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Radiation exposure in X-ray-based imaging
techniques used in osteoporosis

Abstract Recent advances in medical
X-ray imaging have enabled the
development of new techniques
capable of assessing not only bone
quantity but also structure. This
article provides (a) a brief review of
the current X-ray methods used for
quantitative assessment of the skele-
ton, (b) data on the levels of radiation
exposure associated with these
methods and (c) information about
radiation safety issues. Radiation
doses associated with dual-energy
X-ray absorptiometry are very low.
However, as with any X-ray imaging

technique, each particular examina-
tion must always be clinically
justified. When an examination is
justified, the emphasis must be on
dose optimisation of imaging proto-
cols. Dose optimisation is more
important for paediatric examinations
because children are more vulnerable
to radiation than adults. Methods
based on multi-detector CT (MDCT)
are associated with higher radiation
doses. New 3D volumetric hip and
spine quantitative computed tomog-
raphy (QCT) techniques and
high-resolution MDCT for evaluation
of bone structure deliver doses to
patients from 1 to 3mSv. Low-dose
protocols are needed to reduce radia-
tion exposure from these methods and
minimise associated health risks.
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Introduction

Osteoporosis is a systemic disorder of the skeleton that is
characterised by a reduction in bone mass and deterioration
of bone micro-architecture. Although the condition affects a
higher percentage of women, it is now known that
substantial bone loss occurs with advancing age in men.
The importance of osteoporosis lies in the fact that
osteoporotic bones are more fragile and susceptible to
fracture than normal bones. Osteoporotic fractures usually
occur in skeletal sites that are rich in trabecular bone. The
most common low-energy fractures are those of the
vertebrae, wrist and hip. Studies show that the number of

osteoporotic fractures is increasing worldwide mainly due to
the extension of the average lifespan. The total number of
hip fractures in the European Union is estimated to increase
from 414,000 in 2000 to 972,000 in 2050 [1].

A wide variety of methods for the non-invasive
assessment of skeletal status have been developed, most
of which are based on the use of ionising radiation.
Although the ionising radiation doses incurred during
X-ray-based imaging techniques used in osteoporosis
are relatively low, the use of radiological methods for
the assessment of bone status has increased rapidly, and
therefore merits attention with regard to radiation
protection. The objective of this article was to briefly
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review the current X-ray methods used for the assess-
ment of the skeleton, provide data that document the
magnitude of radiation exposure and discuss radiation
safety issues.

Estimation of bone status using X-rays: current
techniques

Assessment of low-energy fractures

Spinal radiography is the most widely used imaging
method for identification of vertebral fractures. Vertebral
fractures on radiographs are not always reported and
remain under-diagnosed radiologically with false neg-
ative rates up to 45% [2]. The assessment of vertebral
fractures is possible using visual, morphometric and
semiquantitative methods [3–6]. The method for identi-
fication of vertebral fractures using computational
techniques has also been applied to spine images
acquired by dual-energy X-ray absorptiometry (DXA).
Vertebral fracture assessment (VFA) developed by DXA
manufacturers provides information on the vertebral
body heights and their ratios and the patient’s fracture
status is given. A recent study evaluated the utility of
VFA to detect vertebral fractures [7]. Although the
sensitivity of VFA was found to be less than that of
radiography, in certain circumstances results support the
use of VFA for the detection of prevalent vertebral
fracture.

Dual-energy X-ray absorptiometry (DXA)

DXA technology has evolved from pencil beam to fan
beam, allowing short acquisition time and improved
image quality. In clinical practice, ‘areal’ bone mineral
density (BMDa; g/cm

2) assessment of lumbar spine (L1–
L4), proximal femur (femoral neck and total hip) and
forearm (distal) is made by central DXA. Interpretation
of BMDa measurements is based on the World Health
Organisation (WHO) recommendations. Osteoporosis
can be diagnosed if the value of BMDa is 2.5 or more
standard deviations (SD) below the mean value of a
young reference population (T score at or below −2.5).
Central DXA can also provide whole-body imaging for
total and regional BMDa, body composition (lean muscle
and fat mass) and VFA. Total body imaging is useful for
the assessment of the growing skeleton and forearm
imaging can be performed in patients with hyperpara-
thyroidism [8]. DXA at peripheral sites can be performed
using either general purpose body DXA or smaller
dedicated peripheral DXA for measurements in periph-
eral skeletal sites. Using device-specific thresholds
peripheral DXA may play a role in identifying those at
risk of osteoporotic fracture, especially when there is
limited or no access to central DXA.

