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SUMMARY
This paper deals with the problem of diffraction radiation from an electric point

charge whioh moves, at a constant speed, through two coaxial circular apertures in
two parallel plane screens. The screens are assumed to be electrically perfectly con-
ducting. The problem is reduced to the solution of two integral equations for the
unknown field functions in the two apertures. Low-frequency solutions as well as
high-frequency solutions are considered. Results pertaining to the far-field behaviour
of the radiated field are given. Finally, numerical results pertaining to the radiation
loss of the charge are presented.

1. Introduction
T H E energy lost by diffraction radiation when a charged particle passes a
conducting structure is of considerable importance in accelerating systems.
In the past, attention has been limited to a single conducting structure
and to periodic structures. Bolotovskii and VoskresensMi (1, 2) and Hazel-
tine, Rosenbluth and Sessler (3) have reviewed the literature on this
subject.

Hitherto, very little consideration has been given to the radiation of a
charged particle passing a single resonating structure. Therefore, in the
present paper the diffraction radiation from an electric point charge that
moves, at a constant speed, through two coaxial circular apertures in two
plane parallel screens is investigated. It is one of the simplest configura-
tions which can exhibit resonating features. To gain an insight into the
necessary mathematical technique for solving the present problem, we
first solved the relevant problem involving one aperture in a single screen
(4). In the present paper we exclude mathematical details and restrict
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ourselves to the salient points and final results in the method of solution.
The complete mathematical approach can be found elsewhere (5).

2. Formulation of the problem
The point charge q under consideration moves with constant velocity

v = vois (v0 < c0, where c0 is the velocity of light) along the axis of a
system of circular cylindrical coordinates (r, <f>, z) through coaxial circular
apertures in two parallel plane screens at z = 0 and z = I. The apertures
occupy the regions z = 0, O ^ r ^ a , 0 ^ <f> < 2IT and z = I, 0 ^ r < a,
0 < <f> < 2TT, respectively. Since the geometrical configuration is indepen-
dent of (f>, all field quantities are independent of <f>. From Maxwell's
equations it follows that H^, ET and E3 are the only non-zero components
of the magnetic and electric fields and that Er and Ez can be expressed in
terms of H^. Let H^ be Fourier analysed as

Ht(r, z, t) = i Ee [ f" H^(r, z) exp (iwt) do>], (2.1)

with H^ = H1^ + H^. The 'incident' field E^a pertains to the field of the
moving charge in free space. The field H^ pertains to the diffracted field
and this field can give rise to radiation. For convenience, we write

E^=-dUldr, ' (2.2)

with n = n'-|- n r , in which

n'(r, Z) = | - exp ( - ikMKoikYr), (2.3)

where k = co(€0/i0)* = a>/c0 (c0 is the permittivity and /i0 the permeability
of the vacuum), /?0 = co/v0, F = (/9Q —1)* and Ko is the modified Bessel func-
tion of second kind and zero order (6). The function IF satisfies the homo-
geneous Helmholtz equation. At the electrically perfectly conducting
screens, the tangential component of the total electric field vector should
vanish. These boundary conditions can be formulated as

8H,pJdz = 0 at z = 0 and z = I, a < r < oo. (2.4)

Further, we have to satisfy the edge condition and the radiation condition.

3. Integral equations
In order to obtain a solution of our problem, we choose the method of

integral equations. They are obtained as follows. Apply Green's theorem
to the domains z<0, 0<z<l and z > I, respectively, with respect to
the diffracted field IIr. With respect to the incident field II', apply Green's
theorem to the same domains, respectively, but outside the region
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r < c (e -»- 0). Combine the results in such a way that the integrals over
the screens cancel, and require then that in the apertures H^ be con-
tinuous. After introducing the dimensionless variables p = r/a, a = ka
and T = Ija, we obtain the system of two simultaneous integral equations

Jo />/(/>X îO>o> p) + -S"a(Po. P)} dp- JQ pg(p)K3{p0, p) dp

= C1 + n((aPo,0),

Jo pf(p)K3(Po> p) dp- JQ pg{p){K2(p0, p) + K1(Po, p)} dp

= C2, 0 < po < 1,

with/(p) = - [ a an/az]z=0) g(p) = - [aan/az] 3 _, and

K J_ f2n exp {-ia{pl - 2p0pcos <f> + p3)*} AX
1 2^ Jo

1 -. f2" exp { - ta(pg - 2PoP cos ̂  + p2

^2J
exp {-t«(p2-2p0p cos

(3.2)

C/j and C2 are arbitrary constants and are determined by the edge condi-
tion that df/dp and dg/dp are of order (1 — p a)~*asp->-l. By adding and
subtracting the two integral equations (3.1), we obtain two ordinary
integral equations

(Po, P) dP = C± + n((ap0) 0), 0 < p0 < 1, (3.3)

in which /=•= (p) = /(p) ± g(p),
K±(Po> P) = Ki(Po> P) + K2{po, p)TK3(p0, p),

C* = Ci + Ca.

