsible for the large observed performance num-
bers of WR-winds (Lucy & Abbott 1993; Springmann &
Puls 1998), additional considerations are required, includ-
ing the role of the optically thick continuum in the wind.
Note, however, that Gayley (1995) pointed to the formal
possibility of inducing large Ṁ by decreasing the value
of α̂ while, e.g., keeping the “standard assumption” of
Qo ≈ Q̄ ≈ 2 000. In our perspective, this might be feasible
if the number of lines from iron group elements were essen-
tially increased in the sub-critical region, e.g. if additional
strong lines from excited levels were present.

Second, the prediction that thin winds should ex-
hibit a smaller average α̂ value with accordingly modi-
fied scaling relations may describe only part of the actual
situation. Due to the importance of velocity curvature
terms in the transonic region (neglected in any CAK-
like hydrodynamical approach), additional effects may
be present which further reduce the mass-loss rate (cf.
Owocki & Puls 1999).

Appendix A: Line force and local slope

In this appendix, we will clarify the question under which
circumstances the local slope of (generalized) line-strength
distribution functions can be equalized to the CAK force
multiplier α. Following Eq. (24) in Sect. 2.3.2, this is pos-
sible under the condition∣∣∣∣αN̄{0,k−}N+

(
k1

k+

)1−α
−
(
k1

k−

)1−α ∣∣∣∣� k1

k−
, (A1)

which depends strongly on the average cumulative line
number N̄{0,k−} (cf. Eq. 25). To proceed further, we have

to investigate two cases. Case A, which is the more realis-
tic one (cf. Sect. 4), comprises a situation where the line-
number distribution has a monotonic curvature in the log,
corresponding to an increase of α for decreasing kL. This
situation is sketched on the left of Fig. A1: Both the total
line number N(0) (as well as N(log kL = 0) denoted by
N0 in our plots) and the average number of lines N̄{0,k−}
lie well below the extrapolated value Ñ . In this case, it
is straightforward to show that the lhs of (A1) obtains its
maximum value for the smallest value possible for N̄{0,k−},
which is N−. Using this value, the inequality becomes

|α− 1| �
(
k1

k−

)α
, (A2)

which under the considered circumstances can be (almost)
always fulfilled as long as α > 0 ! Thus, for monotoni-
cally curved but otherwise unconstrained logN(kL) distri-
butions (case A), the ensemble line acceleration follows the
local (however not necessarily constant) slope of the flux-
weighted and cumulative line-strength distribution func-
tion, as long as this is larger than −1.

Case B (right panel of Fig. A1) displays the situation of
a sharply increasing line number below a certain threshold
value k∗. The asymptotic fit value Ñ is here significantly
smaller than the actual value N(0) and the average value
N̄{0,k−}. In this case, we define N∗ as the number of lines
where the actual distribution and the fitted one cross each
other, at line-strength k∗. To obtain an upper limit for our
inequality (A1), we use the maximum possible value for
N̄{0,k−},

Max(N̄{0,k−}) k− = N(0) k∗ +
∫ k−

k∗

N+k
1−α
+ kα−1

L dkL,

which after some algebra leads to the requirement

N(0)� N∗
(

1 +
(
k1

k∗

)α)
. (A3)

This requirement can be usually fulfilled if k1 is large com-
pared to k∗ (i.e., the sharp increase of line number oc-
curs at relatively small line-strength), and, again, if α is
positive.

In summary, we have shown that the CAK representa-
tion gtot

rad ∝ kα1 with α corresponding to the local slope of
the line-strength distribution function is valid under fairly
general circumstances, if the slope is not too steep in the
region around k1, i.e., 0 < α ≤ 1 locally. Of course, if the
distribution function is curved, this leads immediately to
depth dependent force-multiplier parameters.

Finally, it is important to realize that our derivation
has required some knowledge of the behaviour of optically
thin lines, however did not constrain the distribution of
optically thick lines in any respect. This, of course, is re-
lated to the fact that all optically thick lines behave sim-
ilarly. Thus, the slope of the distribution for kL > k1 is of
no concern as long as we know the actual number of these
lines.
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Appendix B: Line-strength distribution with exponential
cutoff.

