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ABSTRACT

A theoretical framework for emission originating from rapidly rotating oblate compact objects is described in detail. Using a Hamilton-
Jacobi formalism, we show that special relativistic rotational effects such as aberration of angles, Doppler boosting, and time dilatation
naturally emerge from the general relativistic treatment of rotating compact objects. We use the Butterworth–Ipser metric expanded up
to the second order in rotation and hence include effects of light bending, frame-dragging, and quadrupole deviations on our geodesic
calculations. We also give detailed descriptions of the numerical algorithms used and provide an open-source implementation of the
numerical framework called BENDER. As an application, we study spectral line profiles (i.e., smearing kernels) from rapidly rotating
oblate neutron stars. We find that in this metric description, the second-order quadrupole effects are not strong enough to produce
narrow observable features in the spectral energy distribution for almost any physically realistic parameter combination, and hence,
actually detecting them is unlikely. The full width at tenth-maximum and full width at half-maximum of the rotation smearing kernels
are also reported for all viewing angles. These can then be used to quantitatively estimate the effects of rotational smearing on the
observed spectra. We also calculate accurate pulse profiles and observer skymaps of emission from hot spots on rapidly rotating
accreting millisecond pulsars. These allow us to quantify the strength of the pulse fractions one expects to observe from typical
fast-spinning millisecond pulsars.
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1. Introduction

Accurate modeling of the emission from and around compact
objects is a complicated combination of radiative processes and
relativity. Not only is the object curving the space-time around
it and hence affecting the trajectory of photons, but it can also
affect the apparent observed radiation as the emitting surface
can move with relativistic velocities. Existing convenient and
modern frameworks for the emission around rotating (typically
Kerr) black holes include GEOKERR (Dexter & Agol 2009),
GYOTO (Vincent et al. 2011), GRAY (Chan et al. 2013), PAN-
DURATA (Schnittman & Krolik 2013), ASTRORAY (Shcherbakov
& McKinney 2013), HEROIC (Narayan et al. 2016), ODYSSEY

(Pu et al. 2016), and GRTRANS (Dexter 2016), to name a
few. Here we instead focus on the emission from rotating
neutron stars, for which the Kerr metric is not a good appro-
ximation if the star is rotating rapidly. By introducing BENDER1,
we aim to provide a similar publicly available platform for ray
tracing problems focused on spinning compact objects.

Following the path of photons in a space-time of a rotat-
ing neutron star is a challenging task, both theoretically and
numerically. Current and future observations, on the other
hand, demand highly accurate models. For example, comput-
ing accurate pulse profiles of hot spots on spinning neutron
stars has recently been intensively investigated, motivated by
many upcoming or planned new space-borne X-ray observato-
ries like ESA’s XIPE (Soffitta et al. 2013), eXTP of the China
National Space Administration (CNSA; Zhang et al. 2016), and

1 http://github.com/natj/bender

the already deployed Astrosat (Agrawal 2006) of the Indian
Space Research Organization (ISRO) and NASA’s NICER
(Gendreau et al. 2012). The expectation is that we may be able
to better constrain the unknown neutron star (NS) equation of
state (EoS) with accurate pulse profile observations, using the
information encoded in the radiation (see, e.g., Lo et al. 2013).

Previous studies of emission from NSs are mainly for-
mulated in a way that uses a non-rotating curved space-time
metric for the bending of the photon paths, with special
relativistic corrections to the rotational effects added sepa-
rately (see, e.g., Pechenick et al. 1983; Page 1995; Miller
& Lamb 1998; Weinberg et al. 2001; Poutanen & Gierliński
2003; Poutanen & Beloborodov 2006; Lamb et al. 2009a,b;
Lo et al. 2013; Miller & Lamb 2015, but also Braje et al.
2000 for an alternative treatment). Space-times in these stud-
ies were also typically described by the spherically symmetric
Schwarzschild metric.

As it has turned out, however, fast rotation can be a serious
complication when considering the observed emission. First of
all, because a finite pressure supports the rotating star, the star
is squeezed into an oblate spheroid, and the oblateness increases
with increasing rotation rate (Cook et al. 1994; Morsink & Stella
1999; Morsink et al. 2007; Bauböck et al. 2013a; AlGendy &
Morsink 2014). This bulge in the equator will then distort the
gravitational field outside the star. In Newtonian theory, the
next-order correction to a non-spherical object (with azimuthal
rotational symmetry and reflection symmetry along the equa-
torial plane) is defined by the quadrupole moment (see, e.g.,
Laarakkers & Poisson 1999; but also Pappas & Apostolatos
2012). Introduction of rapid rotation will then not only make the
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star oblate, but will also make the exterior space-time latitude
dependent. Pioneering work in computing pulse profiles of such
objects was made by Cadeau et al. (2005, 2007). Recently, a gen-
eral ray tracing formulation in Hartle-Thorne metric-variant was
given in Psaltis & Johannsen (2012) and Bauböck et al. (2012).
This formulation was used to compute pulse profiles in Psaltis
& Özel (2014). Here we seek to provide a similar, but open and
publicly available code for solving similar types of problems.
Moreover, we focus on building a connection between the pre-
vious special relativistic formulations where different rotational
effects are added separately by hand, and the full rotating gen-
eral relativistic formulations where all of these effects naturally
emerge from the theory.

The main focus of our framework is on the X-ray emis-
sion from accreting millisecond pulsars (AMPs; Wijnands &
van der Klis 1998; Patruno & Watts 2012) and nuclear-powered
millisecond pulsars (Watts 2012). We stress, however, that the
whole framework presented in this paper is general enough to be
applied to any problem of radiation originating from the vicinity
of rotating compact objects. The radiation from AMPs emerges
from hot spots on the surface of a rapidly rotating neutron star.
The spots are heated by the infalling accreted material, which is
being channeled to the magnetic poles by the neutron star’s mag-
netic field. The magnetic axis does not need to coincide with the
rotational axis of the star, and hence pulsations can be observed
from the spots that are rotating around the star. In the case of
nuclear-powered millisecond pulsars, quasi-coherent oscillations
are observed during a thermonuclear type I X-ray burst. The
mechanism producing the pulses is, however, very similar to the
case of AMPs, as an asymmetric bright patch in the burning sur-
face layer is the origin of the observed pulsation. Accretion can
also spin up these objects into extreme rotational velocities: spin
frequencies of up to 620 Hz have been verified (4U 1608−52;
Muno et al. 2002), whereas even a typical source has a spin
around 400−500 Hz (Watts 2012; Papitto et al. 2014). Hence,
if accurate emission is to be studied from these sources, one has
to take the oblate shape and (in some cases) the second-order
corrections to the space-time into account.

The paper is structured as follows. In Sect. 2 we intro-
duce the framework of formulae and the theoretical background
needed to compute the emission. We also describe the numerical
methods used to solve the system of equations and present the
publicly available code BENDER, which implements this frame-
work. Next, we apply the code to various physical problems in
Sect. 3. We compare our computations with results in the litera-
ture, when possible, to verify our calculations. Finally, in Sect. 4
we summarize our work.

2. Theory

2.1. Space-time metric

In our following derivations we use geometric units where
G = c = 1 for the gravitational constant G and the speed of light
c. We also assume the metric signature of (−,+,+,+) following
the Misner et al. (1973) sign convention. Additionally, for the
actual numerical calculations in the code, we set GM/c2

= 1,
hence describing lengths in units of gravitational radius, where
M is the mass of the compact object.

The exterior space-time of a static, non-rotating, spherically
symmetric mass is described by the well-known Schwarzschild
metric

ds2
= −(1 − u)dt2

+ (1 − u)−1dr2
+ r2(dθ2

+ sin2 θdφ2), (1)

where r is the radial coordinate defined so that the area of a
sphere at coordinate time t is 4πr2, and we set u ≡ 2M/r.

This metric is equivalent to an alternative solution known as
isotropic Schwarzschild metric (see, e.g., Misner et al. 1973)

ds2
= −













1 − ū
2

1 + ū
2













2

dt2
+

(

1 +
ū

2

)4

(dr̄2
+ r̄2(dθ2

+ sin2 θ dφ2)), (2)

where r̄ is the so-called isotropic radial coordinate, and we
set ū ≡ M/r̄. This kind of isotropic metric has the useful fea-
ture that surfaces of constant time are conformally flat, and
hence the angles are represented without distortion. However,
this also means that angular isotropic coordinates do not faith-
fully represent the distances within the spheres, nor does the
radial coordinate correspond directly to the radial distance. From
here on, we mark all variables related to the isotropic radial
coordinate with a bar on top.