Quantitative computed tomography (QCT) using body CT

Using QCT, bone mineral density (BMD; mg/cm3)
measurements can be obtained in central and peripheral
skeletal sites. Examinations are performed using an
application-specific software package and a dedicated
bone-equivalent calibration phantom imaged simultane-
ously with the patient to convert the CT numbers into
bone-equivalent values (mg/cm3; g/l). QCT requires a
lateral scout image of the lumbar spine. A typical single-
slice 2D QCT protocol consists of a 10-mm section in the
mid plane of each of three or four adjacent vertebrae (T12,
L1, L2 and L3) acquired with 80-kVp tube potential and
125-mAs tube load. As this 2D technique has a limited
precision, 3D volumetric QCT protocols have been
developed based on multi-detector CT (MDCT) imaging.
Using MDCT, 3D volume sets are acquired and from
these BMD values and bone geometry can be measured
[9, 10]. In spine multi-detector QCT (MDQCT) two or
three vertebrae are usually imaged, L1–L2 or L1–L3, to
reduce dose. Hip MDQCT is capable of analysing the
main regions of the hip i.e. the femoral neck, the
trochanter and the intertrochanteric region.

High-resolution CT imaging

MDCT is not capable of depicting individual trabeculae.
However, important information can be obtained from
structure analysis of high-resolution image data. A recent
study compared MDCT-derived apparent structure measures
with high-resolution (HR) peripheral QCT (pQCT)-derived
structure measures as the ‘gold standard’ using intact human
cadaver forearm specimens [11]. Most MDCT-derived
microarchitectural parameters correlated highly significantly
with HR pQCT measures. This study shows that MDCT is
capable of quantifying characteristics of the trabecular bone
network in the radius [11]. Image processing techniques
such as fuzzy distance transformation have been used to
provide information on trabecular distance measurements in
vertebrae imaged by HR CT [12]. Findings confirmed that
this technique can potentially be used as a tool for
monitoring osteoporosis treatment. However, currently,
these techniques are limited to research applications.

Peripheral QCT

pQCT permits in vivo assessment of bone morphology
and BMD at appendicular bones such as the distal radius
and tibia. pQCT can be used simply for BMD and bone
geometry, or in HR to provide information on trabecular
bone structure. A recently developed device (Scanco,
Bruttisellen, Switzerland) has an isotropic voxel size in
the order of 80 μm, which allows direct or indirect
evaluation of cortical and trabecular bone architecture.
Specifically, assessment of parameters such as trabecular
number, cortical thickness, trabecular thickness and
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porosity, and trabecular separation is possible with this
technique. Recent studies have focused on HR pQCT
imaging of bone microstructure in both adults and
adolescents [13, 14].

Use of DXA

Use of DXA has increased steadily during recent years.
Between 1996 and 2002, the number of DXA performed
on all Medicare patients in the USA increased from
501,105 in 1996 to 2,195,548 in 2002. This change
represents a fourfold growth over 6 years, attributable to
the extension of the average lifespan, increased public
awareness of osteoporosis and advances in therapies [15].
The greatest increase in the DXA usage has been observed
in the use of central densitometry [16]. These trends can
be expected to continue for the next few years. In some
countries DXA is only advocated in those with specific
risk factors as population screening is not cost effective. In
other countries there are national organisations that
recommend primary adult screening with DXA for
individuals at risk of osteoporosis. Thus, DXA is
recommended for all women aged 65 years or over and
for younger women with risk factors by the US National
Osteoporosis Foundation and the US Preventive Services
Task Force [17, 18]. With the increasing use of bone
densitometry, the necessity for justification and dose
optimisation of examinations becomes a topic that
deserves attention. As with other X-ray-based imaging
methods, radiation dose from bone densitometry techni-
ques that use ionising radiation (DXA, QCT) must be kept
as low as reasonably achievable.

Patient radiation doses

Radiation dose quantities and units

Various radiation dose parameters are used in diagnostic
radiology, the most commonly being absorbed dose and
effective dose. Absorbed dose, expressed in grays (Gy), is
a measure of the energy per unit of mass deposited in the
tissue and organs of the body. Radiation dose from
ionising radiation is frequently quantified in terms of the
effective dose. The effective dose, expressed in sieverts
(Sv), is calculated from information about absorbed doses
to the organ or tissue exposed to X-rays and the relative
radiation risk assigned to each of these organs or tissues.
Appropriate weighting factors related to radiogenic risk
for body organs and tissues have been published by the
International Commission on Radiological Protection
(ICRP) [19]. The effective dose was introduced to allow
estimation of radiogenic risks when various organs receive
different levels of dose. This commonly occurs with
partial body exposures, which is always the case with

DXA. The effective dose is a useful quantity for
comparison among different sources of ionising radiation,
such as that from DXA and QCT or DXA and natural
background radiation. The worldwide average effective
dose from natural background radiation is 2.4 mSv/year.