In a number of publications related to the calculation of
the line-force instability (e.g., Owocki et al. 1988, however
also Gayley 1995), a slightly modified version of the line-
strength distribution function (10) has been used in order
to prevent the instability from growing at wavelengths
below the numerical grid resolution of order “Sobolev-
length” LS = vth/(dv/dr). To this end, an exponential
cutoff at line-strength kmax has been introduced, where
kmax can be considered as the maximum line-strength
present or treated in the wind. Another argument for in-
troducing this cutoff is given by the requirement of pre-
venting the number of strong lines from becoming smaller
than unity, i.e., only one line stronger than kmax shall be
allowed to be present. The corresponding distribution –
with otherwise constant exponent a – reads

dN(ν, kL) = −No fν(ν) ka−2
L exp(−kL/kmax) dν dkL,(B1)

and the resulting line acceleration is modified by an addi-
tional factor

g(cut)=gtot
rad(Eq. 18)×

[(
1+

k1

kmax

)1−a
−
(

k1

kmax

)1−a]
(B2)

which for k1/kmax → 0 approaches unity, of course. Note,
that k1/kmax = 1/τmax relates to the maximum allowed
optical depth per line at the considered depth point. It
is interesting to investigate for this type of line-strength
distribution the ratio of optically thick to total line-force,
corresponding to our definition of α̂ in Sect. 2.4. For large
values of kmax, compared to k1, this quantity should re-
semble the input value of a. However, for k1 approach-
ing kmax, differences are to be expected since the effec-
tive slope of the distribution function changes, becoming
much steeper, until finally the number of optically thick
lines vanishes and α̂ → 0, as discussed below Eq. (22).
Actually, this is what happens for realistic line distribu-
tions (cf. Fig. A1 and Sect. 4.2.8). In so far, this exercise
provides some analytic understanding with regard to the
behaviour of the effective α̂ value if either k1 grows due
to decreasing density or kmax decreases due to decreasing
metallicity (cf. also Sect. 5).

If we calculate the optically thick line-force from (B1)
by using a lower integration limit of k1 as in (11), we ob-
tain

α̂ (k′) ≈ gthick
rad

gtot
rad

= (B3)

(1− e−1) e−k
′
+ (1 + k′)1−aΓ(a, 1 + k′)− k′1−aΓ(a, k′)(
(1 + k′)1−a − k′1−a

)
Γ(a)

.

Note, that in this example α̂ depends only on the value
of k′ = k1/kmax and the power-law index a, however not
on the individual variables k1 and kmax. Γ(a, x) is here
related to the incomplete Gamma function via Γ(a, x) =

Fig. B1. Ratio of optically thick to total line-force (≈ α̂) as
function of k1/kmax (cf. Eq. B3) and a = 0.7, 0.5, 0.3 (fully
drawn, dotted, dashed), for the line-strength distribution func-
tion with exponential cutoff, Eq. (B1). The triangles dis-
play the local α-values derived from the line-distribution func-
tion itself, corresponding to the case of a = 0.5. Note, that
α(local) < α̂ as soon as (A2) becomes invalid. The small devi-
ations between acceleration ratio and α̂ for small k1/kmax are
due to our approximation leading to Eq. (28)

Γ(a) − γ(a, x). In Fig. B1, we have plotted α̂ as function
of k′ for three values of a = 0.7, 0.5 and 0.3. Obviously, for
k1 → kmax (or vice versa) the effective α̂ becomes consid-
erably smaller than the “input”-value, in agreement with
our findings from Sect. 2.3.2. Note, however, that α̂ > 0
always and especially that it is much larger than the local
α of the line-strength distribution function near kmax!

Appendix C: On the difference of Q̄ and Qo

In this appendix, we want to discuss the relation between
Q̄ and Gayley’s cut-off parameter Qo = vth/c kmax. In
particular and related to the discussion in Sect. 3.3, the
inequality Qo > Q̄ which has been found for cooler atmo-
spheres shall be inspected.