We consider a rotating compact object. To describe our
system, we need a dimensionless angular velocity

Ω̂ = Ω

(

R3
e

M

)1/2

, (3)

where Ω is the angular velocity of a sphere with an equato-
rial radius Re and a mass M scaled with the Newtonian mass
shedding (Kepler) limit (M/R3

e)1/2 (see Friedman & Stergioulas
2013). Here Re is described using the usual Schwarzschild radial
coordinate, and it corresponds to the equatorial radius of the
star for which 2πRe gives the proper length of the circumference
in the rotational equator as measured in the local static frame.
The asymptotically flat metric near a stationary axisymmetri-
cally rotating object in isotropic form is (Bardeen & Wagoner
1971)

ds2
= −e2ν̄dt2

+ r̄2 sin2 θB̄2e−2ν̄(dφ − ω̄dt)2

+ e2(ζ̄−ν̄)(dr̄2
+ r̄2dθ2),

(4)

where ω̄ is the angular velocity of the local inertial frame,
and the functions ν̄, B̄ and ζ̄ in the metric coefficients can be
expanded in the powers of Ω̂ and ū (Butterworth & Ipser 1976).
Here e−ν̄ is the time-dilation factor relating the proper time of
the local observer to the time at infinity. Physical interpretation
of B̄ follows from the fact that the proper circumference of a cir-
cle around the axis of symmetry is 2π(e−ν̄B̄r̄ sin θ). Similarly, the
interpretation of ζ̄ follows from the fact that eζ̄−ν̄ acts as a con-
formal (angle preserving) factor of the space-time. We also note
that the time and space coordinates are connected in the isotropic
metric via the ν̄-term that also enters both the radial and angular
terms. The zeroth-order terms (Ω̂ = 0) of the series expansions
are the familiar Schwarzschild metric coefficients expressed in
isotropic coordinates (see Table 1).

The first-order expansion in rotation (Ω̂1) is qualitatively
related to Kerr metric. In this case, we introduce an angular
velocity term of the local inertial frame ω̄ that accounts for the
frame-dragging effects. It can be defined as

ω̄ =
2 j

M
(ū3 − 3ū4), (5)

where the dimensionless quantity j = J/M2 and J = IΩ is the
star’s angular momentum with moment of inertia I(M,Ω).

The second-order expansion (Ω̂2) corresponds to a simi-
lar approximation as the Hartle-Thorne slow-rotation space-time
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Table 1. Series expansion terms of the metric coefficients up to Ω̂2.
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ν̄ log
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)
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2

) (
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ū

2

)

— +βū2
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ζ̄ log

[(

1 − ū

2

) (

1 +
ū

2

)]

— +β

(

3

4
P2(cos θ) − 1

3

)

ū2
+O(Ω̂2) × O(ū4)

ω̄ — ω̄1ū3 −3ω̄1ū4
+O(Ω̂3) + ω̄1ū3 × O(ū2)

Notes. The angular velocity term of the local inertial frame is simplified by the notation ω̄1 ≡ 2 j/M.

(Hartle & Thorne 1968), which introduces two quadrupole
moments into the metric. These second-order multipole
moments can be defined via the dimensionless quantities q and
β, the dimensionless moments of energy density and pressure,
respectively. These are, however, dependent on the selection of a
coordinate system. The coordinate invariant quadrupole moment
is a combination of these two quantities and is given in Pappas
& Apostolatos (2012; see Eq. (11) therein; see also AlGendy &
Morsink 2014 and Eq. (18)) as

qinv = q +
4

3
β. (6)

This detail should be taken into account when comparing the
strength of the quadrupole deviations between different metric
descriptions.

Yagi & Yunes (2013) showed that when the NS mass, radius,
and spin are known, the star’s structure (and hence the surround-
ing metric) is almost fully characterized by these three quantities
alone. In other words, regardless of the unknown microphysics
of the underlying matter, the NS parameters (such as moment
of inertia and coordinate-invariant quadrupole moment) are con-
nected by what is called (approximative) universal relations.
Bauböck et al. (2013a) defined empirical relations for these
parameters in the Hartle-Thorne metric based on their compu-
tations of rotating NSs with various different EoS. AlGendy &
Morsink (2014) later refined these relations for the metric repre-
sentation (Eq. (4)) by Butterworth & Ipser (1976). In practice, we
can then parameterize the previously presented quantities with
great accuracy by using only the dimensionless angular veloc-
ity Ω̂ and the compactness parameter x. We note that these two
parameters are defined in terms of the equatorial circumferential
radius Re defined in the usual Schwarzschild coordinate system.
To the lowest order, these parameterizations are (AlGendy &
Morsink 2014)

q = −0.11
Ω̂

2

x2
, (7)

β = 0.4454Ω̂2x, (8)

and

I =
√

x(1.136 − 2.53x + 5.6x2)MR2
e . (9)

We also note that both q and β are O(Ω̂2), whereas j is O(Ω̂).

It is possible to transform between the Schwarzschild coor-
dinate radius r and the isotropic r̄ coordinates using the relation
(Friedman et al. 1986)

r = B̄e−ν̄r̄. (10)

The relation between the differentials of the two radial
coordinates is

dr = eζ̄dr̄, (11)

which can be computed using the series representation of
Butterworth & Ipser (1976).

Since the series expansions of the metric coefficients are
expressed in terms of the isotropic radial coordinate r̄, we favor
this notation in our derivation. However, in some cases, we
simplify the equations into a more intuitive form using the
Schwarzschild radial r coordinate.

2.2. Oblate shape of the neutron star

Because of the rotation and finite pressure supporting the NS,
it is not a perfect sphere when it is rotating. However, it retains
axisymmetry and can be approximated with an oblate spheroid.
Similarly to the Eqs. (7)–(9), AlGendy & Morsink (2014) con-
structed an approximate formulation for the shape of the surface
of a rotating neutron star. It is given by expressing the radius as
a function of colatitude θ as

R(θ) = Re

(

1 −
Re − Rp

Re

cos2 θ

)

= Re[1 − Ω̂2(0.788 − 1.03x) cos2 θ],

(12)

where R(π/2) = Re is the radius of the star in its rotational
equator, and Rp is its radius as measured along the rotation axis.

The elemental surface area for a spheroid is given as (using
the usual Schwarzschild coordinates)

dS (θ) = R2(θ) sin θ

√

1 + f (θ)2dθdφ, (13)

where

f (θ) =
1

R̄(θ)

dR̄(θ)

dθ
= B̄e−ζ̄−ν̄

1

R(θ)

dR(θ)

dθ
, (14)
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Fig. 1. Geometry of the system. Here we show the underlying spherical
coordinate system with φ and θ coordinates along with the Cartesian
(x, y, z) coordinate system. In addition, the observer’s x̂ − ŷ image plane
is shown as viewed from an inclination angle i. The star is taken to
rotate rapidly around the y -axis, which leads to an oblate (squeezed)
shape for the emitting surface, and the radial vector r and the surface
normal n therefore start to differ from each other.

and B̄e−ζ̄−ν̄ ≈
(

1 − 2M
r

)−1/2
+ O(Ω̂2). The angle γ, defined as the

angle between the radial unit vector r and the surface normal n

is given by

cos γ =
(

1 + f (θ)2
)−1/2

. (15)

Then the normal to the surface can be defined using the radial
vector r and the tangential vector θ as

n = cos γr + sin γθ. (16)

See Fig. 1 for a clarification of the angles.

2.3. Geodesic motion using the Hamilton-Jacobi equation

In general, the motion of light rays in curved space-time is gov-
erned by the second-order geodesic equation. In this section we
present an equivalent theoretical formalism based on Hamilton-
Jacobi (sometimes also known as super-Hamiltonian) descrip-
tion (Misner et al. 1973; Chandrasekhar 1998). The advantage of
this alternative representation is its physical intuitiveness as the
formalism relies heavily on identifying and using the constants
of motion of the problem. In the end, when we apply our meth-
ods, we use both approaches (the first-order Hamilton-Jacobi
equations and the second-order geodesic equations) in our calcu-
lations to show that for physically relevant problems, the results
obtained are equivalent up to good numerical precision. In a typ-
ical situation, we therefore apply the Hamilton-Jacobi method
presented here, and when accuracy is the main factor, we fall
back to solving the full geodesic equations.

