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Radiation effect on viscous flow of a nanofluid
and heat transfer over a nonlinearly stretching
sheet
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Abstract

In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching

sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A

similarity transformation was used to transform the governing partial differential equations to a system of nonlinear

ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme

was used to obtain the solution of the boundary value problem. The variations of dimensionless surface

temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the

problem, which include the nanoparticle volume fraction j, the nonlinearly stretching sheet parameter n, the

thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent

validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem

of Cortell for local Nusselt number without taking the effect of nanoparticles.
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Background
The problem of viscous flow and heat transfer over a

stretching sheet has important industrial applications,

for example, in metallurgical processes, such as drawing

of continuous filaments through quiescent fluids,

annealing and tinning of copper wires, glass blowing,

manufacturing of plastic and rubber sheets, crystal

growing, and continuous cooling and fiber spinning, in

addition to wide-ranging applications in many engineer-

ing processes, such as polymer extrusion, wire drawing,

continuous casting, manufacturing of foods and paper,

glass fiber production, stretching of plastic films, and

many others. During the manufacture of these sheets,

the melt issues from a slit and is subsequently stretched

to achieve the desired thickness. The final product with

the desired characteristics strictly depends upon the

stretching rate, the rate of cooling in the process, and

the process of stretching. In view of these applications,

Sakiadis [1,2] investigated the boundary-layer flow of a

viscous fluid past a moving solid surface; various aspects

of the problem have been explored by many authors in

the past decades.

However, all these studies are restricted to linear

stretching of the sheet. It is worth mentioning that the

stretching is not necessarily linear. In view of this,

Kumaran and Ramanaih [3] studied flow over a quadra-

tic stretching sheet, but only a few recent studies

focused on exponentially and nonlinearly stretching

sheet are cited here. Magyari and Keller [4], Elbashbeshy

[5], Khan and Sanjayanand [6], Sanjayanand and Khan

[7], Sajid and Hayat [8], and Partha et al. [9] studied the

heat transfer characteristics of viscous and viscoelastic

fluid flows over an exponentially stretching sheet. Vajra-

velu [10], Vajravelu and Cannon [11], Cortell [12-15],

Prasad et al. [16], Afzal [17], and Nandeppanavar et al.

[18] studied the effects of various parameters governing

the flow of a viscous fluid over a nonlinearly stretching

sheet.

A nanofluid is a new class of heat transfer fluids that

contain a base fluid and nanoparticles. The use of addi-

tives is a technique applied to enhance the heat transfer

performance of base fluids. The thermal conductivity of

* Correspondence: m_r_eid@yahoo.com
2Department of Science and Mathematics, Faculty of Education, Assiut

University, The New Valley 72111, Egypt

Full list of author information is available at the end of the article

Hady et al. Nanoscale Research Letters 2012, 7:229

http://www.nanoscalereslett.com/content/7/1/229

© 2012 Hady et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:m_r_eid@yahoo.com
http://creativecommons.org/licenses/by/2.0


ordinary heat transfer fluids is not adequate to meet

today’s cooling rate requirements. Nanofluids have been

shown to increase the thermal conductivity and convec-

tive heat transfer performance of the base liquids. Nano-

fluids are suspensions of submicronic solid particles

(nanoparticles) in common fluids. The term was coined

by Choi [19]. The characteristic feature of nanofluids is

thermal conductivity enhancement, a phenomenon

observed by Masuda et al. [20]. This phenomenon sug-

gests the possibility of using nanofluids in advanced

nuclear systems [21]. A comprehensive survey of con-

vective transport in nanofluids was made by Buongiorno

[22], who says that a satisfactory explanation for the

abnormal increase of the thermal conductivity and visc-

osity is yet to be found. He focused on further heat

transfer enhancement observed in convective situations.

Very recently, Kuznetsov and Nield [23] have examined

the influence of nanoparticles on natural convection

boundary-layer flow past a vertical plate using a model

in which Brownian motion and thermophoresis are

accounted for. The authors have assumed the simplest

possible boundary conditions, namely those in which

both the temperature and the nanoparticle fraction are

constant along the wall. Furthermore, Nield and Kuznet-

sov [24,25] have studied the Cheng and Minkowycz [26]

problem of natural convection past a vertical plate in a

porous medium saturated by a nanofluid. The model

used for the nanofluid incorporates the effects of Brow-

nian motion and thermophoresis for the porous med-

ium. The Darcy model has been employed.

