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Radiation from a Traveling-Wave Current Sheet at the
Interface between a Conventional Material and a

Metamaterial with Negative Permittivity and Permeability

Andrea Alu’ and Nader Engheta

University of Pennsylvania
Department of Electrical and System Engineering

Philadelphia, Pennsylvania 19104-6390
E-mail: andreaal@ee.upenn.edu and engheta@ee.upenn.edu

URL: http://www.ee.upenn.edu/~engheta/

Abstract

In this note, we present the analysis for the radiation from a traveling-wave
infinitely-extent sheet of monochromatic electric current that is placed at the interface
between a conventional lossless dielectric and a lossless material possessing negative real
permittivity and permeability. The field distributions and the direction of the Poynting
vectors in both half spaces are discussed, and some physical remarks are provided. A
brief note about launching Zenneck waves by a line current along this interface is also
mentioned.

Keywords: Metamaterials, negative index of refraction, negative permittivity, negative
permeability, left-handed medium, antenna.

Introduction

The topic of complex materials in which both permittivity and permeability
possess negative values at some frequencies has been the subject of considerable
attention recently [1-11]. The history of this idea dates back to Veselago, who in 1967
theoretically studied monochromatic plane wave propagation in a material whose
permittivity and permeability he assumed to be simultaneously negative at a given
frequency [6]. Recently, there has been a renewed interest in this type of material since
Smith, Schultz and Shelby in their research group at UC San Diego constructed such a
composite medium for the microwave regime, and experimentally showed the presence
of anomalous refraction in this medium [1]. There have been several names suggested
for this type of materials, such as “left-handed” materials (see e.g., [6]), materials with
negative refractive index (see e.g., [3]), “double-negative (DNG)” media [8], “backward”
(BW) media [7], to name a few. One of the interesting electromagnetic features of these
media is the fact that for a monochromatic uniform plane wave in such a medium the
direction of the Poynting vector is antiparallel with respect to the direction of phase
velocity. Owing to this feature, one can envision various potential applications for DNG
materials. Engheta recently introduced theoretically the idea of compact cavity
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resonators in which a combination of a slab of conventional material and a slab of DNG
material is inserted [10], and in his theoretical analysis he showed that a slab of DNG
metamaterial can act as a phase compensator/conjugator, and thus by combining such a
slab with another slab made of a conventional dielectric material one can, in principle,
have a 1-D cavity resonator whose dispersion relation may not depend on the sum of
thicknesses of the interior materials filling this cavity, but instead it depends on the ratio
of these thicknesses [10].

In this brief note, we analyze theoretically the electromagnetic radiation from a
traveling-wave thin current sheet located at the interface between a conventional
dielectric half space and a DNG material half space. This study can be informative
towards any analysis and understanding of source radiation in structures involving DNG
materials. In this analysis, we conceptually assume both half spaces to be lossless and,
therefore, the material parameters are taken to be real-valued quantities.1

Formulation of the Problem

Consider two semi-infinite regions in a Cartesian coordinate system ( ), ,x y z ; one

is the half space 0y > which is filled with a conventional lossless medium with real

permittivity and permeability 1 0ε > and 1 0µ > ; and the other is the half space 0y <
filled a DNG medium with parameters 2 0ε < and 2 0µ < . (See Fig. 1) In analogy with

the terminology “DNG” introduced in [8], for the sake of brevity we call the conventional
medium with positive permittivity and permeability a “double-positive” (DPS) medium.

x

y

DPS

DNG

Fig. 1. Geometry of the problem. The term “DNG” stands for “double-negative” medium [8], i.e.,
a medium with negative permittivity and permeability, while the term “DPS”, in analogy with
DNG, stands for “double-positive” medium, i.e., a medium with positive permittivity and
permeability. An infinitely extent thin sheet of surface current is located at the interface between
the DNG and DPS media.

1 We realize that strictly speaking, no material (except the vacuum in the classical sense) is dispersionless,
and therefore the Kramers-Kronig relations require the inclusion of dissipation. However, in our analysis
here, we assume that the dissipation is negligible at the frequency of monochromatic radiation of interest.