Using the definition of Q̄ and the power-law line-
strength distribution with exponential cutoff, Eq. (B1),
Q̄ can be expressed as

Q̄ =
vth

c

∑ Lνiνi

L
ki

L

→ No

〈
Lνν

L

〉
vth

c

∫ ∞
0

kα−1
L exp(−kL/kmax)dkL =

= No

〈
Lνν

L

〉
vth

c
Γ(α)kαmax, (C1)

where 〈LννL 〉 is an appropriate average of the weight factor,
e.g.,〈
Lνν

L

〉
=
∑ Lνiνi

L ki
L∑

ki
L

. (C2)
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Note, that both Q̄ and the average weight factor depend
essentially on the corresponding values for the strongest
lines, due to the linear dependence on kL, a behaviour
which was already addressed in Gayley’s (1995) paper. In
the previous expression, we have implicitely assumed that
curvature effects concerning α are unimportant, i.e., that
α̂ ≈ α everywhere except at highest line-strengths.

On the other hand, the flux (times frequency)
weighted cumulative line number, evaluted at maximum
line-strength, gives

〈N(kmax)〉 ≈
〈
Lνν

L

〉
|kmax ≈

≈ No

〈
Lνν

L

〉
|kmax

∫ ∞
kmax

kα−2
L exp(−kL/kmax)dkL =

= No

〈
Lνν

L

〉
|kmaxΓ(α− 1, 1)kα−1

max =

= No

〈
Lνν

L

〉
|kmaxΓ(α− 1, 1)kαmax

(
c

vth
Qo

)−1

(C3)

where in the rhs of the first line this number (without
weight!) has been set to unity (i.e., Qo shall be the line-
strength of the single strongest line) and the subscript
“kmax” accounts for the weighting process at the accord-
ing frequency. By comparing the above two expressions,
we obtain for the flux-weighted number of this single
strongest line

〈N(kmax)〉 =

〈
Lνν
L

〉
|kmaxQ̄Γ(α− 1, 1)〈
Lνν
L

〉
QoΓ(α)

=

=

〈
Lνν
L

〉
|kmax〈

Lνν
L

〉 Q̄

Qo

(e−1 − Γ(α, 1))
(1− α)Γ(α)

, (C4)

which can be inverted (again by requiring N(kmax) = 1)
to yield the corresponding line-strength

Qo ≈
〈
Lνν

L

〉−1

Q̄f(α). (C5)

The last factor in this equation (= Γ(α − 1, 1)/Γ(α)) has
a value of 0.14, 0.10 and 0.077 for typical α’s = 0.66, 0.5
and 0.4.

Thus, in cases where the frequential line-distribution is
essentially independent on line-strength and is distributed
according to CAK’s assumption, dN ∝ dν/ν and hence〈
Lνν
L

〉
= 1, Qo should be (slightly) smaller than Q̄, in

contrast to what is “observed” especially for cooler atmo-
spheres. Vice versa, by accounting for the actual similarity
of Q̄ and Qo in hotter atmospheres (Table 2), one might
argue that the “effective” number of lines with strength
Qo shall be of order f(α). Independently from these more
“philosophical” questions (involving uncertainties of order
one dex), the plain fact that the ratio Qo/Q̄ is larger than
unity and increasing for decreasing Teff inevitably leads
to the conclusion that the average factor has to be sig-
nificantly below unity and is decreasing in parallel with
Teff . Both by exploring the frequential line-distribution of
the strongest lines (cf. Fig. 4 and the accompanying text)

as well as by simply calculating the average weight fac-
tor (Eq. C2), it turns out that this is actually the case:
for the same model atmospheres as in Sect. 3.2, we find〈
Lνν
L

〉
= 0.4 for Teff = 50 000 K and

〈
Lνν
L

〉
= 0.003 for

Teff = 10 000 K. Inserting these values and using the de-
rived α-values from Table 2, Qo/Q̄ = 0.35 and 28 are
predicted by means of (C5). The differences to the actual
values of 1.16 and 16, respectively, remain to be attributed
to the deviations from a perfect power-law, especially
at the predominantely contributing high kL-end of the
distribution.