We now discuss the motion of particles in curved space-time.
Geodesic motion in a space-time characterized by a metric gi j is
governed by the Hamilton-Jacobi equation

2
∂S

∂τ
= gi j ∂S

∂xi

∂S

∂x j
, (17)

where gi j is the inverse metric and S denotes the Hamilton
principal function. For the two Killing vectors tα = (1, 0, 0, 0)
(asymptotic time symmetry) and φα = (0, 0, 0, 1) (axisymmetry
about the rotational axis) in rotating space-time, the Frobenius

theorem implies the existence of a family of two surfaces orthog-
onal to these vectors (see, e.g., Friedman & Stergioulas 2013).
This means that there are surfaces of constant t and φ in our
space-time, yielding two constants of motion, namely energy E
and the z-component of the angular momentum, Lz. We then seek
a solution of Eq. (17) in the form

S =
1

2
δ1τ − Et + Lzφ + S r̄(r̄) + S θ(θ), (18)

where δ1 is related to the rest-mass of the particle we study. With
the metric function Eq. (4), this becomes

δ1r̄2B̄2e−2ν̄
= r̄2B̄2e−2ζ̄∂r̄S r̄S

2 − e−4ν̄B̄2r̄2(E − Lzω̄)2

+ B̄2e−2ζ̄∂θS
2
θ +

L2
z

sin2 θ
.

(19)

After reorganizing terms and introducing a simplifying notation
eζ̄/B̄ ≡ eµ̄, we obtain

e−2µ̄∂θS
2
θ +

L2
z

sin2 θ
=

B̄2e−2ν̄r̄2(e2(ν̄−ζ̄)∂r̄S
2
r̄ − δ1 − e−2ν̄(E − Lzω̄)2).

(20)

The individual terms in Eq. (20) only depend on r or only on
θ, that is, the dependence on r and θ is separable if ν̄, B̄, and ζ̄
only depend on r and µ only depends on θ. This is the case to
first order in the stellar rotation rate Ω̂ because eµ̄ = 1 + O(Ω̂2),
in addition to ν̄ = ν̄0(r̄) + O(Ω̂2) and B̄ = B̄0(r̄) + O(Ω̂2) (see
Table 1). However, to second-order in Ω̂, the individual terms
in Eq. (20) depend on both r and θ, that is, the dependence
on r and θ is not separable. For geodesics, however, these
higher-order deviations only contribute very close to the actual
NS surface, and neglecting them enables us to obtain accurate
approximations of the photon path.

When we now assume separability, we can introduce a sepa-
ration variable C known as Carter’s constant (third constant of
motion) in order to solve the differential Eq. (20). By noting
that the conjugate momenta correspond to the first derivatives
of S with respect to the generalized coordinates, we can write
the components of four-momentum p as

pt = −E, (21)

pr̄ = ±eζ̄−2ν̄

(

δ1e2ν̄
+ (E − Lzω̄)2 − C

B̄2e−4ν̄r̄2

)1/2

, (22)

pθ = ±eµ̄
(

C −
L2

z

sin2 θ

)1/2

, (23)

pφ = Lz. (24)

Similarly, the components of a local tetrad frame are

p(t)
= −p(t) = −e

µ̂

(t)
pµ̂ = −e−ν̄pt, (25)

p(r̄)
= p(r̄) = e

µ̂

(r̄)
pµ̂ = e−ζ̄+ν̄pr̄, (26)

p(θ)
= p(θ) = e

µ̂

(θ)
pµ̂ =

1

r̄
e−ζ̄+ν̄pθ, (27)

p(φ)
= p(φ) = e

µ̂

(φ)
pµ̂ =

1

e−ν̄B̄r̄ sin θ
pφ, (28)

where e
µ̂

(a)
with index a = t, r̄, θ and φ are the tetrads of metric

Eq. (4). Since we only consider null geodesics (i.e., photons), we
now set δ1 = 0.
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2.4. Photon ray tracing

We now consider radiation that is emitted from the surface of the
star at an emission point (re, θe, φe), as seen in the static frame.
The radiation travels along a geodesic with a specific intensity IE

as measured by an observer comoving with the emission point. It
is observed at an image plane situated at a radial distance r, with
r → ∞. We then wish to calculate the projected image of the star
at this image plane.

First we set up the coordinate system so that the plane of
observation is toward φ = 0 and θ = i, where i is the angle of
inclination (see Fig. 1). The geodesic will be emitted with a four-
momentum pe, and if it is eventually observed at the image plane
at infinity, it will have a final four-momentum of (E, p̂r, 0, 0),
purely in the radial direction. Likewise, the components of the
position must satisfy

θ → i, (29)

φ→ 0, (30)

as r → ∞. The change in the time and angular components along
the geodesic can be written as

dt =
pt

pr̄
dr̄, (31)

dθ =
pθ

pr̄
dr̄, (32)

dφ =
pφ

pr̄
dr̄, (33)

yielding a total change of angles ∆θ and ∆φ when integrating
from re to∞. The condition for being observed is then

θe + ∆θ = i, (34)

φe + ∆φ = 0. (35)

The projected image of the star on the image plane can then
be described by two celestial coordinates: abscissa x̂ and ordi-
nate ŷ. Making use of the tetrad components Eqs. (25)–(28), we
obtain (Chandrasekhar 1998)

x̂ =

(

rp(φ)

p(t)

)

r→∞
=

1

sin i

Lz

E
, (36)

and

ŷ =

(

rp(θ)

p(t)

)

r→∞
=

√

C − L2
z

sin2 i

E
. (37)

Here it is useful to transform into a polar coordinate system on
the image plane, as Eqs. (36) and (37) strongly suggest a more
intuitive form if this is done. In this system we use as coordinates
the radial distance from the center point, or the impact parameter
b, and the polar rotation angle χ. We take χ to increase clockwise
from the projected spin axis of the neutron star, with χ = 0 cor-
responding to the projected direction from the south to the north
pole of the neutron star. We then express the impact parameter b
and the angle χ via Lz and C as

b =

√
C

E
, (38)

and

sin χ =
1

sin i

Lz√
C
. (39)

Here, the nature of Carter’s constant as a generalized squared
angular momentum is apparent. The constants of motion, com-
bined with the geodesic null condition pµpµ = 0, allow us to
solve pθ and pφ in terms of r̄. As the final step, we can substitute
the four-momentum components and image-plane coordinates
into Eqs. (31)–(33) and solve the system of three first-order
differential equations (in terms of t, θ, and φ) with r̄ as a variable.

2.5. Redshift and emission angle

It is the most convenient to define all radiative processes in the
co-rotating frame of the star. We denote variables defined in a
frame that is momentarily comoving with the stellar surface with
a prime. On the other hand, our distant observer is stationary
and moving along the timelike Killing vector. Hence, we need
to transform between stationary and rotating frames by using the
four-velocity of the star’s fluid. To make a connection to the the-
ory of special relativity, it is convenient to define two frames:
a corotating rest frame of the fluid K′, and a non-rotating static
frame K. Laws of physics for the radiative transfer take the usual
form in the K′. A stationary observer, on the other hand, is in the
non-rotating frame K from where the fluid is seen to move rel-
ativistically. We therefore need to transform between these two
frames. In addition, we need to take into account that a particle
released from infinity with zero angular momentum will acquire
non-zero angular velocity in the direction of the star’s rotation as
a result of the dragging of inertial frames.

Four-velocity of a stationary observer with zero angular
momentum (so-called ZAMO) is oα = No(tα + ω̄φα), where
the normalization factor No = e−ν̄(1 − v2

ω)−1/2 is obtained from
oαoα = −1, and the velocity of the frame is

vω = ω̄B̄e−2ν̄r̄ sin θ, (40)

indicating that the angular velocity of the ZAMO as measured
by an inertial observer at infinity is oφ/ot

= dφ/dt = ω̄.
The four-velocity sα of a circular flow can be defined using

the timelike and rotational Killing vectors as sα = Ns(t
α
+ Ωφα),

where the normalization factor is defined as Ns = e−ν̄(1 − v2
z)−1/2

determined by sαsα = −1. Here the velocity

vz = (Ω − ω̄)B̄e−2ν̄r̄ sin θ, (41)

can be identified as the three-velocity measured in the frame of
the ZAMO, an observer rotating with a velocity of vω.

The total redshift is then given by an inner-product between
a photon uα and a four-velocity of the star’s fluid sα. With these
definitions, the redshift is

1 + z = −sαuα = e−ν̄ δ−1, (42)

consisting of the gravitational part eν̄ and of the Doppler-like
factor

δ =

√

1 − v2
z

1 −ΩLz

. (43)

To compute the emission angle, we again have to take the
rotating frame into account. This can be done by introducing a
projection operator

h̄ab = gab + sasb, (44)
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which projects four-vectors from the non-rotating frame to the
rotating frame where the radiative processes are defined. Our
metric tensor for the rotating observer is then

h̄abdxadxb
= e2(ζ̄−ν̄)(dr̄2

+ r̄2dθ) +
B̄2e−2ν̄r̄2 sin2 θ

1 − v2
Z

(dφ −Ωdt)2.

