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Radiation from Isolated Spectral Lines with Combined Doppler and Lorentz Broadening* 
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Methods for the calculation of spectral absorption coefficients for combined Doppler and Lorentz broaden­
ing are summarized. The "curves of growth" have been extended to cover the ranges of parameters which 
arise in spectroscopic studies on flames. 

I. BASIC RELATIONS 

FOR combined Doppler and Lorentz broadening it is 
well known! that the spectral absorption coefficient 

at the wave number w, pew), is given, in adequate ap­
proximation, by the relation 

P(w) = pi (a/rr) f+OO [a2+(~-y)2J-![exp( -y2)Jdy, (1) 
-00 

where 

pi = (S/ wo)(mc2/27rkT)';, 

a= [(bN+bc)/ woJ(mc2/2kT)';= (bN+bc)(ln2)!/bD , 

and 

~= [(w-wo)/ woJ(mc2/2kT)!= [(w-wo)/bD J(ln2)i. 

Thus pi represents the maximum value of the spectral 
absorption coefficient if only Doppler broadening 
occurred; bN, be, and bD denote, respectively, the 
natural half-width, t the half-width resulting from 
collision (Lorentz) broadening, and the half-width 
produced by Doppler broadening; S is the integrated 
intensity of the spectral line under study whose center 
lies at Wo; m is the mass of the radiating molecule; .k 
equals the Boltzmann constant; T represents the abso-
lute temperature. . 

The total radiant intensity A emitted by a spectral 
line is 

A=f RO(w){l-exp[ -P(w)XJ}dw, (2) 
<low 

where X represents the optical density of the emitter 
(for example, in cm-atmos). The integration interval 
~w in Eq. (2) can be extended from - 00 to + 00, with 
the line center chosen as origin, for isolated spectral 
lines, without appreciable error. In Eq. (2) the quantity 
RO(w) denotes the intensity of radiation emitted by a 
blackbody in the wave-number interval between wand 
w+dw into a solid angle of 27r steradians per unit area 
per unit time. The quantity RO(w) can be set equal to 

* Supported by the U. S. Office of Naval Research. 
1 See, for example, A. C. G. Mitchell and M. W. Zemansky, 

Resonance Radiation and Excited Atoms (Cambridge University 
Press, Cambridge, 1934), Appendix 1. 

t The term half-width is used to denote one-half of the wave 
number interval for which pew) ~ !P'. A consistent set of units 
would involve P in cm-I-atoms-t, S in cm-2-atoms-I, and the 
half-widths in em-I. 

RO(wo)=RO without sensible error. Thus the problem 
of evaluation of intensities emitted by isolated spectral 
lines reduces to the calculation of 

+00 

A/Ro= f {l-exp[ -P(w)XJ}dw, (3) 
-00 

where pew) is given by Eq. (1). The'spectral absorption 
coefficients must, of course, satisfy the relation 

f+oo P(w)dw=S. 
-00 

Before proceeding with the general problem it appears 
desirable to review briefly several special cases. 

A. Pure Doppler Broadening 

For pure Doppler broadening a= 0 and Eq. (1) 
becomes2 

P(W)=pl exp(-e). (4) 
Furthermore2 ,3 

00 

A/Ro= (SX) L [(n+1)!(n+1) !J-!( _plx)n. (5) 
n=O 

Numerical values for A/RoSX have been given by 
Ladenburg3 for O.10~PIX~1000. For O~PIX~30, 
Eq. (5) may be replaced by the following approximation 

A/Ro=SX exp[ _t(pIX)!]. (6) 

For very large values of pi X the following asymptotic 
expansion for A/ RO applies:4 

A/ RO= 27r-!(S/ PI)zl 

00 

X {1- [21'(!) J-! L [1'(n) (l)1'(n -!)/ (n!zn) J}, 
n=l 

where z=log(P'X), 1'(n) (1) is the nth derivative of the 
gamma-function evaluated at unit argument, and 