In section 5 we discuss the solution for small a and in section 6 we give
some results for large a.

4. Far-field behaviour
We first consider the far-field behaviour of the radiation field in the

domains z < 0 and z > I. In the same way as in (4), we obtain the results
that

H}a(r,z) = A(6)exv{-ikR)IR + O(R-2) astf-^oo, (4.1)

and where r = R sin 6 and z = — R cos 8, 0 < d < \TT,

nia,{r,z) C(6)exp(-ikR)IR + O(R-*) aaii^oo, (4.2)

where r = R sin 6 and z = I + R cos 6, 0 ^ 6 < \n,
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in which the far-field amplitudes A(9) and C(9) are given by

A(e) = -%- 0 % ain 9 f " PK0{aTP)J0(aP si

- t a sin 0 I pf(p)Jo(ap sin 0) dp, a r ^ 0, (4.3)
Jo

C(0) = - # " a ^ o sin 0 exp (-#„<«•) f" PK0{aTP)J0(ap sin 0)
*"• Jo

- t a s i n f l f pgr(p)J0(ap sin 0) dp, aP ^ 0, (4.4)
Jo

where / 0 is the Bessel function of the first kind and zero order (6). In the
domain 0 < z < I however, we apply an expansion in modes as r -*• oo:

BiJr, z) = - S emBm — - ) ? e x p (-igmr + ±ni) cos {rmrzjl) +

+ O(r "*) + exponentially vanishing terms, (4.5)

where flrm = (*a-(mV/P))*, 6m = {£ ^ = £ and

•Bm = - ?«2y J3O( 1 - exp ( - tj30aT)) Jo°° p-g'o(arP>7o(«ymP) dp

-27riaym £ p{f(P)-g{P))J0{*ymp) dp, aY * 0, (4.6)

with ym = (1 — (mV/o^r2))*. In the next sections the expressions (4.3),
(4.4) and (4.6) will be considered further.

5. Solution for small a
The solution of an integral equation like (3.3) can be transformed into

the solution of a Fredholm integral equation of the second kind, which is
very suitable for iteration for small a (7, 8). After determination (4) of the
constants C* in such a way that the edge conditions have been satisfied
we obtain the integral equations

c o s h M
cosh a

+ I"' W±(w) [C0Sh
u

(gt') i ± ( l , w)-L±(v, w)l dw, 0 < v < 1, (5.1)
Jo L c°sh a J
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in which

L±(v,w) = L1(v,

r , i fsinh (a(v + w)\ sinh (a(v — w)}~\
L^v, w) = — ^ -J + ^ >

n I v + w v — w J
o oo /*oo

L2(v,w)=~y cos {{ft + ia)v} COB {(ft+ ia)w}exp{-(ft+ ia)2nT}dft,
'ntiJo
o oo poo

L3(v,w) = - V I cos {{fi + ia)v} cos
n n-i Jo

x exp { - (J3 + »a) (2n - 1

Collins (7) and Thomas (8) have carried out the summations in L2 and L3

after an interchange of the summation and integration, but it does not
simplify the calculations. We remark that L2 and L3 are singular at
ax = TMT, where TO is an integer. However, the choice of the constants 0*
ensures that the kernel of the integral equation (5.1) is finite for all values
of ax. Physically, it means that the cavity formed by the two screens is
not excited in a resonating behaviour. This is in contrast with the problem
of the diffraction of a uniform plane wave through the circular apertures
in two parallel screens, where resonances indeed occur (7, 8). When a is
small, T large and /30 not too large, say 1 < j30 < 2, an iterative solution of
equation (5.1) can be obtained. Our next step is to calculate the far-field
amplitudes from (4.3), (4.4) and (4.6). The final results are

+i -P( - )+^« 3 COB- e-A «*+

22

(5.2)

(5.3)
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(5.4)

where p(a) = 2 + §a2r2 In (aF) - |a2{r2(8 - 6y) + 5}, y = 0-577216 . . . is
Euler's constant, and

(-2iar)},

(5.5)1. = f (»-i)-exp{-(2n-l)»oT}

where Li, is the polylogarithm of order s (see (9)). We observe that the
singular terms with Ex and F± have indeed vanished in the field expres-
sions. We note in (5.4) that TmrJT = O(a).