Appendix D: LTE line-strength distribution for
hydrogenic ions

In LTE and using Kramer’s formula, the hydrogen line-
strength reads

kL =
χ̄iλi

ρ

1
sEvth

∝ λi

ρ
gf

(
nl
gl
− nu
gu

)
(D1)

∝ n1

ρ

( 1
n′2
− 1
n2

)−4( 1
n3n′3

)(
e−hνl/kTe − e−hνu/kTe

)
,

where n1 is the ground-state occupation number, hνl, hνu
are the excitation energies of the lower and upper level,
and the dependence on the transition wavelength λi trans-
forms into an additional power of the second factor.
Realizing that the appropriate variable for a further ex-
pansion is given by x = (n/n′)3 < 1, and denoting

k̃(n′, Te) =
kL exp(hν1

kTe
)

C′n′2
(D2)

with hν1 the ground-state ionization energy and C′ a fac-
tor absorbing all “constants” (most important: n1/ρ) in
the equation before, we can write

k̃(n, n′, Te) =
x

(1− x2/3)4

(
K(Te, n

′)−K(Te, n
′)x

2/3)
K(Te, n

′) = exp
(

hν1

kTen′2

)
. (D3)

This equation can be expanded in powers of x, inverted
and solved for n:

x(k̃, n′, Te) =
k̃

K − 1
−
(

1
K − 1

)8/3

×

×
[
4(K − 1)− ln(K)

]
k̃5/3 +O(k̃)7/3

n(kL, n
′, Te) = n′x−1/3 = n′

(
K − 1
k̃

) 1
3

+O(k̃)1/3. (D4)

This expression is valid for not too large line-strengths
kL < C′ exp(−hν1/kTe). Summing up again the number
of lines with line-strengths larger/equal than a given value,
we finally obtain the result given in (50),
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N(kL, Te) =
n′max∑
n′=1

n(kL, n
′, Te)− n′ =

= k
− 1

3
L

(
C′e−

hν1
kTe
) 1

3 f(Te)−
n′max(n′max + 1)

2
, (D5)

f(Te) =
n′max∑
n′=1

n′
5
3

(
e

hν1
kTen′2 − 1

) 1
3

and kL < C′e−
hν1
kTe .

Appendix E: Frequency-integration of the line intensity
distribution function

In this appendix, we give a brief derivation of the
frequency integrated line intensity distribution function,
Eq. (73). Similar to the frequency dependent one, Eq. (61),
which is the starting point of our considerations, we have
to account for different regimes, since the maximum
possible (logarithmic) oscillator strength r̃max depends
both on line intensity and frequency. Furthermore, we
assume that under certain circumstances only levels
below a cutoff xmax shall contribute. In this case then,
all lines with lower levels energetically higher than xmax

are neglected. This generalization will turn out to be
important if NLTE-effects are included into our approach
(cf. Sect. 4.2.3).

Finally, we allow for an integration between 0 < ν <
νmax ≤ ie, since for high ionization energies our line list
may be incomplete (and useless, if one accounts for the
vanishing flux) beyond a certain maximum frequency.

At first note, that the maximum possible oscillator
strength is given by

r̃max = Min
(
ie − ν
t
− l, −lmin

)
,

in accordance with Eq. (64). Accounting additionally for
a possible incompleteness of the level list, x1 ≤ xmax, and
noting that the minimum value for r is given by rmin, we
have to extend this restriction further:

r̃max=Max
(

Min
(
ie−ν
t
−l, xmax

t
−l,−lmin

)
, rmin

)
. (E1)

From this expression, we can derive the maximum fre-
quency until which the integration has to be performed,

νup = Min
(
νmax, νr = ie − t(l + rmin)

