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Abstract

This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is
due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the
presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into
self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis
method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of
interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and
analyzed.
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Introduction

The study of boundary layer flow and heat transfer over a

stretching sheet has gained considerable attention due to its

numerous practical applications such as paper production, hot

rolling, drawing of plastic films, annealing and tinning of copper

wires and metal spinning. Wang [1] proposed the problem of

unsteady two-dimensional boundary layer flow of liquid film on

unsteady stretching sheet. Later Andersson et al. [2] extended

Wang’s problem for heat transfer effects by considering time-

dependent wall temperature. Further Elbashbeshy and Bazid [3]

investigated the thermal boundary layer in the time dependent

flow (occupying a semi-infinite domain) over an unsteady

stretching surface. Ishak et al. [4] studied heat transfer over an

unsteady stretching permeable surface with prescribed wall

temperature. Radiation effects on the flow and heat transfer over

an unsteady stretching surface with internal heat generation were

analyzed by Abd El-Aziz [5]. Shateyi and Motsa [6] examined the

radiation effects on the time dependent flow of liquid film on

unsteady stretching sheet with heat and mass transfer. They

obtained an analytic solution of the resulting problem by

Chebyshev pseudo-spectral collocation method. Tsai et al. [7]

investigated the flow and heat transfer over an unsteady stretching

surface with non-uniform heat source. Mukhopadhyay [8]

numerically analyzed the flow over unsteady permeable stretching

sheet with variable suction and time-dependent surface temper-

ature. In this study, the fluid with variable viscosity and variable

thermal conductivity was taken into consideration. Analytic

solutions for radiation effects on mixed convection flow of Jeffrey

fluid and heat transfer past an unsteady stretching sheet were

provided by Hayat et al. [9]. Three dimension elastico-viscous flow

over an unsteady stretching sheet has been discussed by Hayat

et al. [10]. Mukhopadhyay [11] extended the work [8] for flow

near a stagnation-point with variable free stream. MHD stagna-

tion-point flow of an electrically conducting Casson fluid past an

unsteady stretching surface was explored by Bhattacharyya [12].

Yang and Baleanu [13] investigated the fractal heat conduction

problem. They solved by using local fractional variation iteration

method. Yang et al. [14] presented local fractional Fourier series

solutions for non-homogeneous heat equations arising in fractal

heat flow with local fractional derivative.

It has now been widely recognized that in industrial and

engineering applications, non-Newtonian fluids are more suitable

than Newtonian fluids. Due to the flow diversity in nature, the

rheological features of non-Newtonian fluids cannot be captured

by a single constitutive relationship between stress and shear rate.

For this reason, a variety of non-Newtonian fluid models

(exhibiting different rheological effects) are available in the

literature [15,16]. Amongst those is the Powell-Eyring fluid [17]

which although mathematically complex has tendency to describe

the flow behavior at low and high shear rates. It can be used to

formulate the flows of modern industrial materials such as

powdered graphite and ethylene glycol. Unidirectional flow of

Powell-Eyring fluid between parallel plates with couple stresses

was studied by Eldabe et al. [18]. Pulsatile flow of Powell-Eyring

fluid was examined by Zueco and Beg [19]. Homotopy

perturbation analysis of slider bearing lubricated with Powell-

Eyring fluid was presented by Islam et al. [20]. Three-dimensional

flow of Powell-Eyring fluid past a wedge was discussed by Patel
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and Timol [21]. Boundary layer flow of Powell-Eyring fluid over a

moving flat plate was analyzed by Hayat et al. [22]. Recently

steady flow of Powell-Eyring fluid over an exponentially stretching

sheet was numerically investigated by Mushtaq et al. [23]. It has

been noted that literature is scarce for unsteady flow of Powell-

Eyring fluid. To our information, the flow and heat transfer of the

Powell-Eyring fluid thin film over an unsteady stretching sheet are

examined by Khader and Megahed [24]. Impact of uniform

suction/injection in unsteady Couette flow of Powell-Eyring fluid

is explored by Zaman et al. [25].