1

1

0

0

ε
µ
>
>

2

2

0

0

ε
µ
<
<

( )ˆ j x
oJ e yβ δ−=J z
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An infinitely-extent thin sheet of monochromatic electric current is located at 0y = , the
interface between the DNG and DPS half spaces. Assuming the time dependence to be

j te ω , the density of this current sheet can be described as

( )ˆ j x
oJ e yβ δ−=J z (1)

where oJ is the strength of the surface current density, β is the rate of the linear phase

change in the x direction, ( )δ ⋅ is the Dirac delta function, and ẑ is the unit vector in the z

direction. Here we assume the direction of the current flow is along z, while the direction
of phase variation of this traveling-wave current is along x. (At the end of this note, we
will give the results for the case of the current sheet with the current flow and the
direction of phase variation both being along the x direction.)

The electromagnetic fields radiated from the current distribution given in Eq. (1)
possess the electric field ˆ zE=E z where the scalar quantity zE satisfies the following

equations in the two semi-infinite regions

( )2 2
1 1 0 0zE for yω µ ε∇ + = > (2)

( )2 2
2 2 0 0zE for yω µ ε∇ + = < (3)

with the current sheet located at 0y = . This case we refer to as the transverse electric

(TE) case. Due to our assumption stated earlier, we have 1 1 0ε µ > and 2 2 0ε µ > , and thus

the wavenumbers 1 1ω µ ε and 2 2ω µ ε are real quantities. From Eqs. (2) and (3), the

expressions for zE can be written as

2 2 2 2
1 1 1 1

2 2 2 2
2 2 2 2

1 1

2 2

0

0

j y j yj x j x

z
j y j yj x j x

A e e B e e y
E

A e e B e e y

ω ε µ β ω ε µ ββ β

ω ε µ β ω ε µ ββ β

− − + −− −

− − + −− −

 + >= 
 + <

(4)

The magnetic fields can be derived from the Maxwell curl equation -jωµ∇× E = H .
The four unknown coefficients can, in principle, be obtained by applying the boundary
conditions at 0y =

( 0) ( 0)z zE y E y= + = = −

( ) ( )ˆ ˆ0 0 j x
oy y J e β−× = + − = − =  y H H z (5)

and the radiation conditions at y = ±∞ . However, care must be taken when we analyze
the wave in the DNG half space, since in the DNG medium the direction of the Poynting
vector is antiparallel with respect to the direction of the phase flow. This point is
described below.
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In the DPS half space ( 0y > ), the phase flow vector and the Poynting vector are

parallel, and thus both the phase velocity vector and the Poynting vector are propagating

away from the source, when 1 1β ω ε µ< . Therefore, the coefficient 1B should be taken

to be identically zero, and we are left with the term
2 2

1 1

1
j yj xA e e ω ε µ ββ − −− . When

1 1β ω ε µ> , the proper sign of square root in the expression 2 2
1 1ω ε µ β− should be chosen

in order to ensure zero fields at y = +∞ . Therefore, for 1 1β ω ε µ> we should have

2 2 2 2
1 1 1 1jω ε µ β β ω ε µ− = − − , and we then have the term

2 2
1 1

1
yj xA e e β ω ε µβ − −− . In this case, the

fields decay exponentially away from the source, as expected. In either case, no power
will come back towards the source from infinity, since there is no reflected wave.

In the DNG half-space ( 0y < ), however, as was mentioned earlier, the phase

flow vector and the Poynting vector are antiparallel. As a result, when 2 2β ω ε µ<
while the Poynting vector should be pointed away from the source, the phase velocity
vector should be pointed towards the source, as depicted in Fig. 2. Therefore, when

2 2β ω ε µ< the coefficient 2B should be taken to be zero, and we are left with the term
2 2

2 2

2
j yj xA e e ω ε µ ββ − −− . It is also important to note that in the DNG half space the radiation

power flows away from the source; however, unlike the case of DPS medium, here the x-
component of the Poynting vector is pointed in the sense opposite to the direction of the

phase change of the current along the x axis, as seen in Fig.2. When 2 2β ω ε µ> we

should have 2 2 2 2
2 2 2 2jω ε µ β β ω ε µ− = − in order to guarantee zero field at y = −∞ , and we then

have the term
2 2

2 2

2
yj xA e e β ω ε µβ −− .

x

y

DPS

DNG

k1

k2

β

S1

S2

Fig. 2. Schematic representation of the directions of wave vectors 1k and 2k , and the Poynting

vectors 1S and 2S . In the DPS medium, vectors 1k and 1S are parallel, while in the DNG

medium the vectors 2k and 2S are antiparallel. The directions of power flow of the

electromagnetic radiation from the monochromatic traveling-wave current sheet J shown in Eq.