)
, (E2)

since for frequencies larger than νr we have r̃max = rmin

and the according number of lines is zero (cf. Eq. 61).
Furthermore, the allowed range of l is given by

lmin ≤ l ≤ lmax =
xmax

t
− rmin, (E3)

where two subranges have to be defined in order to satisfy
Eq. (E1):

At low line intensities, l < xmax/t + lmin, we have to
account for the minimum Min

(
(ie−ν)/t−l, −lmin

)
, which

introduces a threshold frequency νl = ie−t(l−lmin) < νr:

l <
xmax

t
+ lmin :

r̃max =


−lmin for νmax < νl
ie − ν
t − l for νup > ν > νl

−lmin for νl > ν > 0
. (E4)

In the second regime with xmax/t − l < −lmin, the max-
imum oscillator strength −lmin cannot be reached any
longer, and the appropriate threshold frequency νx =
ie − xmax introduces the following possibilities:
xmax

t
+ lmin < l < lmax :

r̃max =


xmax
t − l for νmax < νx

ie − ν
t − l for νup > ν > νx

xmax
t − l for νx > ν > 0

, (E5)

since νr > νx always. (νr = νx is reached only at l = lmax.)
By integrating Eq. (61) over frequency and accounting

for these different cases (four in total), we finally obtain
the following expressions for the function F defined in
Eq. (73).
F (l, t, σ, ie, xmax, νmax, γ, lmin, rmin) =

=
(

10−Almin − 10Armin
)(

10
νmax
σ − 1

)
,(

l <
xmax

t
+ lmin, νmax < νl

)
. (E6)

=
10
A

(
ie
t
− l
)

1− Aσ
t

(
10

νup
σ (1−Aσt )−10

νl
σ (1−Aσt )

)
+

+10−Almin
(

10
νl
σ − 1

)
− 10Armin

(
10

νup
σ − 1

)
,(

l <
xmax

t
+ lmin, νmax > νl

)
. (E7)

=

10
A
(xmax

t
− l
)
− 10Armin

(10
νmax
σ − 1

)
,

(l < lmax, νmax < νx). (E8)

=
10
A

(
ie
t
− l
)

1−Aσt

10
νup
σ (1−Aσt ) − 10

νx
σ

(
1−Aσ

t

)
+10

A
(xmax

t
− l
) (

10
νx
σ −1

)
−10Armin

(
10

νup
σ − 1

)
,

(l < lmax, νmax > νx). (E9)

For convenience, we have summarize the required thresh-
old values below:
νup = Min

(
νmax, νr

)
νr = ie − t(l + rmin)
νl = ie − t(l − lmin)
νx = ie − xmax

lmax =
xmax

t
− rmin.
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Note that due to the specific combinations of energies,
frequencies and temperature derived above, the function
F depends not independently on any of the variables
(t, σ, ie, xmax, νmax), however only on certain ratios: The
line intensity distribution function remains completely un-
changed if the above variable set preserves its ratio with
respect to either t, σ or ie. In the following, we will mostly
consider the normalization with respect to σ, i.e., under-
stand F as function of (t/σ, ie/σ, xmax/σ and νmax/σ).

The most important fact concerning the derived func-
tion is the following: Depending on line intensity and the
specific value of A, the distribution can show three differ-
ent slopes, namely 2t/σ, t/σ and γ−1, where the first one
and the last have been found already for the frequency
dependent distribution function (cf. Sect. 4.2.1), whereas
the second one is a new feature arising from the frequency
integration.

Let us briefly consider under which condition which
slope will show up. At first, assume that xmax = νmax = ie,
i.e., both the level list and the line list shall be complete. In
this case, Eqs. (E7) and (E9) have to be applied (νx = 0).

For (very) low line intensities, l is approximately lmin

and νl ≈ ie = νup. Thus, the second term in (E7) domi-
nates and the result is similar to (E6), with maximum fre-
quency ie. In consequence, F is independent on l and the
apparent slope of the distribution is 2t/σ (remember, that
∆N(l) ∝ 102lt/σF ). In this situation, for (almost) all pos-
sible line frequencies the contributing oscillator strengths
stretch from rmin to rmax = −lmin.