The present work considers the boundary layer flow of Powell-

Eyring fluid over an unsteady stretching sheet. The stretching

sheet is considered inclined. In addition the effects of radiation and

non-uniform heat source/sink are also taken into account.

Radiative heat transfer in the boundary layer flow is very

important from application point of view, because the quality of

the final product is very much dependent on the rate of heat

transfer of the ambient fluid particles. Such radiative effects are

also important in many non-isothermal cases whereas the heat

generation/absorption in moving fluids is significant in the

applications involving heat removal from nuclear fuel debris,

underground disposal of radioactive waste material, storage of

food stuffs, dislocating of fluids in packed bed reactors and

several others. Similar situations prevail during the manufac-

ture of plastic and rubber sheets where it is often necessary to

blow a gaseous medium through the not-yet solidified material,

and where the stretching force may be varying with time. The

dimensionless mathematical problems are solved analytically by

homotopy analysis method (HAM) [26–40]. Homotopy analysis

method (HAM) is one of the most efficient methods in solving

different type of nonlinear equations such as coupled, decou-

pled, homogeneous and non-homogeneous. Many previous

analytic methods have some restrictions in dealing with non-

linear equations. For illustration, in contrast to perturbation

method, HAM is independent of any small or large parameters

and or the existence of auxiliary parameter provides us with a

simple way to control and adjust the convergence region which

is a main lack of previous techniques. Also, HAM provides us

with great freedom to choose different initial guesses to express

solutions of the nonlinear problem. Numerical values of

wall velocity and temperature gradient are computed and

examined.

Mathematical Formulation

We consider unsteady two-dimensional incompressible flow of

Powell-Eyring fluid past a stretching sheet. The sheet makes an

angle a with the vertical direction. The x - and y-axes are taken

along and perpendicular to the sheet respectively. In addition the

effects of thermal radiation and non-uniform heat source/sink are

considered (see Fig. 1). The Cauchy stress tensor in Powell-Eyring

fluid is given by [17]:

tij~m
Lui

Lxj
z

1

~bb
sinh{1 1

C

Lui

Lxj

� �

,

where m is the viscosity coefficient, b and C are the material fluid

parameters. The boundary layer equations comprising the balance

laws of mass, linear momentum and energy can be written as [19–

26]

Lu

Lx
z

Lv

Ly
~0, ð1Þ

Lu

Lt
zu

Lu

Lx
zv

Lu

Ly
~

nz
1

r~bbC

� �

L2u

Ly2
{

1

2r~bbC3

Lu

Ly

� �2
L2u

Ly2
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L2T

Ly2
{

Lqr

Ly
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In the above expressions t is the time, n ~ ( m =r ) is the

kinematic viscosity, k is the thermal conductivity of the fluid, r is

the fluid density, T is the fluid temperature, cp is the specific heat,

go is the acceleration due to gravity, bT is the volumetric

coefficient of thermal exponential, qr~{
16s�T3

?

3k�
LT

Ly
[36–38] is

the linearized radiative heat flux, k� is the mean absorption

coefficient, s� is the Stefan-Boltzmann constant, q’’ is the non-

uniform heat generated ( q’’ w 0) or absorbed ( q’’ v 0) per

unit volume. The non-uniform heat source/sink, q’’ is modeled by

the following expression [39–40].

q’’~
kus(x, t)

xn
A(Ts{T?)f ’z(T{T?)B½ �, ð4Þ

in which A and B are the coefficient of space and temperature-

dependent heat source/sink, respectively. Here two cases arise.

For internal heat generation A.0 and B.0 and for internal heat

absorption, we have A,0 and B,0.