Two dosimetric quantities are utilised in CT, CT dose
index (CTDI) and dose–length product (DLP) [20]. The
CTDI represents the average absorbed dose, along the z
axis, from a series of contiguous exposures. CTDI
measurements are performed at the periphery (CTDIP)
and at the centre (CTDIC) of cylindrical poly(methyl
methacrylate) phantoms representing the human head and
body by using a pencil ionisation chamber with a length of
100 mm. From these measurements, a weighted CTDI
(CTDIW) representing the average dose to a single slice
can be derived as follows:

CTDIW ¼ 2

3
CTDIP þ 1

3
CTDIC

To take into account the effect of pitch on radiation
dose, CTDI volume (CTDIV) has been introduced for
imaging performed in the spiral mode, which is defined as
CTDI divided by pitch. CTDIV is the dose quantity
displayed by the operator’s console of most CT systems.
The DLP is defined as the CTDIV multiplied by the
imaging length. The SI unit for DLP is mGy cm. Thus,
DLP is an indicator of the integrated dose of an entire CT
examination. Broad estimates of effective dose E can be
derived from DLP values using conversion coefficients:
E = DLP × k where k is the normalised effective dose
(mSv mGy−1 cm−1) that is a function of body region
[21].

Radiation doses from techniques used to assess low-energy
fractures

VFA is a low-dose technique with doses reported to be
from 0.002 to about 0.05 mSv [22–24]. Although spine
radiography is the reference standard for the detection of
vertebral fractures, VFA is associated with considerably
lower exposure to the patient [25]. The dose from a lateral
radiograph of the thoracic and lumbar spine is about
0.6 mSv [22]. Obviously, the advantage of VFA with
respect to radiation dose is doubtful when the examination
is used in combination with spinal radiographs. MDCT is
not performed specifically for vertebral fracture diagnosis.
However, fracture assessment of the spine is possible
without any additional radiation burden by routinely
performing sagittal reformations in 3D CT of the thorax
and abdomen which have been performed for other
clinical indications. In addition the lateral digital radio-
graphs (scout views) may be used for fracture assessment.
Radiographs are preferable to CT for routine diagnosis of
vertebral fractures, partly because of the lower radiation
dose. Bauer et al. [26] state that a low-dose CT protocol
for visualisation of the spine is associated with a dose of
2.2 mSv for men and 3.3 mSv for women.
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Radiation doses from DXA

Several studies have reported doses to children and adults
from DXA [27–34]. For the first-generation pencil-beam
devices the effective dose was negligible i.e. about
0.001 mSv for a spine and femur DXA. However, the
doses are considerably higher for the fan-beam devices,
especially for children and adolescents. Figure 1 shows
effective doses to adult and paediatric patients from a
spine and a hip DXA reported in a recent paper [33]. Dose
figures were estimated by using the default adult imaging
length of 20 cm for the spine and 15 cm for the hip. In
general, the effective dose from a spine and hip DXA
examination performed on a 5-year-old child is two to
three times higher than the adult dose. This may be
attributed to the fact that the exposure parameters and the
image size are optimised for standard-sized adults.
Paediatric doses can be reduced by adjusting image
lengths to the size of the child’s body. Table 1 shows
typical organ and effective doses from fan-beam DXA and
spine radiographs. DXA values are for Hologic DXA
devices (Hologic Inc, Bedford, MA) examined by Blake et
al. [33]. The patient dose will vary between DXA systems
of different models and manufacturers depending on a
number of variables, including differences in acquisition
techniques and X-ray tube filtration. Doses for spine
radiography were calculated by using the Monte Carlo N-

particle code (MCNP, Los Alamos National Laboratory,
Los Alamos, NM) and a mathematical phantom of human
anatomy constructed with the BodyBuilder software
package (BodyBuilder, White Rock Science, NM). Table 2
shows doses associated with various diagnostic X-ray
examinations derived from the literature [35, 36]. Patient
effective doses from peripheral DXA are lower than
0.01 mSv [37]. Whole-body DXA is an established
procedure for the assessment of skeletal mineral status of
the whole body and the measurement of body composition
[38]. Effective doses for whole-body DXA examinations
were found to be 0.0052, 0.0048, 0.0042 and 0.0042 mSv
for a 5-, 10-, 15-year-old child and adult respectively for
an examination performed on the Hologic Discovery A
device. Corresponding values for the Hologic Discovery
W were 0.0105, 0.0096, 0.0084 and 0.0084 mSv [33].