Hamad and Bashir [27] numerically investigated the

problem of forced convection heat transfer to the power

law non-Newtonian nanofluid from the stretching sur-

face. Khan and Pop [28] focused on the problem of

laminar fluid flow, which results from the stretching of

a flat surface in a nanofluid. A similarity solution of the

steady boundary layer flow near the stagnation-point

flow on a permeable stretching sheet in a porous med-

ium saturated with a nanofluid and in the presence of

internal heat generation/absorption was theoretically

studied by Hamad and Pop [29]. Hamad and Ferdows

[30] investigated the heat and mass transfer analysis for

boundary layer stagnation-point flow over a stretching

sheet in a porous medium saturated by a nanofluid with

internal heat generation/absorption and suction/blowing.

The problem of laminar fluid flow, which results from

the stretching of a vertical surface with variable stream

conditions in a nanofluid, was investigated numerically

by Kandasamy et al. [31]. Makinde and Aziz [32] studied

numerically the boundary layer flow induced in a nano-

fluid due to a linearly stretching sheet. Hamad [33]

examined the convective flow and heat transfer of an

incompressible viscous nanofluid past a semi-infinite

vertical stretching sheet in the presence of a magnetic

field. All these researchers studied the linear stretching

sheet in the nanofluid, but only the numerical investiga-

tion by Rana and Bhargava [34] studied the steady lami-

nar boundary fluid flow, which results from the non-

linear stretching of a flat surface in a nanofluid, and

incorporated the effects of Brownian motion and ther-

mophoresis. Also, more recently, Nadeem and Lee [35]

investigated analytically the problem of steady boundary

layer flow of nanofluid over an exponential stretching

surface including the effects of Brownian motion para-

meter and thermophoresis parameter.

Presentation of the hypothesis
To the authors’ knowledge, no studies have thus far

been communicated with regard to the boundary layer

viscous flow and heat transfer of a nanofluid past a non-

linearly stretching sheet in the presence of the radiation

effect in a one-phase model. The aim of the present

paper is therefore to extend the work of Cortell [13] by

taking the steady thermal boundary-layer flow with non-

linearly stretching sheet in a nanofluid. The present

study is of immediate interest to all those processes

which are highly affected with heat enhancement con-

cept, e.g., cooling of metallic sheets or electronic chips,

etc. An efficient numerical shooting technique with a

fourth-order Runge-Kutta scheme was used to solve the

normalized boundary layer equations, and the effects of

nanoparticle volume fraction j, nonlinearly stretching

sheet parameter n, thermal radiation parameter NR, and

viscous dissipation parameter Ec are described in details

and are further presented in tabular form.

Testing the hypothesis
Problem formulation

We consider a steady, incompressible, laminar, two-

dimensional boundary layer flow of a viscous nanofluid

past a flat sheet coinciding with the plane y = 0 and the

flow being confined to y > 0. The flow is generated due

to nonlinear stretching of the sheet caused by the simul-

taneous application of two equal and opposite forces

along the x-axis. Keeping the origin fixed, the sheet is

then stretched with a velocity uw(x) = Cxn, where C is a

constant, n is a nonlinear stretching parameter, and x is

the coordinate measured along the stretching surface,

varying nonlinearly with the distance from the slit. A

schematic representation of the physical model and

coordinate system is depicted in Figure 1. The thermo-

physical properties of the nanofluid are given in Table 1

(see [36]). The pressure gradient and external forces are

neglected. The basic steady conservation of mass,

momentum, and thermal energy equations for nanofluid

by using usual boundary-layer approximations in the

presence of radiation and viscous dissipation can be

written in Cartesian coordinates x and y as:
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The associated boundary conditions of Equations 1, 2,

and 3 can be written as:

u = uw(x) = Cxn, v = 0; T = Tw(x) = T∞ + bxm at y = 0;

u → 0; T → T∞ as y → ∞,
(4)

where x and y denote the Cartesian coordinates along

the sheet and normal to it, and u and v are the velocity

components of the nanofluid in the x- and y-directions,

respectively. n and m are the nonlinear stretching para-

meter and the surface temperature parameter, respec-

tively. The temperature on the wall is Tw, and the

ambient is held at constant temperature T
∞
. rnf and μnf

are the density and effective viscosity of the nanofluid,

and anf and υnf are the thermal diffusivity and the kine-

matic viscosity, respectively, which are defined as (see

Khanafer et al. [37]):