(45)

As a definition, we can take the emission angle to be the
angle between photon and a space-like surface normal vector
nα = Nn(0, cos γ, r̄ sin γ, 0), with normalization Nn = eζ̄−ν̄ ful-
filling nαnα = −1. The line element in spherical coordinates
is ds = dr r̂ + rdθθ̂ + r sin θdφφ̂, and by combining this with
Eq. (16), we obtain the presented surface normal. When pro-
jected to the rotating frame, we can then obtain the angle from
the generalized dot-product definition between two vectors as

cosα′ =
h̄abnaub

(h̄abnana)1/2(h̄abuaub)1/2
. (46)

Using the metric defined by Eq. (45) and a photon with
components Eqs. (21)−(24), we obtain

cosα′ = δe2ν̄−ζ̄
[

pr̄ cos γ +
pθ

r̄
sin γ

]

. (47)

For the non-rotating observer, we similarly obtain

cosα = cosα′δ−1, (48)

by setting Ω → 0. Here it suffices to notice that we are only
interested in the emission angle value at the surface of the star,
that is, r̄ = R̄(θ). The result here is identical to the emission
angle obtained with a special-relativistic approach, using flat-
space trigonometry and Lorentz-boosting with δ to the rotating
frame (see, e.g., Poutanen & Beloborodov 2006).

2.6. Corotating coordinates

Next we define some quantities for a corotating observer located
at the surface of the star. This helps us to connect the previ-
ously presented backward-in-time method to the methods where
light rays are propagated from the star to the image plane
(forward-in-time methods).

Transforming from the observer’s non-rotating frame K to
the fluid rest frame K′ is easily done using the previously defined
projection operator h̄ab given by Eq. (45). We next express this
projection operator in the normal coordinate system. Using the
Eqs. (10) and (11), we obtain a longitudinally Lorentz-boosted
metric tensor

habdxadxb
= e−2ν̄dr2

+
e2ζ̄

B̄2
r2dθ2

+ γ2
Lr2 sin2 θ(dφ −Ωdt)2. (49)

The result agrees with the Schwarzschild coordinate system up
to first order in rotation because eζ̄/B̄ ≈ 1+O(Ω̂2). This notation
can be further simplified by defining a new azimuthal angular
coordinate as φ′ ≡ φ − Ωt that is to be used by the rotating
observer2. It is important to note here that because of the rota-
tion, the azimuthal angle φ and the time t are now coupled for
the comoving observer. This new normalized longitudinal coor-
dinate ensures that both the rotating and the stationary observer

2 We thank S. Morsink for pointing this out.

agree that a circle drawn around the star has 2π radians. The
expression for the new longitudinal coordinate is also seen to
be Lorentz-stretched by a factor of γL = (1 − v2

z)−1/2. The coro-
tating observer can then use this projection operator to define
space-like vectors orthogonal to their world line.

Additionally, it is useful to consider another projection oper-
ator m that will project from the 3D space to the 2D surface of
the star. We can define this projection as

mab = gab + sasb − nanb = hab − nanb, (50)

where na is the unit normal to the surface. From here, it is easy
to verify that it is perpendicular to the surface of the star as
mabna

= 0 and to the velocity of the surface as mabsa
= 0. For

simplicity, we now consider a spherical star so that the surface
normal reduces to na

= eν̄δa
r , where δb

a is the Kronecker delta
function. Then m can be expressed as

mabdxadxb
=

e2ζ̄

B̄2
r2dθ2

+ γ2
Lr2 sin2 θ(dφ −Ωdt)2. (51)

This is effectively a 2D metric tensor of the star’s surface that is
perpendicular to the world line of the corotating observer.

Definitions here are also relevant for the so-called
Schwarzschild+Doppler (S+D) approximation (see, e.g.,
Poutanen & Beloborodov 2006). In the S+D approximation,
the observer’s polar coordinate plane (b, χ) is connected to the
corotating spherical coordinates (φ′, θ′) of the star. We note that
this connection is done algebraically in the S+D method and so
there is no need to determine the full path of the ray using partial
differential equations as the problem reduces to calculating the
so-called lensing integral alone. The S+D calculations are done
in a special relativistic framework where quantities are defined
in a corotating coordinate system that are then Lorentz-boosted
into the static non-rotating frame. We now show the correct
expression of this change of frame so that the results match
the backward-in-time method (see also Cadeau et al. 2007, for
an alternative derivation). In the usual Schwarzschild metric,
the impact parameter b can be obtained as a function of the
emission angle α given by Eq. (48) as

b =
1

√
1 − u

R sinα, (52)

by setting cos γ → 1, sin γ → 0 (spherical star), and ω →
0 along with e−2ν → (1 − u)−1/2 (Schwarzschild metric, i.e.,
O(Ω̂1)). Here we use the emission angle as measured by the non-
rotating observer in frame K. In this case, the solid angle is then
simplified to

dΩo = bdb dχ =
1

1 − u

d cosα

d cosψ
R2 cosα

dχd cosψ

D2
, (53)

where ψ is the lensing angle. Using the spherical symmetry of
the Schwarzschild metric, we can directly connect the ψ and θ
along with χ and φ to obtain

dΩo =
1

1 − u

d cosα

d cosψ
cosα

dS

D2
, (54)

where dS = R2 sin θdθdφ is the area element for the non-rotating
static observer in K. Using dΩo to compute the flux, we would
then obtain the observed (received) flux valid for the observer in
frame K.
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Integration over some finite-sized features, on the other hand,
is done on the surface of the star in the corotating frame K′. This
results in a mixing of the different frames because we would like
the integration to happen simultaneously for the observer in K,
that is to say, we need a connection between t, φ, and φ′. To
do this, we need to define the differential area element in the
corotating frame. This can be obtained by considering the 2D
metric tensor m of the surface given by Eq. (50). Using this, we
can derive the corotating differential area element as

dS ′ =
√

det mabdxadxb
=

eζ̄

B̄
γLR2 sin θdθ(dφ −Ωdt). (55)

This means that the rotation will result in a stretching of the area
element by a factor of γL , whereas the quadrupole moments will
deform it by a factor of eζ̄/B. This result is obtained purely from
differential geometry.

Next we work only in the Schwarzschild metric to draw a
direct connection to the S+D approximation. Using Eq. (55), we
obtain

dS ′ = γLR2 sin θdθ(dφ −Ωdt) = γLR2 sin θ′dθ′dφ′, (56)

as given in the corotating coordinates defined as θ′ ≡ θ and
φ′ ≡ φ − Ωt. This differs by a factor of γL from an incor-
rect result that would be obtained by erroneously assuming that
dS ′ = R2 sin θ′dθ′dφ′. To transform from the non-rotating K
frame to the corotating frame K′ , we can use the Lorentz invari-
ance of the photon beam cross-section given as (Terrell 1959;
Lind & Blandford 1985)

cosα dS = cosα′ dS ′. (57)

The connection between the emission angles cosα′ and cosα is
also known from Eqs. (47) and (48) and is seen to be a simple
Doppler boost factor δ. We then obtain

dS = δdS ′. (58)

Finally, the total observed angular size is then seen to be

dΩo =
γLδ

1 − u

d cosα

d cosψ
cosα

R2 sin θ′dθ′dφ′

D2
. (59)

2.7. Emission

The observed (i.e., received) flux at photon energy E from a
small area on an image plane is

dFE = IEdΩo, (60)

where IE is the specific intensity of the radiation at infinity, and
dΩo is the solid angle subtended by the element as measured by
the observer. The total flux is then the integral of these elements
over the image plane. As a final step, this observed flux has to be
connected to the actual emerging radiation.

From Eq. (42), the relation between the emergent energy E′

to the observed energy E is E/E′ = (1 + z)−1. The connection
between the monochromatic observed and local intensity is then
(see, e.g., Misner et al. 1973; Rybicki & Lightman 1979)

IE =

(

E

E′

)3

I′E′ (α
′), (61)

where I′
E′ (α

′) is the intensity computed in the frame comov-
ing with the emitting area. The radiation here is emitted in

the direction of the angle α′ defined in the local rotating
frame. Integrating over the energies, we obtain the bolometric
intensity

I =

(

E

E′

)4

I′(α′). (62)

The total (monochromatic) flux as a function of the observer’s
time FE(t) can then be obtained by integrating over the whole
image,

FE(t) =

∫

IE(t) dΩo =

∫ ∫

I′
E′ (t∗, α

′)

(1 + z)3

bdb dχ

D2
, (63)

where t∗ = t − ∆t is the time when the photon was emitted as
measured in the non-rotating coordinate system. This can be
computed when we know the total travel time ∆t against some
reference photon, for example, the one with the shortest path to
the observer.

All of these quantities on the (non-rotating) spherical coordi-
nate system (θ, φ) are then mapped to the observer’s polar image
coordinates (b, χ) via ray tracing. The original longitudinal coor-
dinate of the emission is easily obtained from φe = φ − t∗Ω
because both t∗ and Ω are defined for a distant observer, and
change in the azimuthal coordinate is Lorentz invariant. This
allows us to connect the observables that our distant observer
will see to the local rest frame of the gas where most of the
physical processes are naturally defined.