The patient radiation dose from a DXA examination
depends on a number of parameters. The most important
are the number of images, the size of the patient, the
specific design of the device, beam filtration, the tube
current (mA), the tube potential (kVp), the imaging speed
and the imaging length and width. Most of these
parameters cannot be controlled by the operator perform-
ing the DXA examination. However, it is important for the
user to know that patient dose varies depending on the
imaging mode for a specific examination (Fig. 1). Special
attention to imaging protocols and radiation dose is
needed when imaging children and adolescents. The use
of a standardised and fixed clinical protocol designed for
adults leads to unnecessary overexposure of children.

Although rare, DXA is occasionally performed on
pregnant patients for the diagnosis or the differential
diagnosis of pregnancy-associated osteoporosis. Pregnant
patients receiving heparin may require BMDa estimation.
The maximum conceptus dose during the first trimester
associated with DXA performed using a pencil-beam device
was found to be 0.0034 mGy related to the scan of the hip
[39]. In this study, conceptus doses from DXA performed
during late pregnancy were found to be up to 0.0049 mGy.
The highest dose was recorded for spinal imaging carried out
during the third trimester of gestation. According to the
ICRP, a dose to the conceptus below 100 mGy should not be
considered a reason for terminating a pregnancy [40].
Because radiation dose to the unborn child from DXA is
always less than 100 mGy, termination of pregnancy based
on radiation risk is not justified. Although radiation dose to
the conceptus is very low, DXA examinations on pregnant
patients should be performed only when the expected
benefits clearly exceed the reasonably suspected risks. When
DXA is considered justified, the patient should be counselled
before imaging on the actual dose received by the conceptus
and the radiation risks involved.

Radiation doses from QCT

The patient dose from whole-body CT examination
depends on a number of parameters including the
technical features of the CT, the selected acquisition
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Fig. 1 Effective doses from a single DXA of the spine (a) or hip (b)
as a function of patient age (adapted from Blake et al. [33]). Patient
dose was estimated for Hologic DXA using three imaging modes:
Array mode (60-s data acquisition time); Fast mode (30-s data
acquisition time); and Express mode (10-s data acquisition time)
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parameters and the size of the patient [41]. Thus, patient
doses from CT differ significantly among study sites and
CT systems. Dose depends strongly on the selected X-ray
spectrum (i.e. the tube potential and the filtration), the tube
current (mA) and examination time. Compared with CT as
an imaging technique, spinal single-slice 2D QCT
examinations use low-exposure parameters, i.e. 80-kV
tube voltage and 120–140 mAs. This may be attributed to
the fact that the high contrast between bone and
surrounding structures allows BMD evaluation even with
high noise levels. Table 3 shows radiation doses of
optimised QCT protocols derived from the literature
[9, 30, 42–44].

Radiation doses from high-resolution CT imaging (HRCT)

With helical MDCT, a volume of tissue is imaged to
capture a texture of the trabecular bone at skeletal sites
such as the spine and the hip. The advantage is that a full
data set is obtained, providing important information
about bone structure. However, HR CT is associated with
a considerably higher radiation dose compared with the X-
ray examinations commonly used in routine clinical
practice for the estimation of bone status. Indeed,
compared with the 0.06 to 0.3 mSv patient effective dose
associated with QCT applied to 2D slices in the lumbar
spine, studies show that protocols used to examine
vertebral microstructure using HR MDCT provide an
effective dose of about 3 mSv [45, 46]. This dose is
similar to that delivered to the patient from 3D QCT of the
hip (Table 3).

Radiation doses from pQCT

Peripheral QCT is associated with a low radiation dose
because radiosensitive organs are distant from the primar-
ily exposed area. Studies show that the effective dose from
pQCT examinations is lower than 0.01 mSv [9, 14]. In a
recent study of pQCT applied to imaging of microstructure
of the distal tibia in adolescents, Burrows et al. reported an
effective dose for HR pQCT (XtremeCT, Scanco) lower
than 0.003 mSv [14]. Interestingly, these authors selected
a measurement site so as to avoid primary irradiation of
the growth plate. Dose optimisation is important even for
low-dose methods as children and adolescents are more
susceptible to the risk of radiation-induced biological
effects than adults. However, the fact that both DXA and
pQCT involve low radiation doses enables these techni-
ques to be used to study the growth and development of
the skeleton in normal children.