The surface velocity is denoted by us( x, t) ~
bx

( 1 { at)
whereas the surface temperature Ts( x, t) ~ T? z

Tref

bx2

2n
( 1 { at){3=2 . Here b (stretching rate) and a are

positive constants having dimension time { 1 : Also Tref is a

constant reference temperature. We note that the temperature of

stretching sheet is larger than the free stream temperature T? :
The boundary conditions are taken as follows:

u~us(x, t), v~0,T~Ts(x, t) at y~0, ð5Þ

u?0,T?T? as y??:

Introducing

u~
bx

(1{at)
f ’(g), v~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nb

(1{at)

s

f (g),

h~
T{T?

Ts{T?

, g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

n(1{at)

s

y,

ð6Þ
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Figure 2. The B -curves for the velocity field.
doi:10.1371/journal.pone.0103214.g002

Figure 1. Physical model and coordinate system.
doi:10.1371/journal.pone.0103214.g001
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Eq. (1) is identically satisfied and Eqs. (2)–(5) become

1zCð Þ f ’’’{f ’2zff ’’{Cbf ’’2f ’’’{e(f ’z
1

2
gf ’’)zGh cos a~0,ð7Þ

1z
4

3
R

� �

h’’zPr f h’{2f ’h{
1

2
E(3hzgh’)

� �

zAf ’zBh~0,

ð8Þ

f~0, f ’~1, h~1 at g~0,

f ’?0, h?0 as g??,
ð9Þ

where prime denotes differentiation with respect to g , f is the

dimensionless stream function, h is the dimensionless temperature

and the dimensionless numbers are

Figure 3. The B -curves for the temperature field.
doi:10.1371/journal.pone.0103214.g003

Table 1. Convergence of series solutions for different order of approximations when a= p/4, b= 0.5, G= 0.2, R = 0.2, � e= 0.6, G = 0.3,
Pr = 1.0, A = B= 0.1, h–f=20.8 and h–e=20.7.

Order of approximation { f 00( 0) { h 0( 0)

1 1.03515 1.33250

5 1.04402 1.35252

10 1.04401 1.35252

15 1.04401 1.35252

20 1.04401 1.35252

30 1.04401 1.35252

doi:10.1371/journal.pone.0103214.t001
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Figure 4. Influence of a on the velocity field.
doi:10.1371/journal.pone.0103214.g004

Figure 5. Influence of G on the velocity field.
doi:10.1371/journal.pone.0103214.g005
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C~
1

m~bbC
,R~

4s�T3
?

kk�
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ru3s
mxC2

,
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gbT (Ts{T?)x3=n2

u2sx
2=n2

~
Grx

Re2x
, e~

a

b
, Pr~

mcp

k
:

ð10Þ

Here G and b are dimensionless material fluid parameters, R is

the radiation parameter, e is the unsteady parameter and Pr is

the Prandtl number.

Local Nusselt number Nux is defined as

Nux~
xqw

k(Tw{T?)
; qw~{k

LT

Ly

� �

y~0

z(qr)w, ð11Þ

Re{1=2
x Nux~{ 1z

4

3
R

� �

h’(0),

Figure 6. Influence of b on the velocity field.
doi:10.1371/journal.pone.0103214.g006

Figure 7. Influence of e on the velocity field.
doi:10.1371/journal.pone.0103214.g007
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where Rex~
usx

n
is the local Reynolds number.

Solution Methodology

Most of the problems occurring in the field of science and

engineering are non-linear. Specifically most of the problems

encountered in fluid mechanics are highly non-linear. To find the

exact solution of these non-linear problems is very difficult and

some times even impossible. Thus several numerical and analytical

techniques have been developed to solve such kind of problems.

Among these HAM is the most used analytical technique.

Convergent series solutions of non-linear equations are obtained.