For larger l then, νl decreases, whereas νup = ie for
l being smaller than −rmin. We encounter the case that
the maximum possible oscillator strength −lmin can no
longer be reached for large frequencies (cf. Eq. (E4), mid-
dle panel), and the apparent slope is controlled by the sign
of A. For negative and not too small A, i.e., γ > γcrit,

γcrit = 1 + 2t/σ, (E10)

the lower end of the oscillator strength distribution dom-
inates by far, and F depends solely on the last term of
(E7). In consequence, ∆N retains its slope of 2t/σ.

For positive A, i.e., γ < γcrit, the situation is differ-
ent. Now the first bracket of (E7) dominates, giving rise
(via the combination of exponents 2lt/σ + A(ie/t − l) +
νl/σ(1−Aσ/t)) to an exact slope of t/σ, since the depen-
dence on γ cancels completely. This behaviour is finally
reached also for negative A and larger l : For l > −rmin,
the upper frequential boundary νup is νr, which has the
same dependency on l as νl. Additionally, the impact of
small oscillator strengths becomes smaller, simply because
the last term in (E6) decreases with νr as function of l.

Nothing changes for negativeA and even larger l, when
Eq. (E9) applies. The slope remains at its value t/σ.
For positive A, however, there is a dramatic change for
l > ie/t + lmin. Due to the interrelation of line intensity
and r̃max (cf. the discussion in Sect. 4.2.1), the dependence
on t/σ cancels and only the γ − 1 slope survives (the 2nd

Fig. E1. Frequency integrated line intensity distribution func-
tion: variation with γ and t/σ. Basic parameters similar to the
case of Niv, ie/σ = 3.0, νmax = xmax = ie = 620 kK,
lmin = −1, rmin = −8 and logN(lmax) = 3.6. Fully
drawn: γ = 1.0, t/σ = 0.23 (corresp. to T = 30 000 K);
dotted: γ = 1.3, 1.6, 3.0, t/σ = 0.23. Dashed-dotted:
γ = 1.0, t/σ = 0.93 (corresponding to T = 120 000 K);
dashed: γ = 1.3, 1.6, 3.0, t/σ = 0.93

term in (E9) being now the dominating one). Thus for γ
(well) below γcrit the apparent slope at high line intensi-
ties is coupled to the oscillator strength statistics. Finally
if γ ≈ γcrit (corresponding to the case A = 0 which cannot
be treated by the above formalism), it turns out that the
slope at large l smoothly changes from (γ − 1) to t/σ.

In summary, we have the following behaviour of ∆N
if xmax = νmax = ie:

γ > γcrit : log∆N ∝
{

2t
σ l for l < −rmin
t
σ l for l > −rmin

(E11)

γ <∼ γcrit : log∆N ∝


2t
σ l for l ≈ lmin

t
σ l for l < ie

t + lmin

Min
(
(γ − 1), tσ

)
l

for l > ie
t + lmin.

(E12)

Figure E1 illustrates the described behaviour by means
of the line intensity distribution function of Niv, normal-
ized to logN(lmax) = 3.6. Note that the ordinate stretches
to (unphysical) negative values, in order to display the
changes of apparent slope as function of l.

We have considered two case, namely t/σ = 0.23 and
0.93, respectively, to demonstrate the dependence on γcrit.
In the first case then, γcrit = 1.46, and the fully drawn
line (γ = 1.0) and the dotted ones γ = 1.3, 1.6, 3.0 dis-
play the resulting distribution functions. As predicted by
Eq. (E12), the curve for γ = 1.0 displays two effective
slopes, namely t/σ and (γ − 1), where the dividing line
intensity is given by ie/t + lmin = 12. For γ = 1.3, only
one slope (t/σ) is present due to the third condition in



J. Puls et al.: Line statistics and radiative driving. XIV. 63

Fig. E2. Frequency integrated line intensity distribution func-
tion: variation with νmax and xmax. Basic parameters as in
Fig. E1 with T = 30 000 K and γ = 1.0. Fully drawn:
xmax = νmax = ie; dotted: xmax = ie, νmax = 400, 200, 100 kK;
dashed: νmax = ie, xmax = 400, 200, 100 kK

Eq. (E12). In contrast, the behaviour for γ = 1.6 and 3
(> γcrit, Eq. (E11)) depends on 2t/σ and t/σ, with a cor-
responding boundary at l = −rmin = 8 in our example.