υnf =
µnf

ρnf
, ρnf = (1 − φ)ρf + φρs, µnf =

µf

(1 − φ)2.5
, αnf =

knf

(ρcp)
nf

,

(ρcp)nf = (1 − φ) (ρcp)f + φ(ρcp)s,
knf

kf
=

(ks + 2kf ) − 2φ(kf − ks)

(ks + 2kf ) + 2φ(kf − ks)
.

(5)

Here, j is the solid volume fraction, where μf is the

viscosity of the basic fluid, rf and rs are the densities

of the pure fluid and nanoparticle, respectively, (rcp)f
and (rcp)s are the specific heat parameters of the base

fluid and nanoparticle, respectively, and kf and ks are

the thermal conductivities of the base fluid and nano-

particle, respectively. Using the Rosseland approxima-

tion for radiation, the radiative heat flux is simplified

as:

qr = −
4σ ∗

3k∗

∂T4

∂y
, (6)

where s* and k* are the Stefan-Boltzmann constant

and the mean absorption coefficient, respectively. We

assume that the temperature differences within the flow,

such as the term T4, may be expressed as a linear func-

tion of temperature. Hence, expanding T4 in a Taylor

series about a free stream temperature T
∞
and neglect-

ing higher-order terms, we get:

T4 ∼= 4T3
∞T − 3T4

∞. (7)

From Equation 3 and in view of Equations 6 and 7, it

is seen that the effect of radiation is to enhance the

thermal diffusivity. If we take NR = knf k
∗/[4σ ∗T3

∞] as the

radiation parameter, Equation 3 becomes:

u
∂T

∂x
+ v

∂T

∂y
=

αnf

k0

∂2T

∂y2
+

υnf

(cp)
nf

(

∂u

∂y

)2

, (8)

where k0 =
3NR

3NR + 4
. It is worth citing here that the

classical solution for energy equation, Equation 8, with-

out thermal radiation influence can be obtained from

the above equation, which reduces to

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
as NR ®∞ (i.e., k0 ® 1) and elimi-

nates viscous dissipation.

Figure 1 A schematic diagram of the physical model.

Table 1 Thermo-physical properties of fluid and

nanoparticles (Oztop and Abu-Nada [36]).

Physical properties Fluid phase (water) Cu Al2O3 TiO2

Cp (J/kgK) 4179 385 765 686.2

r (kg/m3) 997.1 8933 3970 4250

k(W/mK) 0.613 401 40 8.9538

b ×105 (K-1) 21 1.67 0.85 0.9
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By introducing the following non-dimensional vari-

ables:

η = y

√
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2υf
x
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2

[
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]

, θ(η) =
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,

(9)

then the governing Equations 1, 2, and 8 reduce to:
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so that all similar solutions put m = 2n in Equation

11, which becomes:

1
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(
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4n

n + 1
f ′θ
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= 0, (12)

and the transformed boundary conditions (Equation 4)

become:

f (0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(∞) → 0, θ(∞) → 0,
(13)

where Pr = υf/af is the Prandtl number, and Ec =

uw
2/[(cp)f(Tw - T

∞
)] is the Eckert number. In the above

equations, primes denote differentiation with respect

to h.

It is worth mentioning that Equation 10 with the

boundary conditions in Equation 13, with n = 0, is the

classical Blasius flat-plate flow problem, and a detailed

numerical study of that problem has been carried out

by the author of this work. For the linearly stretching

boundary problem (i.e., n = 1), the exact solution for f

is f(h) = 1 - e-h; this exact solution is unique, while for

the nonlinearly stretching boundary problem (i.e., n ≠

1), there is no exact solution. The quantities of practi-

cal interest in this study are the skin friction coeffi-

cient Cf and the local Nusselt number Nux, which are

defined as:

Cf =
2µnf

ρf (uw(x))2

(

∂u

∂y

)

y=0

; Nux =

−knf
∂T

∂y

∣

∣

∣

∣
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x
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.
(14)