6. Solution for large a

To obtain a solution of integral equation (3.3) for large a is rather
difficult. In the relevant problem involving one screen, a closed solution
for large a has been obtained when we neglect the interaction between
opposite points at the edge of the aperture (4). As we have seen from the
considerations in section 5, there is no singular behaviour of the resonator
formed by the two screens in our present problem. Hence, to the same
degree of approximation, we can also neglect the interaction between the
two aperture fields when I > a (T > 1). Then, in the aperture at z = 0, the
field distribution is given by equation (6.19) of (4) and in the aperture at
z = I, the field distribution is given by g(w) ~ exp ( —ij90<zT)/(tc). In the
same manner as in (4), we obtain the far-field amplitude as

A ta\ 1 p \ • a 8 i n 6 •7i((X ̂  e)Ko(ar) ~ rZ1(ar)J0(« sin 6)A(9) ~ — poa I sin 6 ^ , ^ 2 g

(6.2)
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Bm ~ qpoa[l-exp (-ipoar)]x

( 6"3 )

in which J± is the Bessel function of the first kind and first order and Kx is
the modified Bessel function of the second kind and first order.

7. Radiation loss of the point charge. Numerical results
The total radiated energy is the sum of the energies radiated through

hemispheres of large radius R with centres at r = 0, z = 0 and r = 0,
z = I bounding the regions z < 0 and z > I, respectively, and through the
cylindrical surface of large radius with axis the z-axis bounding the region
0 < z < I; we obtain

Gtot = J " [^ iM + PuH + P 3 M ] do, (7.1)

with P^ea) = 2{fji0leo)i J*" |.4(0)|2 sin 6 d6,

i>
aH=-W«o)*(«r)-1 f e \B |2 '

*"" m-0

Pa(a>) = 20xo/fo)* Jo*" |C(0)|a sin e dd,

in which (^o/
eo)* — 12(>7r is the wave impedance of the vacuum. Let us

now introduce

Qaw = J

with

in which P(a>) is the relevant radiation loss in the problem of a single
screen (4). We note that Pouti™) d°> ™ ^e difference in radiation loss be-
tween that in the present problem of two screens and that in the former
problem involving a single screen, caused by radiation between <o and

Numerical results concerning the radiation loss gr~2(eo//io)*-f'diff(aj) a r e

presented in Fig. 1 for small la (a < 1) and for large a (a > 1) with
a = tjalc0. We observe that the extra radiation loss Paitt(<*>)> due to the
presence of the second screen at z = I, exhibits a fluctuating behaviour
with decreasing amplitude for increasing a > 1. Peaks in the curves occur
at values of a a little larger than WTT/T (TO = 1, 3, 5, ...). This peaked
character increases with increasing velocity of the charge. The radiation
loss Ptot(oj) = Pi(co) + P2(w) + P3(co) caused by the presence of the two
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screens can be obtained by summation of the results of Fig. 1 of this paper
and those of Fig. 1 of the paper on the problem of a single screen (4).

In Table 1, numerical results for €Oagr"2Q(3irr are presented. The numeri-

TABLE 1. Numerical values of

the last line of ike Table gives the corresponding value of (j30F) ~1

T

1-5
2
4
8

00

vo/co

= 0-70

0-08
0-08
0-06
005

0-05

0-69

= °0-80

009
010
0-09
0-09

0-09

1-07

= 0-90

014
0-16
016
015

016

1-86

= 0-96

0-25
0-28
0-29
0-28

0-30

3-29

= 0-98

0-38
0-42
0-43
0-42

0-44

4-83

= (M

0-57
0-62
0-63
0-62

0-64

6-95

cal values are obtained from a numerical integration of the values of
Paxiiou), switching from the results for small a to the ones for large a at
a = 1. The values on the penultimate line (T = oo) are obtained in a different
manner. When T = oo (I = oo), the total extra radiation loss Qmt in the
presence of the second screen has to be the same as the total radiation loss •
in the absence of the second screen. In the case T = oo, we have then
reproduced the values obtained in the problem of a single screen. For the
sake of completeness we remark that the latter values have been obtained
from a numerical integration of the values of P(w), switching from the
results for small a to the ones for large a at the crossover point of the rele-
vant curves. We observe that already for T = 4 the results coincide with
the ones for T = oo. From an extrapolation of the results of the problems
involving one and two screens to the problem involving a certain small
number of screens, it seems likely that the total radiation loss Qtot of a
charge moving through a certain small number N of coaxial circular
apertures in parallel screens can be written as

Gtot ~ 0-1 Nq*l(eoaflor). (7.3)
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