2 For details see, for example, D. G. Kendall, Z. Astrophys. 16, 
308 (1938). 

3 R. Ladenburg, Z. Physik 65, 200 (1930); R. D. Cowan and 
G. H. Dieke, Revs. Modem Phys. 20, 418 (1948). 

4 This expansion was obtained by H. S. Tsien. 
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A nomogram for the determination of peak and total 
intensities for spectral lines with Doppler contour has 
been described previously.ii With the aid of this nomo­
gram it is a simple matter to estimate intensities for 
temperatures between 1000 and 20 OOooK, molecular 
weights between 2 and 80 g/mole, wavelengths between 
0.10 and 0.80 micron, and values of SX between 10-4 

and 10 em-I. The quantity S is related to the f value 
at the temperature T through the expression 

given by Reiche,9.l0 viz., 

P(w)/p'=7r-1fu'" {exp[ -ax-(x2/4)J} cos~xdx. (12) 

From Eq. (12) it is evident that the spectral absorption 
coefficient at the line center is always given by the 
expression 

P(Wo) = P'[exp(a2) J[erfc(a)]' (13) 
S= 2.3789X 107(273.1/T) j. (7) where 

B. Pure Collision Broadening 

The sum of the natural half-width bN and of the 
Lorentz half-width be will be designated by the symbol 
b. In the absence of Doppler broadening it is well known 
that 

and6,7 

(9) 

The functions 

f(x) = x[exp( - x) J[JoCix) -iJI(ix) ] (10) 

have been tabulated by Elsasser/ and 

(11) 

Here J ° and J I are Bessel functions of order zero and 
one, respectively, and i2= -1. Useful asymptotic 
forms6.7 for A/ RO are the following: 

A/ R°,....,SX for small values of x (9a) 
and 

A/Ro",2(SbX)! for large values of x, (9b) 

where Eq. (9a) is to be preferred for x< (2/7r) and Eq. 
(9b) for x> (2/n-). 

Numerical values of A for spectral lines with reso­
nance contour can be obtained conveniently from a 
nomogram which is described elsewhere. 8 This nomo­
gram is useful for temperatures between 1000 and 
20000oK, values of SX between 10-5 and 10+2 em-I, 
half-widths bN+be between 10-2 and 1 em-I, and wave­
lengths between 0.5 and 50 microns. 

II. EVALUATION OF pew) FOR COMBINED 
COLLISION AND DOPPLER BROADENING 

The calculation of pew) from Eq. (1) has been con­
sidered by a number of investigators. Before reviewing 
the various techniques which have been employed, we 
shall consider briefly several special cases. 

Equation (1) can be transformed by a straightfor­
ward application of Parseval's theorem2 to a form first 

6 Kavanagh, Bjornerud, and Penner, J. Opt. Soc. Am. 43, 380 
(1953). 

6 R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913). 
7 W. M. Elsasser, Harvard Meteorological Studies No.6, 

Milton (Massachusetts), 1942. 
8 R. W. Kavanagh and S. S. Penner, J. Opt. Soc. Am. 43, 483 

(1953). 

erfc(a) = (2/7r!) f'" [exp( -x2) Jdx= l-erf(a). 
a 

Bomll has given an asymptotic expansion for P(w)/ P' 
tha t is useful for U a» 1. The complete expression is 
given in Eq. (18). For convenience the first two terms 
of the series are repeated here: 

P(w)/ P',....,[a/7r!(a2+e)J[1 + (3/2~2)]. (14) 

Bomll has also derived an asymptotic expansion for 
P(w)/P' when Ua«1. The complete expression is 
given in Eq. (19) and converges rapidly if a is not too 
large. For ~= a, Eq. (26) may be used to advantage. 

Since ~/ a must always become large in the wings of 
the lines, Eqs. (13) and (14) are convenient forms for 
determining the value of P at the line center and its 
asymptotic limit in the wings of the line. 

We now proceed to summarize briefly several special 
methods for the calculation of P(w)/PI

• 

A. P(w)/P' for Small Values of a 

Kendall has given a general expansion which can be 
used to determine P(w)/ pI for small values of a.2 His 
result is 

P(w)/ P' = [exp(a2) J[cos(2a~) J[exp( - ~2) ] 

+27r-![exp(a2)J[sin(2a~)JFW 

- 2a7r-![ exp( a2) J[ cos(2a~) ] 

co 

X L: [a2mH2m(i~)/(2m+1)IJ 
m=O 

co 

X L: [a2m- IH 2m-l(i~)/ (2m) I], (15) 
m=O 

where Hn(X) is the Hermite polynomial of degree n. 
The size of the remainder term can be estimated 
according to a procedure developed by E. C. Titch­
marsh, which is described in Kendall's paper. 