2.8. Angular distribution of radiation

2.8.1. Blackbody radiation

For pulse profile calculations, the simplest angular distribu-
tion of radiation is the isotropic radiation. Here we consider
blackbody emission described by the specific intensity

BE(T ) = 5.04 × 1022 E3

exp(E/T ) − 1
erg s−1 cm−2 keV−1 sr−1,

(64)

where T and E are given in keV.

2.8.2. Atmosphere dominated by electron scattering

Next we consider beamed radiation. For simplicity, we con-
tinue to assume that the spectral distribution is given by the
Planck function, but now we assume that the angular distribu-
tion corresponds to that given by coherent electron scattering in a
plane-parallel, semi-infinite (optical depth τ → ∞) atmosphere.
This beaming pattern is described by the so-called Hopf function
H(µ). Introducing a variable µ ≡ cosα′, the result is

IE(µ) = BE(T )
H(µ)

2α1

, (65)

where

αn =

∫ 1

0

H(µ)µndµ, (66)

are the moments of the function H(µ), which is a solution of
the Ambartsumian-Chandrasekhar integral equation (see, e.g.
Chandrasekhar 1960; Sobolev 1963)

H(µ) = 1 + µH(µ)

∫ 1

0

Ψ(η)

µ + η
H(η)dη. (67)
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Here Ψ(µ) is the characteristic function, which depends on the
scattering law considered. For Rayleigh (Thomson) scattering, it
is

Ψ(µ) =
3

16
(3 − µ2). (68)

Given Ψ, the integral Eq. (67) can then be iteratively solved, for
example, by computing

Hn+1(µ) =
1

2
Hn(µ) +

1

2

(

√

1 − 2

∫ 1

0

Ψ(η)dη

+

∫ 1

0

ηΨ(η)

µ + η
Hn(η)dη

)−1

,

(69)

with a starting guess of

H0(µ) = 1 + 2.3µ − 0.3µ2. (70)

We note that Eq. (65) is physically inconsistent (blackbody
radiation must be isotropic), but we adopt this spectrum and
beaming pattern for the sake of illustration. Electron-scattering
atmospheres can produce spectra that have spectral shapes sim-
ilar to a Planck function, but they are much less efficient.
Eq. (65) can describe such emission approximately, but only
if it is preceded by an efficiency factor that depends on the
color-correction factor fc as f −4

c ≈ 0.15 (see, e.g., Suleimanov
et al. 2011, 2012). We also note that even the simple polynomial
expansion Eq. (70) has an accuracy better than <2%, and it can
therefore be used in approximate solutions with a corresponding
first moment of α1 = 1.19167.

2.9. Method of solution

In practice, when calculating the observed time-dependent emis-
sion, we have to
1. set up the image plane;
2. propagate the geodesics using either the full equations of

motion or the approximate Hamiltonian-Jacobi result,
3. compute the actual number of photons received now that we

know the connection between (b, χ) and (θ, φe).

We trace the photons from the image plate at infinity all the
way to the surface of the star by solving the first-order differ-
ential Eqs. (31)–(33) or the full geodesic equations backward
in time. In our numerical computations, we place the image
plane at ∼105Re. For the Hamilton-Jacobi formalism, we make
a simple variable substitution x̃ = 1/r that helps us by stretch-
ing the step when far from the star and shortening it when
approaching the star surface. Here an adaptive step size second-
order Heun Runge-Kutta integrator is used with the forward
Euler method as the predictor and trapezoidal method as the
corrector. All photons that travel more than 1.05 Re away from
the star after a U-turn are terminated and considered to have
missed the star. The full geodesic equations are solved using the
ARCMANCER code (see Pihajoki et al. 2017, and the related
equations therein).

Our image plate is defined using a polar coordinate system
with a radial coordinate b (i.e., the impact parameter) and an
angular coordinate χ. We also employ a non-equidistant grid in
both coordinates to accommodate the extra resolution needed
around the edges of the star. The radial coordinate b is defined
using a Gauss-Laguerre abscissa (i.e., e−b-weighted), and the
angle coordinate is weighted with a simple sinusoidal function so

Fig. 2. Example of a non-equidistant polar grid used in our ray tracing
with Nr = 20 and Nχ = 30 points. The red dashed line corresponds to
the outline of the actual oblate star that is covered with a chessboard
pattern.

that the resolution is increased around the top and bottom parts
where χ = 0 or π, which is near the location of the poles (see
Fig. 2). By ray tracing, we then obtain a mapping between the
image plane and the surface of the star, defined on a grid. Arbi-
trary positions in the image plane are obtained by a quadratic
interpolation in (b, χ) space.

For pulse profile calculations where only a small part of the
star is emitting, we first search a crude location of the spot on the
image plane and then impose a fine subgrid around it in order to
accurately calculate the flux from this small patch. The subgrid
itself is defined either in a polar grid (by constraining minimum
and maximum χ and b) or in a Cartesian image grid (by con-
straining minimum and maximum x̂ and ŷ) depending on the
total area covered in the observer’s sky. To calculate the total
flux F(t), we then integrate this small subgrid by using an adap-
tive multidimensional integration. The algorithm is based on a
tensor product of nested Clenshaw-Curtis quadrature rules and
is implemented using the CUBATURE package3.

Such a general way to treat the problem of course also has
its disadvantages. Ray tracing photons in general is a compu-
tationally very expensive problem. For fast calculations, other
more approximate ways exist to solve the problem, such as
the oblate Schwarzschild method, where the symmetries of the
Schwarzschild space-times are extensively used and the ray trac-
ing reduces to lensing angle integrals (see, e.g., Poutanen &
Beloborodov 2006; Morsink et al. 2007). We emphasize that
our focus is not to compete with these methods in speed, but
to verify their results using a more general description of the
problem.

3. Applications and verification

Next we present some applications of the framework to some
simple physical problems related to neutron stars to showcase
possible applications of the code. The examples are also meant
to act as a further verification, as we provide a comparison
with existing literature results, when possible. Most notably,

3 http://ab-initio.mit.edu/wiki/index.php/Cubature
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Fig. 3. Formation of an image in curved space-time. Left panel: 3D visualization of the photon trajectories in the curved space-time starting from
the star and ending at the observer’s image plane. Right panel: image that the observer sees using the Cartesian x̂ and ŷ coordinates. For illustrative
purposes, the neutron star surface is covered with a chessboard pattern.

we perform an extensive comparison against AMP pulse pro-
files computed with a forward-in-time method as presented
in Poutanen & Beloborodov (2006) and AlGendy & Morsink
(2014). Our code serves as a great cross-verification tool for these
types of special relativistic formulations because our framework
is fully general relativistic and propagates photons backward in
time from the observer to the surface.

3.1. Images of neutron stars

As a first application of the code, we can determine the photon
trajectories using the ray tracing algorithm and produce an
image of the neutron star as as seen by the observer. This also
shows how we can connect the Cartesian coordinates x̂ and ŷ
of the observer to the coordinates φe and θe of the star. The
left panel in Fig. 3 shows the trajectory of the photons in 3D,
using a ẑ-coordinate in addition to the Cartesian image plane
coordinates x̂ and ŷ. The star is chosen to have R = 12 km,
M = 1.5 M⊙, and has a spherical shape, whereas the observer
is located at the equator with an inclination of i = 90◦. Here
the photons originate from the image plane located at ẑ = 20
and are then propagated backward in time until they intersect
with the surface of the star (center of the star located at ẑ = 0),
visualized with a spherical see-through wire-grid frame. The
right panel of the figure shows the projected image as seen by
a distant observer. Here the star is covered with a chessboard
pattern to show how the φe and θe coordinates on the neutron star
surface are seen by the distant observer. In case of no rotation
( f = 0 Hz), the image outline is verified to be mirror symmetric
with respect to reflection along the x̂ = 0 vertical axis and along
the ŷ = 0 horizontal axis of the image.

3.2. Accuracy of the split Hamilton-Jacobi propagator

Next, we study the feasibility of the split Hamilton-Jacobi propa-
gator by comparing to results from the general-purpose geodesic
solver ARCMANCER (Pihajoki et al. 2017). The comparison
solver directly solves the Lagrangian equations of motion of
the geodesic in an arbitrary user-given metric. We compute
the change in the Jacobi constant as computed with both sides
of Eq. (20), and the change in the value of the Hamiltonian

of the geodesic for two different neutron star configurations:
Re = 12 km, M = 1.6 M⊙, and ν = 400 Hz, and Re = 15 km,
M = 1.4 M⊙, and ν = 600 Hz. The observer inclinations are
i = 15◦, 45◦, and 75◦. The error in the Hamiltonian or in the
Jacobi constant reflects the error in the photon path. To study the
effect this has on the actual observables, we compare the values
of the photon redshifts z obtained either with the full numerical
propagator or with the split Hamilton-Jacobi propagator. Devia-
tions in this value as a function of the location then reflect the
error not only in z itself, but also in the φe and θe coordinates.
The results are shown in Fig. 4.