Dose reduction techniques

The system for patient radiation protection is based upon
two principles: (a) justification and (b) optimisation. It is
essential that all X-ray exposures used for estimation of
bone status are clinically justified. Examinations that do
not influence patient care must be avoided.

Patient preparation for bone densitometry is important
for reducing the radiation dose. Careful checking for the
presence of items on patient’s clothing such as jewellery
and coins that cause artefacts will optimise the quality of

Table 1 Effective and organ doses for DXA and spine radiographs

Examination Effective dose (mSv) Organ dose (mGy) Relevant organs

Adult spine DXA 0.013 0.003 BM, ovaries
Adult hip DXA 0.009 0.005 LLI
Paediatric spine DXA 0.027 0.008 Ovaries
(5-year-old child, scan length 11.7 cm) 0.007 Stomach
Paediatric hip DXA 0.022 0.015 Testes
(5-year-old child, scan length 9.0 cm) 0.009 LLI
Paediatric spine DXA 0.021 0.006 Ovaries
(10-year-old child, scan length 14.5 cm) 0.005 Stomach
Paediatric hip DXA 0.018 0.010 Testes
(10-year-old child, scan length 12.4 cm) 0.008 LLI
Thoracic spine AP radiograph 0.4 0.8 Lungs
Thoracic spine LAT radiograph 0.3 1.2 Lungs
Lumbar spine AP radiograph 0.7 2.5 Stomach
Lumbar spine LAT radiograph 0.3 2.3 Liver

Paediatric doses are given for scans lengths adjusted to the size of the child’s body

AP anterior-posterior, LAT lateral, BM bone marrow, LLI lower large intestine

Table 2 Typical effective and organ doses for various diagnostic X-ray examinations

Examination Effective dose (mSv) Organ dose (mGy) Relevant organs

Dental radiography (intraoral) 0.005 0.005 Brain
Chest radiography (posterior-anterior) 0.02 0.01 Lung
X-ray mammography 0.4 3 Breast
Adult abdominal CT 8 10 Stomach
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the imaging and avoid the imaging having to be repeated
with additional radiation exposure. In paediatric examina-
tions, proper interaction with the children and parents is
essential. All actions should be taken to avoid movement
of the child during imaging and defer imaging if artefacts
(e.g. plaster of Paris on fractures) are present at the
imaging site.

The length of the DXA or CT should be minimal and
should take into account patient’s body size. If possible,
radiosensitive organs should not be exposed to the
primary radiation beam. Modern MDCT employ multiple
rows of detector arrays allowing rapid imaging. As a
consequence, the length of imaging is sometimes
increased to include multiple body sites. This increases
the DLP and the patient effective dose.

After the introduction of multi-detector CT, significant
attention was given to doses and associated risks from CT.
In spiral CT, reconstruction algorithms require a number
of additional rotations to reconstruct the first and last slice
of imaged volume. Z-overscanning refers to the extent of
the tissue beyond the boundaries of the volume to be
imaged that is exposed to X-rays. The increase in patient
effective dose due to z-overscanning may reach 36% for a
16-slice CT system [47]. In hip MDQCT and HR MDCT
imaging the influence of z-overscanning on the patient
effective dose should always be taken into account.
Careful selection of beam collimation, reconstructed
image slice width and pitch is needed to limit the extent
of z-overscanning [48]. A recent study showed that
adaptive section collimation allows considerable dose
reduction of unnecessary exposure due to z-overscanning
[49].

Variation in the tube voltage causes a substantial
change in patient CT dose and image quality [50]. The
use of 80 kVp for spinal single-slice QCT reduces the
dose substantially in comparison with acquisition at
120 kVp. The possibility of tube voltage reduction in
MDQCT should be investigated, especially for patients
with small body size. Reduction of tube load may reduce
patient dose considerably. Automatic exposure control
(AEC) tools adjust the tube current in the x–y plane and
along z axis simultaneously, based on the size and
attenuation of the anatomical area being examined to
achieve an operator-defined level of image quality with
the lowest possible dose. The use of AEC provides a
substantial potential for dose reduction compared with the
fixed mA technique. In AEC-activated examinations, the
mAs product can be reduced by typically between 15%
and 60% [51, 52].