A useful expression for small values of a is the 

9 F. Reiche, Verhandl. deut. physik. Ges. 15,3 (1913). 
10 See also, A. Unsold, Physik der Sternatmosphiiren (Edwards 

Brothers, Inc., Ann Arbor, 1948), pp. 159-169. 
11 M. Born, Optik (J. Springer, Berlin, 1933), pp. 482-486. 
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FIG. 1. Extended curves 
of growth. 
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following: 

P(w)/ P'=exp( -e)-2a1l"-![1-2~FW] 

+a2(1- 2~2) exp( - e)- 2a311"-!{ (2/3)(1- e) 

- 2~[1- (2/3W]FW} 

+a4[!-2e+(2/3)~4] exp( -e)+· ", (16) 

where 

FW=exp( -e) f~ [exp(x2)]dx. (17) 
o 

The first two terms of Eq. (16) were obtained by 
Mitchell and Zemansky,' the next three are given by 
Kendall,2 and the entire expression is given by Harris.I2 

The functions FW have been tabulated by Miller and 
Gordon.13 Results which are accurate to 0.08 percent 
or better for O~ a~ 0.2 are obtained by using the first 
three terms of Eq. (16).2 For O~ a~ 0.1, the first two 
terms are sufficient. Numerical values of the coefficients 
of a, a2, a3

, and a4 in Eq. (16) have been tabulated by 
Harris12 as a function of ~ for O~ ~~ 12. For larger values 
of ~, i.e., large values of ~/a, the asymptotic forms are 
suitable approximations. 

B. The Method of Born 

Bornll has obtained asymptotic expansions for pew) 
for large and for small values of ~/ a. For large ~/ a it 

12 D. L. Harris, III, Astrophys. J. 108, 112 (1948). 
13 W. L. Miller and A. R. Gordon, J. Phys. Chern. 35, 2877 

1931). 

2 
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is shown that 

P(w)/ P' = (_1_ 1 ) 
aY1l" 1+ (Ua)2 

~ --- a' 

I I 
5 

{ 

1_(3)(~/a)2 
(

1)2 2 lX3(1)4 
X 1-! ~ [1+(~/a)2J2 +p ~ 

6 

X l-C)wa)'+G)wa),+ ... }. 
[1+ (Ua)2J4 

(18) 

On the other hand, for small values of ~/ a, Born gives 
the relation 

2 
P(w)/P'=- exp(a2-e) 

Y1l" 

x {sin2a~f ~- 1~:r (~)~- (;) (~)] 

+ 2~:( (:)1-(:)(1Y+(:)(1Y]+··· } 
+cos2a~{~1I" -a+ 1~:[I-(~)(1r] 

- 2~:[I-(~)(~Y+(:)(~r]+···}}. (19) 
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TABLE 1. Comparison of notation used by different authors 
for equivalent physical quantities. 

Present Mitchell and 
paper Borna Uns61db Zemanskyo 

'" ",/27rC ",/27rC 'ii=v/c 
P(",')/P' k(",)/ko, ",=27rC"" k./ko, v=c",' 
b=bN+bc 'Y/47rC 'Y /47rc HLlvN/C) 

bD (1l/47rc) (Jn2) + (Jn2)'Ll"'D/27rC HLlvD/C) 
a 1/71 a/2 a(or a') 
~ ("'-"'o)/!Il 

~/a 

a See reference 11. 
b See reference 10. 
o See reference 1. 

x 
v '" 2v/a ",/a 

Equation (18) is most useful for values of a larger 
than unity, whereas Eq. (19) converges rapidly for 
smaller values of a. 