In general, we see that the assumption of separability, as
measured by the variation in the Jacobi constant, is good to a
level of 10−3–10−2, except for geodesics that hit the center of
the neutron star from the observer’s point of view. However,
the examples were deliberately chosen to be extreme, and the
approximation of separability is much better for more slowly
rotating neutron stars. Furthermore, the relative error in the
observed redshift is always smaller than 7 × 10−3, even for these
extreme cases.

This small error has two reasons. First, the splitting of the
Hamilton-Jacobi equation is an excellent approximation because
the quadrupole moment produces a deviation in the metric only
very close to the star. When photons are propagated from a dis-
tant location to the stellar surface, the effect on the trajectory is
negligible. Second, the splitting does not affect the redshift cal-
culations as we use the exact form of 1 + z as given by Eq. (42).
When these two aspects of the method are combined, we observe
the excellent agreement against the results obtained from the
full geodesic equations. Last, we note that in cases of extreme
rotation or when high precision is required, the geodesic prop-
agation can easily be made using the ARCMANCER instead of
Eqs. (31)–(33), while using the rest of the results in this paper
for the actual radiation computations.

3.3. Line profiles

Next, we study the energy-dependence of the stellar flux by com-
puting the observed energy distribution F(E) of photons emitted
from the stellar surface at a single energy E′ as measured in the
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Fig. 4. Errors in ray tracing two neutron stars with Re = 12 km, M = 1.6 M⊙, ν = 400 Hz or Re = 15 km, M = 1.4 M⊙, ν = 600 Hz, and with
observer inclinations i = 15◦, 45◦ and 75◦, solving the full geodesic equation vs. the split Hamilton-Jacobi equation. The leftmost panels show
the maximum variation in the Hamiltonian H of the geodesic, while the two center panels show the maximum variation in the Jacobi constant,
computed either with the left side (C1) or the right side (C2) of Eq. (20). Rightmost panels: relative error in the redshift computed by solving the
split Hamilton-Jacobi equation compared with the redshift computed by solving the full geodesic equation.

comoving frame. In order to minimize any source of error, we use
ARCMANCER in this section to solve the geodesics in all of the
subsequent calculations. Because of the variation of the redshift
across the surface of the star that is caused by Doppler boost-
ing and because of the oblate shape of the star, the observer sees
a range of energies (Özel & Psaltis 2003; Bhattacharyya et al.
2006; Chang et al. 2006). Following Bauböck et al. (2015), we
are interested in constraining the convolution (smearing) kernel
G(E, E′) defined via

F(E) =

∫

I′(E′)G(E, E′)dE′, (71)

where we have dropped the time and angle dependency of the
specific intensity I′ and have explicitly written all quantities to
be functions of the energy. It follows from Eq. (63) that the actual
flux of photons with an observed energy E and emitted energy
E′ is then

F(E) =

"
I′(E′)

(1 + z)3

bdbdχ

D2

=

$
I′(E′)

(1 + z)4
δ

(

E − E′

1 + z

)

bdbdχ

D2
dE′,

(72)
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Fig. 5. Line profiles from a star with R = 10 km, M = 1.4 M⊙,
and a rotation frequency of 700 Hz seen by an observer at an incli-
nation i = 20◦ computed by solving the geodesic equations using
ARCMANCER. The black line shows the profile of a spherical star with a
Schwarzschild exterior space-time. The blue line represents the profile
of an oblate star with Re = 10 km and a Schwarzschild exterior space-
time. The red solid line denotes the profile of an oblate star with an
exterior space-time that has a non-zero quadrupole moment (see text).
The red dashed line shows the profile of an oblate star with a quadrupole
moment that has been artificially increased by a factor of 4 (see text).

where δ(x) is the Dirac delta function. The convolution kernel,
or the so-called line profile, we are after is then

G(E, E′) =

"
1

(1 + z)4
δ

[

E − E′

1 + z

]

bdbdχ

D2
. (73)

Examples of line profiles are shown in Fig. 5 for differ-
ent space-times and star configurations. The flux is normalized
so that the emitted bolometric flux is unity, that is, the area
encapsulated by the profile is one. In each case, the star is taken
to have ν = 700 Hz, Re = 10 km, and M = 1.4 M⊙. The observer
inclination is i = 20◦ and emission is taken to be isotropic,
for simplicity. This figure shows line profiles for spherical and
oblate stars, assuming for simplicity that the exterior space-time
is the Schwarzschild space-time, as well as results for oblate stars
in the appropriate second-order exterior space-time, that is, a
space-time with the appropriate quadrupole moment given by
relations Eq. (7)–(9).

The line profiles computed using the Schwarzschild met-
ric with a spherical star appear to be smooth and asymmetrical
with an enhancement toward higher energies caused by the rel-
ativistic Doppler boosting (see, e.g., Özel & Psaltis 2003). For
an oblate star, the increased redshift of the regions near the
pole shifts the peak toward lower energies. The resulting line
profile is fairly symmetric (see, e.g., Bauböck et al. 2013b). How-
ever, when a physically more realistic metric with a non-zero
quadrupole moment is used, the high-energy part of the line
profile is further enhanced. This again results in an asymmet-
rical line profile. When the value of the quadrupole moment is
increased to unphysically high levels, the line profile develops a
narrow peak in the high-energy part. This effect highly depends
on the observer inclination relative to the rotation axis of the star,
however.

We now study the line profile shape in full detail using the
BENDER code. In order to fully map the change in the line profile
shape as a function of observer inclination, we calculated differ-
ent profiles for three different cases: M = 1.1 M⊙, 1.5 M⊙, and
1.8 M⊙. Here we consider only rapidly spinning stars and hence
set the spin to 600 Hz, which is close to the maximum value
observed for AMPs. For each mass, the equatorial radius Re and

observer inclination i were taken to span the full range from 10 to
16 km, and 0 to 90◦, respectively. Examples of the observed line
profiles are shown in Fig. 6 for i = 5◦, 10◦, 20◦, 40◦, 60◦, and 90◦.
From here it is easy to see that the profile appears to be smooth
at almost all observer viewing angles. Only at i . 5◦, a sharp
spike starts to form. In this case, however, the actual observed
width of the profile is already below 0.03 × E, whereas the spike
is as narrow as 0.01 × E. For a spectral energy feature at around
10 keV, therefore, a resolution of 0.1 keV would be needed to
resolve it.

We can also try and quantify the observed effect more thor-
oughly by introducing the full width at half-maximum (FWHM)
of the profile (i.e., the width of the profile at Fmax/2). In addi-
tion, we consider the full width at tenth-maximum (FWTM) that
reflects the total width of the profile (i.e., the width of the pro-
file at Fmax/10). These values are shown for different radii and
observer inclinations in Fig. 7. They are also a useful measure of
how the rotation would smear the observed spectra: the FWTM
gives a quantitative estimate of how widely smeared any narrow
feature, such as a line or an absorption edge, would be observed.
The FWHM, on the other hand, quantifies the energy resolution
needed to resolve the exact effects from rotation itself. Finally,
we can also use their ratio to describe the shape of the line
profile: the narrower (and hence localized) the line profile fea-
ture, the smaller this fraction. For a narrow peak we expect an
FWHM/FWTM of around ∼10 %. This ratio is shown in the bot-
tom panels of Fig. 7. For a star rotating at 600 Hz, a narrow
line feature is visible only for observers with inclinations in a
very narrow range, that is, 3◦ < i < 6◦, regardless of the mass or
radius of the star.

These results can be compared to the results reported
in Bauböck et al. (2013b). Here the line profiles using the
Schwarzschild exterior metric are seen to match our calcula-
tions well. For the profiles computed using a metric that includes
corrections up to second order in Ω̂, we see a clear deviation.
Most notably, the line profiles we compute only contain nar-
row features in a very restricted range of observer inclinations
3◦ < i < 6◦. However, Bauböck et al. (2013b) found narrow
spectral features with observer inclinations i . 30◦ with similar
neutron star parameters. A possible reason for this discrepancy
can be traced back to how the value of the quadrupole moment
is computed. The value of our quadrupole moment is derived
from the scaling relations, whereas Bauböck et al. (2013b) set
their value of q by hand. They used the Hartle-Thorne met-
ric (Hartle & Thorne 1968) in their calculations, where the
quadrupole moment is given by qinv = − j2(1 + η), where j is the
dimensionless spin parameter (see Eq. (5); a in the notation of
Bauböck et al. 2013b), and η is the strength of the deviation
from a spherical potential (η = 0 reduces to Kerr-like space-
time). Bauböck et al. (2013b) selected η = 3.3, which is a typical
value given by the FPS EoS (Lorenz et al. 1993) for a star with
M ≈ 1.4 M⊙ (see Laarakkers & Poisson 1999). For the angular
momentum they adopted j = 0.357, again as given by the FPS
EoS at ν ≈ 700 Hz. With this value, their quadrupole moment is
then qinv ≈ −0.548. The radius they imposed was R = 10 km.