Homotopy analysis method
HAM was proposed by means of homotopy, a fundamental

concept of topology. Two functions are said to be homotopic if one

function can be deformed continuously into the other function. If

f1 and f2 are two continuous maps from the topological space X

into the topological space Y then f1 is homotopic to f2 if there exist

a continuous map F

Figure 8. Influence of C on the velocity field.
doi:10.1371/journal.pone.0103214.g008

Figure 9. Influence of R on the velocity field.
doi:10.1371/journal.pone.0103214.g009
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F : X|½0, 1�?Y

such that for each x [ X

F (x, 0)~f1(x),F (x, 1)~f2(x)

The map F is called homotopy between f1 and f2:

It should be noted that there is a great freedom to choose initial

guess and auxiliary linear operator £. Beside such a great freedom

there are some fundamental rules which direct us to choose the

mentions parameters in more efficient way. Therefore, initial

guesses for the velocity and temperature fields are taken in such a

way that they satisfy the boundary conditions given in Eq. (9). And

we choose linear operator specified in Eq. (13) that must satisfy the

properties given in Eq. (14).

f0 gð Þ~1{e{g, h0 gð Þ~e{g, ð12Þ

Figure 10. Influence of R on the temperature field.
doi:10.1371/journal.pone.0103214.g010

Figure 11. Influence of Pr on the temperature field.
doi:10.1371/journal.pone.0103214.g011
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f~f 000-f 0, h~h00-h,

subject to the properties

f C1zC2e
g
zC3e

{gð Þ~0, h C4e
g
zC5e

{gð Þ~0, ð13Þ

where Ci (i = 1–5) are the constants.

The deformation problems subjected to zeroth order

1{pð Þ f f g; pð Þ{f0 gð Þ½ �~pBff f g; pð Þ½ �, ð14Þ

1{pð Þ h h g; pð Þ{h0 gð Þ½ �~pBhh h g; pð Þ½ �, ð15Þ

Figure 12. Influence of C on the temperature field.
doi:10.1371/journal.pone.0103214.g012

Figure 13. Influence of G on the temperature field.
doi:10.1371/journal.pone.0103214.g013
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f̂f (0; p)~0, f̂f ’(0; p)~1, f̂f ’(?; p)~0, ĥh(0; p)~1, ĥh(?; p)~0:ð16Þ

If p [ [0,1] indicates the embedding parameter, hf and hh the

non-zero auxiliary parameters then the nonlinear differential

operators Nf and Nh are given by

Nf ½f̂f (g; p)�~ 1zCð Þ
L3 f̂f (g; p)

Lg3
zf̂f (g; p)

L2 f̂f (g; p)

Lg2
{

Lf̂f (g; p)

Lg

 !2

{Cb
L2 f̂f (g; p)

Lg2

 !2
L3 f̂f (g; p)

Lg3
{e

Lf̂f (g; p)

Lg
z

1

2
g
L2 f̂f (g; p)

Lg2

 !

zGĥh(g; p) cos a,

ð17Þ

Nh½ĥh(g; p), f̂f (g; p)�~

1z
4

3
R

� �

L2ĥh(g; p)

Lg2
z

Pr f̂f (g; p)
Lĥh(g; p)

Lg
{2ĥh(g; p)

Lf̂f (g; p)

Lg

"

{e 3ĥh(g; p)zg
Lĥh(g; p)

Lg

 !#

zA
Lf̂f (g; p)

Lg
zBĥh(g; p):

ð18Þ

We have for p = 0 and p= 1 the following equations

f̂f (g; 0)~f0(g), ĥh(g; 0)~h0(g), ð19Þ

f̂f (g; 1)~f (g), ĥh(g; 1)~h(g):

It is noticed that when p varies from 0 to 1 then f ( g ; p) and

h ( g ; p) approach from f0( g ) , h 0( g ) to f ( g ) and

h ( g ) : The series of f and h through Taylor’s expansion are

chosen convergent for p= 1 and thus

f (g)~f0(g)z
X

?

m~1

fm(g), fm(g)~
1

m!

Lmf (g; p)

Lgm
Dp~0, ð20Þ

h(g)~h0(g)z
X

?

m~1

hm(g)hm(g)~
1

m!