Using Equation (9), the quantities (14) can be

expressed as:

√

C

2υf
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√
n + 1

(1 − φ)2.5
x
−

n + 1

2 f ′′(0) (15)

√

2υf

C
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√
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kf
x

n + 1

2 θ ′(0). (16)

Results and discussion
In order to get the physical insight into the flow pro-

blem, comprehensive numerical computations are con-

ducted for various values of the parameters that

describe the flow characteristics, and the results are illu-

strated graphically. The system of nonlinear ordinary

differential Equations 10 and 12 with the boundary con-

ditions (Equation 13) are integrated numerically by

means of the efficient numerical shooting technique

with a fourth-order Runge-Kutta scheme (MATLAB

package). The step size h = 0.001 was used while

obtaining the numerical solution with hmax = 6. The

physical quantities of interest here are the skin friction

coefficient Cf and the Nusselt number Nux, which are

obtained and given in Equations 15 and 16. The distri-

butions of the velocity f’(h), the temperature θ(h) from

Equations 10 and 12, the skin friction at the surface,

and the Nusselt number for different types of nanofluids

are shown in Figures 2,3,4,5,6,7,8,9,10,11,12,13,14.

We consider three different types of nanoparticles,

namely, copper (Cu), alumina (Al2O3), and titanium

oxide (TiO2), with water as the base fluid. Table 1

shows the thermo-physical properties of water and the

elements Cu, Al2O3, and TiO2. The Prandtl number of

the base fluid (water) is kept constant at 6.2. It is worth

mentioning that this study reduces the governing Equa-

tions 10-12 to those of a viscous or regular fluid when j

= 0. In order to verify the accuracy of the present

method, we have compared our results with those of

Cortell [12,13] for the rate of heat transfer - θ’(0) in the

absence of the nanoparticles (j = 0), without (NR ® ∞

(i.e., k0 = 1)) and with thermal radiation parameter. The

comparisons in all the above cases are found to be in

excellent agreement, as shown in Tables 2 and 3. Table

4 depicts the skin friction at the surface - f“(0) for var-

ious values of nonlinear stretching sheet n, with j = 0.1,

Pr = 6.2, Ec = 0.5, and NR = 5 for different types of

nanoparticles when the base fluid is water. It can be

seen from Table 4 that |f“(0)| increases with an increase

in the nonlinear stretching parameter n, and the Cu

nanoparticles are the highest skin friction, followed by

TiO2 and Al2O3.

Figures 2 and 3 illustrate the effect of nanoparticle

volume fraction j on the nanofluid velocity and tem-

perature profile, respectively, in the case of Cu nanopar-

ticles and water base fluid (Pr = 6.2) when j = 0, 0.05,

0.1, and 0.2, with Ec = 0.1, n = 10, and NR = 1. It is
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clear that, as the nanoparticles volume fraction

increases, the nanofluid velocity decreases, and the tem-

perature increases. These figures illustrate this

agreement with the physical behavior. When the volume

of nanoparticles increases, the thermal conductivity

increases, and then the thermal boundary layer thickness

 

Figure 2 Effects of nanoparticle volume fraction j on velocity distribution f’(h) in the case of Cu-water.

Figure 3 Effects of nanoparticle volume fraction j on temperature profiles θ(h) in the case of Cu-water.
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Figure 4 Parameter n on velocity distribution f’(h) in the case of Cu-water. Effects of nonlinearly stretching sheet parameter n on velocity

distribution f’(h) in the case of Cu-water.

Figure 5 Parameter n on temperature profiles θ (h) in the case of Cu-water. Effects of nonlinearly stretching sheet parameter n on

temperature profiles θ(h) in the case of Cu-water.
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increases. Figures 4 and 5 depict the effect of nonli-

nearly stretching sheet parameter n on velocity distribu-

tion f’(h) and temperature profile θ(h), respectively.

Figure 4 illustrates that an increase of nonlinear

stretching sheet parameter n tends to decrease the

nanofluid velocity in the case of Cu-water when n =

0.75, 1.5, 3, 7, and 10, with Ec = 0.1, NR = 1, and j =

0.1. Furthermore, Figure 5 shows that increasing the

Figure 6 Effects of viscous dissipation parameter Ec on temperature profiles θ (h) in the case of Cu-water.