However, we note that by selecting an individual EoS and
setting the star’s mass and angular momentum, the radius of the
star is already determined for physically realistic parameter com-
binations. In their case, the FPS EoS would yield a considerably
different radius of Re ≈ 11.8 km (Cook et al. 1994; Laarakkers
& Poisson 1999). Moreover, Bauböck et al. (2013b) did not
include a contribution from the pressure quadrupole moment β
in their coordinate-invariant quadrupole expression (Pappas &
Apostolatos 2012). On the other hand, we obtain for M = 1.4 M⊙,
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Fig. 6. Exact shapes of line profiles for different neutron stars spinning at 600 Hz. Observer inclinations span a range from i = 5◦ (red),
10◦ (blue), 20◦ (green), 40◦ (purple), and 60◦ (orange), to 90◦ (black). The energy in the horizontal axis is scaled with the compactness√

1 − u =
√

1 − 2GM/Re that would be expected from the gravitational redshift alone. Likewise, the flux in the vertical axis is always normalized
with the peak flux to better show the evolution of the profile shape.

Re = 10 km, and ν = 700 Hz the following values: j ≈ 0.275,
q ≈ −0.268, and β ≈ 0.010, which then give qinv ≈ −0.255.
Hence, the value of the qinv used in Bauböck et al. (2013b) is
approximately twice that of a physically realistic neutron star
with Re = 10 km.

In general, the quadrupole moment is larger for a stiffer EoS,
because a stiffer EoS produces a larger star and the quadrupole
moment scales with the square of the radius. For us, this scal-
ing is taken into account by relations Eqs. (7) and (8), which
are obtained by fitting a large library of EoSs (see Bauböck
et al. 2013a; AlGendy & Morsink 2014) to yield a consistent
quadrupole moment at any given mass, radius, and angular
velocity. This scaling also hides the difference between the
non-rotating and rotating radii because it is formulated using
the equatorial radius Re. Alternatively, the corresponding R0

of a non-rotating configuration might be considered, for which
R0 ≤ Re for any given Ω̂. This distinction between rotating and
non-rotating radii is important as EoS modeling for the cold
dense matter inside neutron stars is typically done assuming non-
rotating radii. In this particular comparison, our j and qinv are
therefore smaller because we require that the radius be 10 km.
The line profile emerging from a such a star is shown with a red
solid line in Fig. 5 and is not seen to develop a narrow core. For
an oblate star, we need to artificially increase q by a factor of 4, so
that q = −1.07, in order for the line profile to produce a narrow
core, as seen in the red dashed line in Fig. 5. In conclusion, we
are only able to reproduce the narrow peak with a large observer
inclination of 20◦, shown in Fig. 2 of Bauböck et al. (2013b), by
artificially increasing the value of q.

Bauböck et al. (2013a) subsequently revised their cal-
culations and recomputed their observed line profile in
Hartle-Thorne metric with values of the quadrupole moment
q originating from a similar physically consistent empirical
parameterization. In this case, Bauböck et al. (2013a) still

found a narrow spectral feature in the line profile for a neutron
star with Re = 10 km, M = 1.4 M⊙, and ν = 700 Hz, similar
to the parameters used in Bauböck et al. (2013b; see Fig. 5,
Bauböck et al. 2013a). However, the observer inclination was
not specified. Based on the results we present in Figs. 6 and
7, however we can say that the formation of a narrow peak for
these neutron star parameters is only possible in a very limited
range of observer inclinations, of around i ∼ 5◦.

3.4. AMP pulse profiles

From here on, we move to time-dependent ray tracing problems
by considering pulse profiles from AMPs. Here a hot spot on the
stellar surface is emitting, and the star is seen to rotate with a
frequency of Ω. The internal accuracy of the calculations is only
set by the error tolerance of the numerical integration of the flux.
Hereafter we use a relative tolerance of 5×10−3. The results here
were obtained using both the split Hamilton-Jacobi propagator
and ARCMANCER, and they match given the numerical error tol-
erance. For simplicity, we only show the results obtained by the
split Hamilton-Jacobi method in the following discussion.

The definition of the differential surface element is given by
Eq. (56) and hence correctly includes the γL factor. This compar-
ison is crucial in order to verify that all of the physics is correctly
incorporated in the formulations of the given methods. Results
between the two methods are therefore expected to agree up to
the numerical tolerance.

First, a general comparison of the ray tracing algorithm with
the S+D approximation was made using the Schwarzschild met-
ric. For simplicity, only spherical stars were considered here. The
main parameters were the stellar mass M = 1.6 M⊙, the stel-
lar radius R = 12 km, the observer inclination i = 60◦, and the
colatitude of the spot θs = 50◦. The effective radiation temper-
ature was set to Teff = 2 keV. The distance to the source was
assumed to be D = 10 kpc. We defined a circular spot with an
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Fig. 7. Line profile full width at tenth-maximum (top row) and full width at half-maximum (middle row) as a function of radius and observer
inclination computed for different neutron star configurations of M = 1.1 M⊙, 1.5 M⊙, and 1.8 M⊙ spinning at 600 Hz. Additionally, the bottom row
shows the ratio of these two, which can be used to quantify the width of the spiky part of the line profile. Note the different inclination scale on the
bottom row that is used to highlight the region i < 10◦, where the profile evolves from a smooth to a spiky shape.

angular radius ρ of either 1 or 30 degrees. Here the spot size is
defined using its angular size in the corotating coordinate system.
The angular distribution of the radiation corresponds either to an
isotropic blackbody with constant intensity or to an atmosphere
dominated by electron scattering, that is, the Hopf profile.

The light curves are computed in 128 time bins. Zero time
t = 0 corresponds to the moment when the spot center crosses
the plane defined by the spin axis and the direction to the
observer. We computed curves for the five following quan-
tities: monochromatic photon flux (ph cm−2 s−1 keV−1) at the
observer energies E = 2, 6, and 12 keV, bolometric photon flux
(ph cm−2 s−1), and the bolometric energy flux (erg cm−2 s−1).

The comparison of these light curves is shown in Fig. 8 for
a slowly rotating star (1 Hz) and in Fig. 9 for a fast-rotating

star (400 Hz). In practice, comparing the profiles for slow
rotation only tests our ray tracing routines because special
relativistic effects (Doppler boosting, angle aberration, and so
on) are negligible. The overall agreement of the two different
methods is excellent, and from here, a baseline accuracy of
about <0.2% relative error is obtained for the mapping of
quantities between image plane and stellar surface. No large
deviation between isotropic and Hopf profile is detected either,
indicating a good agreement in our emission angle computations
and formulation. Similarly, when rotation is increased and
special relativistic effects start to play a role, we are usually
able to reproduce the pulse profiles down to <0.3% relative
error, except near φe ∼ 0. Here the tilt of the spot increases, and
even though the absolute error remains the same, the relative
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Fig. 8. Light-curve comparisons for Schwarzschild space-time with a slowly rotating spherical star (R = 12 km, M = 1.6 M⊙, ν = 1 Hz, i = 60◦,
θs = 50◦, ρ = 1◦, and Teff = 2 keV) emitting according to a blackbody or Hopf profile with a spot size of either 1 or 30 degrees. The black solid line
shows the pulse profiles computed using the S+D approximation (forward-in-time method; see text), and the red dashed line is a profile computed
with the code presented here. Lower panel: residuals as ∆ = (modelS+D/model − 1) × 100%.

error grows because the observed flux is increasingly lower for
a more inclined spot. This situation is numerically expensive
when integrating the observed flux from the NS image. In
this case, we set set a bound on the number of flux integrand
evaluations (typically ∼107 function calls) that in effect set an
absolute error for the flux. It is then only in these rare cases
that our integrator does not respect the relative error criteria
set by us.