Lmh(g; p)

Lgm
Dp~0: ð21Þ

The resulting problems at mth order can be presented in the

following forms

f fm gð Þ{xmfm{1 gð Þ½ �~BfRf
m gð Þ, ð22Þ

h hm gð Þ{xmhm{1 gð Þ½ �~BfRh
m gð Þ, ð23Þ

fm 0ð Þ~f 0m 0ð Þ~f 0m ?ð Þ~hm 0ð Þ~hm ?ð Þ

Figure 14. Influence of A on the temperature field.
doi:10.1371/journal.pone.0103214.g014
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R
m
f (g)~ 1zCð Þ f ’’’m{1(g)

z

X

m{1

k~0

fm{1{kf
’’

k{f ’m{1{kf
’

k{Cbf ’’m{1

X

m{l

k~0

f ’’k{lf
’’’

l

"

{e f ’m{1z
1

2
gf ’’m{1

� ��

zGhm{1 cos a,

ð24Þ

R
m
h (g)~ 1z

4

3
Rd

� �

h’’m{1(g)

zPr
X

m{1

k~0

h’m{1{kfk{2f ’m{1{khk{
1

2
e 3hm{1zgh’m{1

� �

� �

zAf ’m{1zBhm{1,

ð25Þ

Figure 16. Influence of e on the temperature field.
doi:10.1371/journal.pone.0103214.g016

Figure 15. Influence of B on the temperature field.
doi:10.1371/journal.pone.0103214.g015
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xm~0, mƒ1,

xm~1, mw0:

The general solutions ( fm, h m) comprising the special

solutions ( fm � , h m � ) are

fm(g)~f �m(g)zC1zC2e
g
zC3e

{g, ð26Þ

hm(g)~h�m(g)zC4e
g
zC5e

{g, ð27Þ

Convergence of the homotopy solutions
It is now a well established argument that the convergence of

series solutions (22) and (23) depends upon the auxiliary

parameters B . The admissible range of values of hf and hh (for

some fixed values of parameters) lie along the line segment

parallel to hf and hh { axes. For example in Figs. 2 and 3

the permissible range of values of hf and hh are

Table 3. Values of heat transfer characteristics at wall { h 0( 0) for different emerging parameters when h–f=20.8 and h–h =20.7.

a G b [ G R Pr A 2(1+4
3
R)h 0 0ð Þ

0.0 1.35702

p/6 1.35798

p/3 1.34926

p/4 0.0 1.69881

0.4 1.72556

0.7 1.74109

0.9 1.74984

0.0 1.71555

0.5 1.71319

0.9 1.71114

0.0 1.10162

0.4 1.61674

0.6 1.71319

0.0 1.69868

0.5 1.72227

0.8 1.73515

0.0 1.54046

0.3 1.71319

0.6 2.00303

1.2 1.91058

1.5 2017721

1.9 2049323

20.1 1.80783

0.0 1.76059

0.1 1.71319

doi:10.1371/journal.pone.0103214.t003

Table 2. Comparison between numerical solution Tsai et. al. [7] and HAM solution in a special case when
a ~ b ~ e ~ C ~ G~ R~ 0:

Pr B A Present study Tsai et. [7]

1:0 { 1:0 0:0 { 1:71094 { 1:710937

{ 2:0 { 1:0 { 2:36788

2:0 { 1:0 0:0 { 2:25987

{ 2:0 { 1:0 { 2:486000 { 2:485997

doi:10.1371/journal.pone.0103214.t002
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{ 1:26ƒ hfƒ { 0:24 and { 1:4ƒ hh ƒ { 0:25 respectively

when e ~ 0:6. This series solutions converge for the whole region
of g when hf~ 20.9 and hh ~ 20.8. Table 1. shows the

convergence of HAM solution for different order of approxima-

tions. It is clear from this table that 10th order of approximations

are sufficient for convergent solutions up to six decimal place.