Occupational radiation doses and shielding

Several studies have evaluated scattered radiation from
pencil-beam and fan-beam DXA systems and the occupa-
tional dose to operators [34, 53, 54]. The time-averaged
dose rates at 1 m from the central axis of the imaging table
range from about 0.01 µSv/h to about 5 μSv/h, depending
on the DXA model. Scatter radiation from fan-beam
systems is higher than that from pencil-beam systems. The
annual occupational dose at 1 m from a fan-beam system
can reach 1.5 mSv [34]. With regard to occupational
doses, the ICRP recommends a limit on the effective dose
of 20 mSv/year, averaged over 5 years, with a further
provision that the effective dose should not exceed
50 mSv in any single year. Although the dose limit of
20 mSv/year is much higher than the expected annual
occupational doses from DXA, the use of a protective lead
shield may be necessary occasionally for fan-beam
systems in a confined space to ensure that the operator
dose is as low as possible [34].

Special dose limits apply for the conceptus after a
pregnant employee declares pregnancy. The ICRP and
European Commission recommend that the individual
developing in utero should be protected by the application
of a dose limit of 1 mGy during the remainder of
pregnancy, once it has been declared [55, 56]. The
exclusion of pregnant workers from DXA examinations
on the basis of radiogenic risks from occupational DXA
exposure cannot be justified on scientific grounds. How-
ever, the scatter radiation can exceed the exposure limits
for pregnant workers, especially for fan-beam systems.
For this reason, radiation protection measures should
always be taken to ensure that the conceptus dose will
be kept below 1 mGy during the declared pregnancy.
Moreover, the use of a personal radiation meter at waist
level is recommended to monitor radiation exposure.

An important requirement in limiting the risk of
radiation exposure in the workplace is the correct design
of the room in which the imaging device has been
installed. Measurements performed by Larkin et al. [34]
showed that the scatter from fan-beam DXA systems can
exceed the limits for public exposure i.e. 1 mSv/year [19].
In these cases, additional structural shielding might be
required, especially when the distance from the imaging
table to the adjacent wall is less than 1 m. However,
other parameters should also be taken into account such
as the workload, the material of the walls, the location
of the operator and the location and use of rooms that
adjoin the imaging room.

Table 3 Radiation doses associated with QCT protocols

Examination Voltage (kV) X-ray tube load (mAs) Effective dose (mSv) References

2D QCT spine, scout image and 3 slices of 10-mm thickness 80 125 0.06–0.3 [30, 41]
3D MDQCT spine, L1–L2, pitch 1 120 100 1.5 [9]
3D MDQCT hip, pitch 1 120 150–200 2.5–3.0 [9]
3D MDQCT radius, pitch 1 120 100 <0.01 [43]

Patient dose may differ significantly between institutions because of the variability in acquisition protocols and differences in the CT system characteristics
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Radiogenic risks associated with techniques
used in bone status evaluation

Although diagnostic X-ray examinations provide great
benefits, their use involves the potential risk of carcino-
genesis. Estimation of cancer risks associated with the
radiation exposure from diagnostic X-rays is possible by
using radiation dose data and appropriate risk coefficients
provided by scientific committees. Risk estimation is based
on the linear no-threshold (LNT) model. LNT presupposes
that there is a linear relationship between radiation dose and
health risk at all dose levels. The risk estimate based on the
LNT model is a useful tool not only for justification of
medical exposures but also for comparison with other risks.
The Biological Effects of Ionizing Radiation Committee VII
(BEIR VII) recently estimated sex- and age-specific risk
factors attributable to radiation [57]. Of note, however, is
that patient and occupational effective doses from techniques
used in clinical practice for evaluation of bone status and
potential radiogenic risks are very small compared with the
expected benefits [58].

Assessment of radiogenic risk from diagnostic X-ray
examinations has several limitations. There is debate
regarding whether low-level radiation provides a signifi-

cantly increased risk of developing cancer. The bio-
logical effects of diagnostic radiation on humans have
not been studied directly. Current information is based on
studies of populations such as atomic bomb survivors,
radiation workers and patients treated with radiation. Most
individuals in these cohorts received effective doses that
were much larger than the doses from diagnostic X-ray
examinations. However, recent studies show a significant
increase in cancer risk in a group of atomic bomb
survivors who received doses of radiation comparable to
those currently involved in diagnostic radiology [48, 59].
The potential risk to an individual associated with
techniques used for the assessment of bone status is very
small because radiation doses are low. Despite uncertainty
about the true risks of exposure to radiation levels used in
these techniques, radiation protection principles must be
applied in everyday clinical practice.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are
credited.
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