Next we compare emission from oblate stars. The surface
here is defined using the radius function Eq. (12), but the star
is still embedded in a symmetric Schwarzschild space-time. The
parameters we used are an equatorial radius Re = 12 km (in the
usual Schwarzschild metric), a neutron star mass of M = 1.4 M⊙,
an extreme rotational frequency ν = 700 Hz, an observer incli-
nation i = 45◦, and a spot angular size of ρ = 10◦. The effective
temperature of the radiation was again taken to be Teff = 2 keV,

A50, page 14 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201630261&pdf_id=0


J. Nättilä and P. Pihajoki: Radiation from rapidly rotating NSs

Fig. 9. Light-curve comparisons for Schwarzschild space-time with a rapidly rotating spherical star (ν = 400 Hz). The other parameters and
symbols are the same as in Fig. 8.

and the distance to be D = 10 kpc. Here the spot size is defined in
a corotating spherical coordinate system on top of a unit sphere
and is then projected onto the oblate inclined surface. To trace
the effects of the changing surface, we considered the spot in
three different locations at colatitudes of θs = 18◦, 45◦, and
90◦. Additionally, we considered a spot with angle-dependent
emission intensity. This was done using the electron-scattering
atmosphere with θs = 45◦.

A comparison of the oblate light curves is shown in
Fig. 10. Again we obtain an excellent agreement with the

forward-in-time method, with similar errors as in the spheri-
cal case (relative error <0.2%). This agreement is of course
expected since our method is general and does not depend on
the shape of the emitting surface. The only large deviation is
again seen when the spot is viewed from an extreme angle for
θs = 90◦, just before the occultation. We therefore conclude that
the two methods, forward-in-time and backward-in-time, agree
all the way up to the numerical tolerance.

After the comparisons, we calculate as a last example full
skymaps of the emerging radiation from rapidly rotating oblate
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Fig. 10. Light-curve comparisons for oblate Schwarzschild space-times with three different spot colatitudes: θs = 18◦, 45◦, and 90◦. Additionally,
the bottom row shows the comparison of the pulse profile for an electron-scattering atmosphere for θs = 45◦. The parameters of the star, the spot,
and the observer are Re = 12.0 km, M = 1.4 M⊙, ν = 700 Hz, i = 45◦, and ρ = 10◦. The other parameters and symbols are the same as in Fig. 8.

AMPs, as shown in Fig. 11. The emission from the AMP is
shown for all possible observers and is mapped to the vertical
axis using the observer’s inclination angle i. The horizontal axis
of the map is the usual pulse phase. The brightness of the skymap
is proportional to the received bolometric photon number flux.
Taking a slice of the skymap at one particular value of i pro-
duces the light curve as seen by the observer at that inclination.
The calculations here were made for an extreme case of an NS
with Re = 15 km, M = 1.6 M⊙, and ν = 600 Hz. We considered a
spot size of ρ = 10◦, with varying colatitudes ranging from near

the pole at θs = 10◦ to the equator at θs = 90◦. We considered the
cases of one spot and two antipodal spots with isotropic beaming
and blackbody emission with Teff = 2 keV. As a result, we can
see that full occultations are only observed with one spot. From
here it is also easy to see the variation in phase of the flux max-
ima and minima when the viewing angle of the observer changes.
The effect becomes most prominent with two spots located at
θs ∼ 50−70◦ (second antipodal spot at θs,2 ∼ 110−130◦), and the
minimum is seen to change from around phase of 0.2 all the way
to 0.4.
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Fig. 11. Skymaps of the emitted radiation as produced by a rapidly rotating oblate AMP with one or two antipodal spots. The star is taken to have
Re = 15 km, M = 1.6 M⊙, and ν = 600 Hz. The spot sizes are ρ = 10◦, and the emission is coming from an isotropic blackbody with Teff = 2 keV.
The red curves enclose the area where occultation is observed.
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Fig. 12. Pulse fractions observed from a rapidly rotating oblate AMP.
The parameters of the star and the spot(s) are the same as in Fig. 11.

We also show the corresponding strength of the observed
pulsations for each inclination and spot colatitude combinations
in Fig. 12. Here the color of the image corresponds to the pulse
fraction computed by

fp =
Fmax − Fmin

Fmax + Fmin

, (74)

where Fmin and Fmax are the minimum and maximum values in
the bolometric light curves, respectively. From here the symme-
try between θs and i becomes obvious as the lines of constant
amplitude appear almost symmetric against switching between x
and y axis.

4. Summary

We have presented a detailed study of radiation emerging from
and near rotating compact objects. A framework of formulae for
solving this problem was derived in a fully general relativistic
manner. The formulae were then specialized to the context of
rotating neutron stars.

First, we gave a detailed description of the second order in
rotation space-time metric in Sect. 2.1. The space-time we used

has a non-zero coordinate-invariant mass quadrupole moment
qinv. The components q and β of qinv are defined via approxi-
mate relations for a wide span of neutron star masses, radii, and
spins, following AlGendy & Morsink (2014). When the rotation
increases, the star also starts to deviate from a sphere because
the gravitational force weakens on the equator because the cen-
trifugal force increases. An approximate relation for the resulting
oblate spheroidal shape of the star was again obtained (Morsink
et al. 2007; AlGendy & Morsink 2014) and was implemented in
Sect. 2.2 for an easy but consistent description of the surface.

Second, we derived a new approximate ray tracing approach
using the so-called split Hamilton-Jacobi method (also known
as super-Hamiltonian method). This derivation was presented
and discussed in detail in Sects. 2.3 and 2.4. Instead of using
the geodesic equation that is a second-order differential equa-
tion, we separated the Hamilton-Jacobi equation using a third
constant of motion known as Carter’s constant. The method is
exact up to first order in rotation (Kerr-like space-time with
frame-dragging effects) but remains sufficiently accurate also
for second order in rotation because deviations caused by the
quadrupole moments are small. Formulating the components of
the four-momentum vector like this has the useful feature that
the polarization of the radiation can easily be taken into account
(see, e.g., Chandrasekhar 1998; Dexter 2016)

Third, we gave a thorough description of the calculations
related to the actual emission of the radiation. Effects such
as redshift, Doppler boosting, and emission angle of the pho-
ton were discussed in a fully general relativistic manner in
Sects. 2.5 and 2.7. In the special relativistic formulation (see,
e.g., Poutanen & Beloborodov 2006), the calculations were made
in a flat space-time and were then Lorentz-boosted to the rotat-
ing relativistic frame. In Sect. 2.6 we presented a derivation
of the solid-angle element that we defined using a rotating
coordinate system. The purpose of this was to clarify some
common misunderstandings in the literature of how this trans-
formation from the corotating to the static coordinate system
can be achieved. We also briefly discussed in Sect. 2.8 the
actual intensity of the emerging radiation and presented an
iterative method to solve the Chandrasekhar-Ambartsumian inte-
gral, along a new approximate polynomial expansion that is
related to the angle-dependent electron scattering atmosphere.
We then described the actual intensity of the emerging radiation
and used as a simple model the angle-dependent electron-
scattering atmosphere presented in Sect. 2.8. Numerical methods
for solving all of the presented equations were then laid out in
Sect. 2.9.

Finally, in Sect. 3 we presented some applications of the
framework. A connection to previous work in the literature was
also made, when possible. As a first simple example, we showed
how the image of an NS is formed in curved space-time. Next,
we studied the energy-dependent emission by considering the
emerging line profiles. Most notably, we concluded that when
a consistent formulation is used to describe how the increas-
ing eccentricity of the star is coupled to the related quadrupole
moments, the resulting line profiles develop a narrow core only
at an observer inclination of i ∼ 5◦. Otherwise, the smearing
kernels are smooth functions. The effect of the rotational smear-
ing on the observed energy spectra can be estimated using the
FWHM and FWTM of the kernels, which we computed for
all observer viewing angles. We then studied AMP pulse pro-
files extensively and thoroughly, and we compared our results to
results obtained using existing special relativistic methods found
in the literature. Here the agreement between the two methods
was found to be excellent when the correct differential surface
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area element presented in Sect. 2.6 was used. Last, we computed
full skymaps of the radiation that emerges from rapidly rotating
AMPs, taking into account the oblate shape of the star and the
quadrupole moments of the space-time metric.
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Özel, F., & Psaltis, D. 2003, ApJ, 582, L31
Page, D. 1995, ApJ, 442, 273
Papitto, A., Torres, D. F., Rea, N., & Tauris, T. M. 2014, A&A, 566, A64
Pappas, G., & Apostolatos, T. A. 2012, Phys. Rev. Lett., 108, 231104
Patruno, A., & Watts, A. L. 2012, ArXiv e-prints [arXiv: 1206.2727]
Pechenick, K. R., Ftaclas, C., & Cohen, J. M. 1983, ApJ, 274, 846
Pihajoki, P., Rantala, A., & Johansson, P. H. 2017, IAU Symp., 324, 347
Poutanen, J., & Beloborodov, A. M. 2006, MNRAS, 373, 836
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