(1) are shown as the vectors 1S and 2S .
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Taking into account the above issues and applying the boundary conditions, we obtain the
following expressions for the electric and magnetic fields and the complex Poynting
vectors in the two regions:

1

2

1 2

1 2

1 2

1 2

0

ˆ

0

t

t

jk yj x
o

t t

jk yj x
o

t t

J e e
y

k k

J e e
y

k k

β

β

ω

µ µ

ω

µ µ

−−

−−


− >

−
= 
− <

−


E z (6)

1 1

2 2

1 2 1
1 2

2 1 2

2 1 2
2 1

1 2 1

0
1

ˆ ˆ

0
1

t t

t t

jk y jk yj x j x
o o

t
t t

t

jk y jk yj x j x
o o

t
t t

t

J e e J e e
y

k
k k

k

J e e J e e
y

k
k k

k

β β

β β

β
µ µ
µ µ

β
µ µ
µ µ

− −− −

− −− −

 
− > 

− − 
 = + 
 − < 

− − 


H x y (7)

{ }

{ }

{ }

{ }

1 1

2 2

2 22 Im 2 Im*
1

2 2

2 1 2 1
1 1

2 1 2 1

2 22 Im 2 Im*
2

2 2

2 1 2 1
2 2

2 1 2 1

0

2 2

ˆ ˆ

0

2 2

t t

t t

y k y k
o o t

t t t t

y k y k
o o t

t t t t

J e J k e
y

k k k k

J e J k e
y

k k k k

β ω ω

µ µ
µ µ µ µ

β ω ω

µ µ
µ µ µ µ

 
> 

 − − 
 = + 
  < 
 − −
  

S x y (8)

where 1tk and 2tk are shorthand for 2 2
1 1ω ε µ β− and 2 2

2 2ω ε µ β− when 1 1β ω ε µ<

and 2 2β ω ε µ< , respectively. Note that in the case of 1 1β ω ε µ> and/or 2 2β ω ε µ>

the quantities 1tk and 2tk should be written as 2 2
1 1 1tk j β ω ε µ= − −  and

2 2
2 2 2tk j β ω ε µ= − , as was discussed earlier.

It is worth emphasizing that when 2 2β ω ε µ> our choice of sign for the term

2tk in the DNG half space leads to a physically meaningful decaying exponential as

y → −∞ , which is square-integrable. However, if one had chosen the opposite sign, as
was done in Ref. [4], one would have obtained here a “growing” exponential as y → −∞ ,
which would have possessed an x-directed real-valued Poynting vector that would have
grown as y → −∞ . This would have clearly been a non-physical outcome, since in such
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a situation the x-directed time-averaged power flux density would have been larger as one
would have moved farther away from the source at 0y = , and this is not physically
possible.

It is important to note that in the case of propagating waves (i.e., when

1 1β ω ε µ< and 2 2β ω ε µ< ), since 2 0µ < the denominators in the field expressions,

Eqs. (6) and (7), cannot become zero. However, when 1 1β ω ε µ> and 2 2β ω ε µ> ,

due to the choice of the square root mentioned earlier, the field quantities will become
infinitely large if the following condition is satisfied

2 2 2 2
1 2 2 2 1 1 0µ β ω ε µ µ β ω ε µ− + − = (9)

This conceptual singularity can be explained and justified in the following argument.

In the case where { }1 1 2 2min ,β ω ε µ ω ε µ< , both components of the Poynting

vector given in Eq. (8) in each region are real-valued quantities; the y-components are
pointed away from the source and the x-components in two regions are antiparallel. In
fact, the power flux density per unit area flowing out of a closed surface containing any
segment of the current source can be evaluated as

2

0 0
1 2

1 2

ˆ ˆ

2

o
rad y y

t t

J
P

k k

ω

µ µ

> <
= ⋅ − ⋅ =

 
− 

 

S y S y (10)

which, as expected, equals the power density emitted from the source, sP

2

*

1 2

1 2

1

2
2

o
s rad

t t

J
P P

k k

ω

µ µ

= − ⋅ = =
 

− 
 

E J (11)