C. The Method of Gronwall 
Gronwa1F4 transformed Eq. (1) to the form 

P(w)/ pI = (2/?rt)[exp(a2-r)] 

X f'" {exp[ -t2+(a2rft2)]}dt. (20) 
a 

Expanding the term [exp(a2~2/t2)] and integrating term 
by term, it is readily shown that 

'" P(W)/Pl= L In(a)(nl)-I(~)2n[exp( -rn (21) 
n=O 

where 
In(a) = [a/(2n-1)][(2j,r·!)- 2aIn _ l (a)], (22) 

with 
I o( a) = [exp( a2)][ erfc( a)]. (23) 

Equation (21) constitutes a useful approximation for 
relatively small values of a and has been used by 
Mitchell and Zemanskyl to determine P(w)/ pI for 
a=0.5, 1.0, and 1.5. 

D. Expression in Terms of Error Functions with 
Complex Arguments 

From Eq. (12) it can readily be shown2 that 

P(w)/ pI =R{[exp(z2)][erfc(z)]}, (24) 

where Z= a+i~ and R denotes the real part of the follow­
ing argument. Methods for calculating error functions 
with complex arguments, as well as numerical values, 
have been given by Salzer.lo From Eq. (24) it is readily 
shown that 

P(w)/ P' = [exp(a2 -~2)]{[cos(2a~)][erfc(a)] 

+ (21Ta)-1[exp( -a2)][1-cos(2a~)] 

'" -(2/1T)[exp( -a2)] L [exp( -n2/4)](n2+4a2)-1 
n=1 

X {2a[ cos(2a~) -cosh(nV]} }. (25) 

14 M. W. Zemansky, Phys. Rev. 36, 219 (1930). 
16 H. E. Salzer, "Mathematical Tables and Other Aids to 

Computation," National Research Council; April, 1951. 

For a= 0 Eq. (25) reduces to Eq. (4), which is the correct 
relation for pure Doppler broadening; at ~=O, Eq. (13) 
results. The calculation of P(w)/ pI from Eq. (25) is 
somewhat laborious for large values of ~ and, therefore, 
asymptotic relations given previously are to be pre­
ferred in this case. For moderate or small values of ~, 
Eq. (25) constitutes a useful expression for all values 
of a. 

E. Special Formst 

For ~=a it can be shown that Eq. (25) reduces to the 
relation 

P(w)/ pl= [exp(aL~2)] 

X {[1-C(21T-!a)-'-S(21T-!a)] cos(2a2) 

+[C(21T-!a)-S(2?T-!a)] sin(2a2)}, (26) 

where C and S are tabulated Fresnel integrals.10 

For a»l and ~<a it can be shown that 

'" P(W)/P'= (1T!a)-1 L (1/2)(3/2)··· [(2n-1)/2]a-2n 
n=O 

X (sin2n+l0) [sin (2n+ 1)0], 1T/4< 0< 1T/2, (27) 

where O=tan-l(a/~). 

III. EXTENDED "CURVES OF GROWTH" 

The "curves of growth", which are familiar from 
astrophysical studies,t6.17 constitute a useful method for 
the determination of the quantity A/ RO defined by Eq. 
(3). Unfortunately the available curves do not cover 
the entire range of values of a which is of interest in 
connection with spectroscopic studies on flames, par­
ticularly at atmospheric pressure. For this reason, 
calculations have been carried out to determine A/ RO as 
a function of X for a= 1.5, 2, and 10, using the numerical 
values for P(w)/ pI given by Bornll and by Mitchell and 
Zemansky.l The results of these calculations are shown 
in Fig. 1 together with van der Held's dataJ7 As was 
pointed out in a previous publication,o absolute in­
tensities for spectral lines with combined Doppler and 
collision broadening can be obtained by the combined 
use of a nomogram and of the curves of growth. 

Since the notation used in the present investigations 
differs from that of other authors, a summary of nota­
tions for equivalent physical quantities is given in 
Table 1. 

t The authors are indebted to Dr. H. S. Tsien for permission 
to reproduce the results given in this paragraph. 

16 See, for example, E. Jahnke and F. Emde, Tables of Functions 
with Formulae and Curves (Dover Publications, New York, 1943), 
pp.34-35. 

16 Reference 1, p. 132; reference 10, p. 168. 
17 E. M. F. v. d. Held, Z. Physik 70, 508 (1931). 