Figure 7 Effects of thermal radiation parameter NR on temperature profiles θ (h) in the case of Cu-water.
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nonlinear stretching sheet parameter n tends to decrease

the temperature distribution the same values, thus lead-

ing to higher heat transfer rate between the nanofluid

and the surface. The effect of the viscous dissipation

parameter Ec on the temperature profile in the case of

Cu-water when the Eckert number Ec = 0, 0.5, 1, 1.5, 2,

and 2.5 with n = 10, NR = 1, and j = 0.1 is shown in

Figure 6. It is clear that the temperature distribution

increases with an increase in the viscous dissipation

parameter Ec. Figure 7 shows the influence of thermal

Figure 8 Effects of thermal radiation parameter NR on temperature profiles θ (h) for different types of nanoparticles.

Figure 9 Effects of viscous dissipation parameter Ec on temperature profiles θ (h)for different types of nanoparticles.
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radiation parameter NR on the temperature profile in

the case of Cu-water. It is clear that the temperature

decreases with an increase in the thermal radiation

parameter NR; this leads to an increase in the heat

transfer rate. Moreover, Figure 8 shows this effect of the

thermal radiation parameter on the temperature

Figure 10 Parameter n on temperature profiles θ (h)for different types of nanoparticles. Effects of nonlinearly stretching sheet parameter

n on temperature profiles θ (h) for different types of nanoparticles.

 

 

 

Figure 11 Parameter n on skin friction coefficient for different types of nanoparticles. Effects of nonlinearly stretching sheet parameter n

on skin friction coefficient for different types of nanoparticles.
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distribution but for the different types of nanoparticles

with water as the base fluid. It can be seen from Figure

8 that θ(h) decreases with an increase in the thermal

radiation parameter as shown in Figure 7, and the Cu

nanoparticles have the highest value of temperature

distribution than the nanoparticles Al2O3 and TiO2. The

influence of Ec and n on the temperature profiles for all

types of nanoparticles is shown in Figures 9 and 10,

respectively. It is found that the temperature decreases

with n and increases with Ec as shown in Figures 5 and

Figure 12 Effects of thermal radiation parameter NR on heat transfer rate for different types of nanoparticles.

Figure 13 Effects of viscous dissipation parameter Ec on heat transfer rate for different types of nanoparticles.
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6, respectively, and the TiO2 nanoparticles proved to

have the highest cooling performance for this problem.

The influence of nonlinear stretching sheet n on the skin

friction at the surface -f’’ (0) with NR = 5, Pr = 6.2, j = 0.1,

and Ec = 0.5 is shown in Figure 11. It can be noticed that,

from Table 4 and Figure 11, the numerical values of |f’’

(0)| for different kinds of nanofluids increase with an

increase in the nonlinear stretching parameter n. This

implies an increment of the skin friction at the surface

where Cu nanoparticles have the highest skin friction than

the other nanoparticles. Figures 12,13,14 display the beha-

vior of the heat transfer rates under the effects of NR, Ec,

and n, respectively, using different nanofluids for Pr = 6.2

and j = 0.1. These figures show that, when using different

kinds of nanofluids, the heat transfer rates change, which

means that the nanofluids will be important in the cooling

and heating processes. It can be noticed from the results

above that, as expected, the heat transfer rate increases

with an increase in the thermal radiation parameter NR

and nonlinear stretching sheet parameter n, and decreases

rapidly with an increase in the viscous dissipation para-

meter Ec.

Implications of the hypothesis
The problem of boundary-layer flow and heat transfer in

a viscous nanofluid over a nonlinearly stretched non-iso-

thermal moving flat surface in the presence or absence

of thermal radiation using the Rosseland approximation

for the radiative heat flux was analyzed. The governing

partial differential equations were converted to ordinary

differential equations by using a suitable similarity trans-

formation and were then solved numerically via shoot-

ing method by employing throughout our calculations

the fourth-order Runge-Kutta scheme (MATLAB pack-

age). The effects of the solid volume fraction j, thermal

radiation parameter NR, nonlinear stretching sheet para-

meter n, and the viscous dissipation parameter Ec on

the flow and heat transfer characteristics are determined

for three kinds of nanofluids: copper, alumina, and tita-

nium oxide.