In the case where { }1 1 2 2max ,β ω ε µ ω ε µ> , both 1tk and 2tk are imaginary, and thus

the y-components of the Poynting vectors are imaginary and carry no time-averaged
power away from the source. The x-components of the Poynting vectors in both regions
are, however, real-valued quantities, and they represent power of the waves moving along
the boundary and “hugging” the current source. These waves possess x-directed
Poynting vectors that are antiparallel. From the knowledge of Eq. (8), the total time-
averaged power flow along the x axis, across any plane parallel with the y-z plane in each
of the two half spaces, can be given as



-7- 

 

( )

( )

2

1 20
2 1

1 1
2 1

2
0

2 2

2 1
2 2

2 1

ˆ

4

ˆ

4

o

t t
t

o

t t
t

J
P dy

k k
k

J
P dy

k k
k

β ω

µ
µ µ

β ω

µ
µ µ

∞

−∞

= ⋅ =

−

= ⋅ =

−

∫

∫

Re S x

Re S x

(12)

and the net total time-averaged power then becomes

2

1 2 1 2
1 2 2

2 11 2 2 14
o

t tt t

J
P P P

k kk k

β ω µ µ µ µ
µ µ

 
= + = + 

−  
(13)

with 2 2
1 1 1tk j β ω ε µ= − −  and 2 2

2 2 2tk j β ω ε µ= − . This net power may vanish if

1 1 2 2t tk kµ µ= − , which is different from the condition given in Eq. (9). It is important

to note that Eq. (9) is indeed the condition for existence of source-free Zenneck waves at
the boundary between a DNG and a DPS medium, as can be deduced from the work of
Lindell et al. [7]. Therefore, if one wants to launch a Zenneck wave along this interface,
one can put a thin line current along the z axis at the interface, i.e., ( ) ( )ˆline oI x yδ δ=J z .

Such a line current can be expanded using the following Fourier transform:

( ) ( ) ( )ˆ ˆ
2

j xo
line o

I
I x y d e yβδ δ β δ

π
∞ −

−∞
= = ∫J z z . (14)

The fields due to this line current can then be given as

{ }Eq.(6)
2

o
line

o

I
d

J
β

π
+∞

−∞
= ∫E

{ }Eq.(7)
2

o
line

o

I
d

J
β

π
+∞

−∞
= ∫H (15)

where Eq. (6) and Eq. (7) are field quantities due to the current sheet of

( )ˆ j x
oJ e yβ δ−=J z . In Eq. (15), the radiation fields are due to the integration over the

interval { }1 1 2 2max ,β ω ε µ ω ε µ< and can be calculated from the knowledge of Eqs.

(6) and (7). In addition to the radiation fields, the integrals given in Eq. (15) will also
provide the surface wave due to the residue contribution, which occurs at the poles of
Eqs. (6) and (7). These poles indeed satisfy Eq. (9), which leads to the following β :
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 1 1 2 2
2 2
1 2

/ /

1/ 1/surf

ε µ ε µβ ω
µ µ

−
= ±

−
. (16)

If this surfβ is real and if { }1 1 2 2max ,surfβ ω ε µ ω ε µ> , the electric field of such a

surface wave can then be calculated by means of the residue theorem and can be
expressed as:

2 2
1 1

2 2
2 2

2 2
1 1

2 2
2 2

1 2

1 2

2 2 2 2
1 1 1 2 2 2

0
ˆ

0

0

0
ˆ

1 1

surfsurf

surf

surf

surf

surf

surf

yj x

surf o
y

t t

y
j x

y

o

surf

surf surf

e ye
I

k k e y

e y
e

e y
I

β ω ε µβ

β ω ε µ

β β

β ω ε µ
β

β ω ε µ

ω

β µ µ

ω

β
µ β ω ε µ µ β ω ε µ

− −−

−

=

− −
−

−

 >= =
 ∂  <+ ∂  

 >

 <=

 
 +
 − − 

E z

z

. (17)

The magnetic field of such a surface wave can be calculated similarly. So from a line
current source (Eq. (14)) this Zenneck wave is launched. Now if we put an infinite
number of such line current sources next to each other arranged such that they form a
current sheet of Eq. (1) with surfβ β= , there will be an infinite number of Zenneck waves

each being launched from each line current source, and since surfβ β= they all would be

added constructively. The amplitude of such combined Zenneck wave would therefore
be infinite. This justifies and describes why the condition given in Eq. (9) leads to
singularity in Eqs. (6) and (7).