Results and Discussion

This section examines the effects of different physical param-

eters on the velocity and temperature fields. Hence Figs. (4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16) are plotted. Fig. 4 elucidates the

behavior of inclination angle a on the velocity and the boundary

layer thickness. a ~ 0 shows the corresponding velocity profiles in

the case of a vertical sheet for which the fluid experiences the

maximum gravitational force. On the other hand when a changes

from 0 to p =2 i.e. when the sheet moves from vertical to

horizontal direction, the strength of buoyancy force decreases and

consequently the velocity and the boundary layer thickness

decrease. Fig. 5 indicates that velocity field f ’ is an increasing

function of G. This is because a larger value of G accompanies a

stronger buoyancy force which leads to an increase in the � x {

component of velocity. The boundary layer thickness also

increases with an increase in G: Variation in f ’ with an increase

in b can be seen from Fig. 6. It is noticed that f ’ decreases and

boundary layer thins when b is increased. Influence of unsteady

parameter e on the velocity field is displayed in Fig. 7. Increasing

values of e indicates smaller stretching rate in the x - direction

which eventually decreases the boundary layer thickness. Inter-

estingly the velocity increases by increasing e at sufficiently large

distance from the sheet. Variation in the x-component of velocity

with an increase in the fluid parameter C can be described from

Fig. 8. In accordance with Mushtaq et al. [25], the velocity field

f ’ increases with an increase in C .

Radiation effects on the velocity and temperature distributions

are perceived from Figs. 9 and 10. An increase in R enhances the

heat flux from the sheet which gives rise to the fluid’s velocity and

temperature. Wall slope of the temperature function therefore

increases with an increase in R. Fig. 11 portrays the effect of

Prandtl number on the thermal boundary layer. From the

definition of Pr given in Eq. (10), it is obvious that increasing

values of Pr decreases conduction and enhances pure convection

or the transfer of heat through unit area. That is why temperature

and the thermal boundary layer thickness decrease with an

increase in Pr . This reduction in the thermal boundary layer

accompanies a larger heat transfer rate from the sheet. Temper-

ature profiles for different values of C are shown in Fig. 12. It is

seen that temperature h is an increasing function of C . Fig. 13

indicates that an increase in the strength of buoyancy force due to

temperature gradient decreases the temperature and the thermal

boundary layer thickness. Influence of heat source/sink parame-

ters on the thermal boundary layer are presented in Figs. 14 and

15. As expected the larger heat source (corresponding to A.0 and

B.0) rises the fluid’s temperature above the sheet. While the non-

uniform heat sink corresponding to A,0 and B,0 can contribute

in quenching the heat from stretching sheet effectively. Fig. 16

depicts that temperature h is a decreasing function of the

unsteady parameter e .

Table 2 shows comparison of present work with Tsai et al. in a

special case. A very good agreement is found between the results of

wall temperature gradient. Table 3 shows the effect of embedded

parameters on heat transfer characteristics at the wall { h ’ ( 0) .

Since in the present case the sheet is hotter than the fluid i.e

Tww T? thus heat flows from the sheet to the fluid and hence

h ’ ( 0) is negative. From this table we observe that with an

increase in a , b and R the wall heat transfer rate D h ’ ( 0) D

decreases. However it increases when C , e and Pr are

increased.

Conclusions

This article addressed the radiation effects in the unsteady

boundary layer flow of Powell-Eyring fluid past an unsteady

inclined stretching sheet with non-uniform heat source/sink.

Homotopy analysis method (HAM) was used to obtain approx-

imate analytic solutions of the governing nonlinear problem. The

important findings are listed below.

1) The strength of gravitational force can be varied by changing

the inclination angle a which the sheet makes with the

vertical direction. The velocity decreases with an increase in

a :

2) Velocity field f ’ and temperature h are decreasing function

of the unsteady parameter e :

3) Velocity increases and temperature decreases when the fluid

parameter C is increased.

4) Increase in the radiation parameter R enhances the heat flux

from the plate which increases the fluid’s velocity and

temperature.

5) The analysis for the case of viscous fluid can be obtained by

choosing C ~ b ~ 0: Further the results for horizontal

stretching sheet are achieved for a ~ p =2:
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