Figure 14 Parameter n on heat transfer rate for different types of nanoparticles. Effects of nonlinearly stretching sheet parameter n on

heat transfer rate for different types of nanoparticles.

Table 2 Comparison of - θ’ (0) with j = 0 and NR ® ∞ (i.

e., k0 = 1).

- θ’(0)

Ec n Pr = 1 Pr = 5

Cortell [12] Present study Cortell [12] Present study

0.0 0.75 1.252672 1.253454 3.124975 3.123518

1.5 1.439393 1.439378 3.567737 3.566532

7 1.699298 1.698781 4.185373 4.184386

10 1.728934 1.728383 4.255972 4.254939

0.75 1.219985 1.220285 3.016983 3.013524

0.1 1.5 1.405078 1.404805 3.455721 3.453154

7 1.662506 1.661742 4.065722 4.063757

10 1.691822 1.691031 4.135296 4.133338
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1. The increase of the solid volume fraction j and the

nonlinear stretching sheet parameter n leads to the

decrease of dimensionless surface velocity; this yields an

increase in the skin friction at the surface.

2. An increment in the solid volume fraction j and

the Eckert number Ec yields an increment in the nano-

fluid’s temperature; this leads to a rapid reduction in the

heat transfer rates.

3. An increase in the thermal radiation parameter NR

and the nonlinear stretching sheet parameter n yields a

decrease in the nanofluid’s temperature, which leads to

an increase in the heat transfer rates.

4. The TiO2 nanoparticles proved to have the highest

cooling performance for this problem than the other

two types of nanoparticles (cu and Al2O3 nanoparticles).

Greek symbols

a: thermal diffusivity; h: similarity variable; θ: dimension-

less temperature; μ: effective viscosity; υ: kinematic visc-

osity; r: density; s*: Stefan-Boltzmann constant; (rCp)nf,
heat capacitance of the nanofluid; (rCp)f: heat capacity of

the fluid; (rCp)s: effective heat capacity of the nanoparti-

cle material; j: nanoparticle volume fraction.

Subscripts

f: fluid fraction; nf: nanofluid fraction; s: solid fraction;

w: condition at the wall; ∞: stream function condition at

infinity.

Endnotes
This is just a theoretical study; every experimentalist can

check it experimentally with our consent.

Abbreviations

Nomenclature

b: constant; C: physical parameter related with stretched surface; Cf: skin

friction coefficient; cp: specific heat; Ec: Eckert number; f: dimensionless

stream function; k: thermal conductivity; k*: mean absorption coefficient; m:
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Table 3 Comparison of - θ’(0) for various values of

thermal radiation parameter NR with j = 0 (regular fluid).

NR Pr Ec n -θ’(0)

Cortell [13] Present study

1.5 - 0.832709

0.05 3 - 0.923306

1 1 10 - 1.011487

1.5 0.823356 0.824127

0.1 3 0.913773 0.914364

10 1.001573 1.002161

1.5 - 0.755467

0.5 3 - 0.842838

10 - 0.927554

1.5 1.295677 1.295790

0.05 3 - 1.429987

10 - 1.560471

1.5 1.280575 1.280680

2 0.1 3 - 1.414247

10 - 1.544069

1.5 1.159542 1.159609

0.5 3 - 1.288335

10 - 1.412856

0.05 - 2.209436

5 0.1 1.5 2.178778 2.178846

0.5 - 1.934126

0.05 - 1.584762

2 2 0.1 1.5 1.564987 1.565049

0.5 - 1.407369

0.05 - 1.925487

5 2 0.1 1.5 1.833888 1.834037

0.5 - 1.639374

Table 4 Values related to the skin friction for different

values of n.

n -f“(0)

Cu Al2O3 TiO2

0 0.737218 0.626792 0.633534

1 1.174748 0.998779 1.009523

2 1.293408 1.099665 1.111494

3 1.349309 1.147192 1.159532

4 1.381883 1.174886 1.187525

5 1.403223 1.193030 1.205863

10 1.450669 1.233367 1.246635

20 1.477159 1.255889 1.269399

50 1.494071 1.270267 1.283932

100 1.499890 1.275215 1.288933

With j = 0.1, Pr = 6.2, Ec = 0.5, and NR = 35.
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