For the larger value of t/σ with γcrit = 2.86, we see
the transition of slope t/σ to γ − 1 at l = ie/t+ lmin = 2
for the curves with γ = 1.0 (dashed-dotted), γ = 1.3 and
1.6 (dashed). Only the case with γ = 3 > γcrit reaches
its asymptotic value of t/σ ≈ 1.9, where also the steeper
slope of 2t/σ for l < −rmin is clearly visible.

In Fig. E2 we demonstrate the influence of either vary-
ing the highest energetic level (xmax) or the maximum line
frequency (νmax), if all other parameters are kept constant.
As long as xmax = ie (dotted curves), the only influence of
decreasing νmax concerns the region with l < ie/t + lmin,
i.e., Eq. (E6) (partly) replaces Eq. (E7), where the largest
influence is close to lmin. Only for very small values of νmax

the complete first interval is affected. In consequence, even
for γ < γcrit the apparent slope becomes 2t/σ, since F de-
pends no longer on l.

In contrast, by diminishing xmax while keeping νmax =
ie (dashed curves), the slope of the first interval is barely
affected, unless xmax becomes (very) small compared to ie
so that the transition value is close to lmin (cf. E12, first
panel). The major effect of decreasing xmax, however, is by
shifting the dividing line (which is now a linear function of
xmax) to smaller line intensities. Thus, a line-distribution
with xmax different from ie resembles the line-distribution
of a similar ion, however with much smaller ionization en-
ergy. This behaviour turns out to be important if one con-
siders the NLTE line-strength statistics. Finally, if xmax

approaches zero, the line distribution becomes indepen-
dent on any excitation effects. This limiting case, which
corresponds to accounting for resonance lines only, leads

Fig. E3. Frequency integrated line intensity distribution func-
tion: saturation effect. Basic parameters as in Fig. E2. Fully
drawn: xmax = νmax = ie; dashed: xmax = 400 kK, νmax = ie;
dotted: xmax = 400 kK, νmax = 500, 400, 300 kK; dashed-
dotted: “saturation” limit for νmax ≤ 220 kK

to a line-statistics influenced solely by the underlying
gf -distribution.

Figure E3 illustrates the effect of diminishing both xmax

and νmax. In principle, the effects are similar to the cases
studied above, namely the transition value is changed via
xmax, and the slope of the first region increases to 2t/σ.
However, there exists another interesting effect, displayed
by the dashed dotted curve: If the maximum considered
frequency νmax falls below the value of νx = ie − xmax,
the distribution function becomes “saturated”, i.e., does
no longer change in shape (of course, the absolute value
of F and thus the total line number decreases with νmax).
The reason for this saturation is given by the fact that
Eqs. (E6) and (E8) now control the behaviour of F , and
that for νmax < νx this function depends on νmax solely
by a constant factor (10νmax/σ − 1) for all l.

Note, that in those cases when xmax is small compared
to ie (as is typical under NLTE-conditions, see Sect. 4.2.3),
this condition applies for fairly large νmax. In other words:
The shape of the function is the same for all cutoff fre-
quencies smaller than ie − xmax: At maximum two slopes
are present, namely either 2t/σ and γ − 1 for γ < γcrit or
2t/σ for γ > γcrit. This fact is essential for flux-weighted
line-strength distribution function (Sect. 4.2.8), since the
maximum frequency which has to be considered for this
function is fairly small due to the decreasing flux at high
energies.
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