It is worth noting that Eq. (9) in general may provide the condition for a single
Zenneck wave to propagate with surfβ (as given in Eq. (16)) along the interface between

the DNG and the DPS media. However, for a particular case of 2 1

2 1

ε ε
µ µ
= −

 = −
, Eq. (9) is

satisfied for any given β as long as { }1 1 2 2max ,β ω ε µ ω ε µ> . But in this case, such

surface waves will carry zero net power, since according to Eq. (13) 0P = in this case
for any β . In this scenario, two oppositely directed, but equal, power fluxes propagate
along the x axis, effectively behaving similar to a “standing wave” in a cavity or a
resonant circuit. We also note that in this case, the denominator of Eq. (17) vanishes,
resembling a situation in which a resonant parallel L-C circuit is excited by a

monochromatic parallel current source oscillating at the resonant frequency 1/ LCω = ,
resulting in an infinitely large voltage in the L-C circuit. (Or equivalently a resonant
series L-C circuit being excited by a monochromatic series voltage source at the resonant
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frequency resulting in an infinite current in the series L-C circuit.) This also somewhat
resembles a situation in which an ideal lossless cavity resonator is excited by a forced
current element, oscillating at the resonant frequency of the cavity, located at an interior
point with a non-zero value of the electric field of the cavity mode. In such a “driven”
cavity, this forced oscillation leads to infinitely large values for the electric and magnetic
fields within the cavity.

Similar analysis can be performed for the case of current distribution of the form

( )ˆ j x
oJ e yβ δ−=J x . In this case, which is the transverse magnetic (TM) case, the

corresponding electromagnetic fields and related Poynting vectors can be given as:

1 1

2 2

2 1 1
1 2

2 1 2

2 1 2
1 2

2 1 1

0

ˆ ˆ

0

t t

t t

jk y jk yj x j x
o o

t

t t t

jk y jk yj x j x
o o

t

t t t

J e e J e e
y

k
k k k

J e e J e e
y

k
k k k

β β

β β

β
ε εω ω ε ε

β
ε εω ω ε ε

− −− −

− −− −

 
>     − −         = + 

 − <    
− −    

     

E x y (18)

1

2

2 1

1 2

1 2

2 1

0
1

ˆ

0
1

t

t

jk yj x
o

t

t

jk yj x
o

t

t

J e e
y

k

k

J e e
y

k
k

β

β

ε
ε

ε
ε

−−

−−


>

−
= 
 <

−


H z (19),

{ }

{ }

{ }

{ }

1 1

2 2

2 22 Im 2 Im
1 1 1
2 2

1 1
1 2 1 2

2 2

2 22 Im 2 Im
2 2 2

2 2

2 2
2 1 2 1

1 1

0

2 2

ˆ ˆ

0

2 2

t t

t t

y k y k
o o t

t t

t t

y k y k
o o t

t t

t t

J e J e k
y

k k

k k

J e J e k
y

k k
k k

β ε ε

ω ε ε ω ε ε

β ε ε

ω ε ε ω ε ε

 
> 

 − − 
 = + 
  < 
 − −
  

S x y (20)

with 2 2
1 1 1tk ω µ ε β= − and 2 2

2 2 2tk ω µ ε β= − for 1 1β ω µ ε< and 2 2β ω µ ε< , and

2 2
1 1 1tk j β ω µ ε= − −  and 2 2

2 2 2tk j β ω µ ε= − for 1 1β ω µ ε> and 2 2β ω µ ε> , and

other quantities similar to the ones defined earlier for the transverse electric (TE) case.
Similar considerations can be mentioned in this TM case.
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In summary, we have presented our analysis of the electromagnetic radiation from
an infinitely extent monochromatic thin sheet of current located at the interface between a
DPS medium and a DNG medium. The results of this analysis show that the Poynting
vectors in the two media are pointed away from the source; however, the x-components
of the two Poynting vectors are in opposite directions. This is due to the fact that in the
DNG medium for a monochromatic uniform plane wave propagation the Poynting vector
and the phase velocity vector are antiparallel. This result is consistent with what
Veselago has conjectured about the direction of the Cerenkov radiation in the DNG
media [6].
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