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Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of

radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5–20% of

patients and limits the maximum dose that can be delivered, reducing tumor control

probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life.

Both physical and biological factors determine the normal tissue complication probability

(NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of

radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related

factors may aid in the prevention, and better management of radiation-induced lung

damage. In this review, we summarize our current understanding of the pathological

and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical

interventions that may be beneficial in the prevention or curtailment of RILI, and therefore

enable a more durable therapeutic tumor response.
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DEVELOPMENT OF THE RILI (MOLECULAR AND CLINICAL
RESPONSE)

The lung is one of the most sensitive tissues to ionizing radiation, and its susceptibility to radiation
damage limits the success of radiotherapy for lung cancer treatment. The effects of lung irradiation
are typically divided into early radiation toxicity, occurring within hours to a few days after RT
exposure, and late radiation toxicity, occurring months to years after the treatment, which includes
tissue fibrosis, necrosis, atrophy, and vascular injury [Figure 1; (1, 2)].

Two primary mechanisms cause radiation-induced tissue injury: direct DNA damage and
the generation of reactive oxygen species (3). Minutes after irradiation, the damage to DNA
or cytoplasmic organelles triggers intracellular signaling, leading to altered gene expression and
immediate release of growth factors such as transforming growth factor ß (TGF-ß), platelet-derived
growth factor (PDGF), and interleukin 1 (IL-1) (4). Additionally, ionization of water molecules
generates reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, hydroxyl radicals
and nitrogen species (NGS) (5) that account for 60% of the total damage inflicted (6, 7).
ROS can directly modify proteins and organelles but in an iron dependent manner (Fenton
reaction) can produce hydroxyl radicals that cause DNA damage (8, 9). ROS also induces DNA
damage in mitochondrial DNA of which cells typically have thousands of variant copies and is
more sensitive to damage than nuclear DNA because lack of repair. MtDNA damage acts as
DNA damage associated molecular pattern that provoke inflammation and immune responses
and apoptotic cell death and is strongly associated with immune related lung diseases (10, 11)
Furthermore, ROS cause cell loss, edema of the alveolar walls, increased vascular permeability
and exudation of proteins into the alveolar space which further reduces the alveolar septa, and
vascular integrity leading to the apoptosis of alveolar type-I pneumocytes. The human alveolar
epithelium is composed of type-I and II pneumocytes, which constitute 90 and 10% of cells in the
alveolus, respectively. Type-II cells are the precursors of type-I cells and synthesize and secrete the
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FIGURE 1 | Radiation-Induced Lung Injury (RILI). Schematic overview of the important steps leading to pulmonary toxicity after radiotherapy. Radiation induces

reactive oxygen and nitrogen species (ROS, NGS) which leads to DNA strand breaks and to epithelial cell death. Inflammatory cells infiltrate the affected region to

remove death cells. Leucocytes and lymphocytes proliferate and produce cytokines and chemokines, leading to an inflammatory condition highly deregulated in

duration and perpetuation. The persistence of the inflammatory state culminates in early reversible toxicity (pneumonitis) and can develop in to irreversible late toxicity

(fibrosis).

pulmonary surfactant that regulates the alveolar-surface tension.
The average turnover of the lung epithelium is 4 weeks but
after radiation, the sensitive type-I pneumocytes are rapidly lost,
and type-II pneumocytes drive re-epithelialization of the alveolus
(12). Epithelial and endothelial cell loss, due to radiation-
induced cell death leads to loss of barrier function and vessel
integrity thereby reducing micro-vessel density and oxygen
perfusion (1, 13). These effects of ROS are counteracted by
direct activation of the hypoxia-inducible factors (HIF) 1α and
2α by ROS in cells, resulting in the activation of cytokines and
growth factors including VEGF that promote endothelial cell
proliferation. After tumor reoxygenation, nuclear accumulation
of HIFα, and enhanced translation of HIF-1-regulated transcripts
occur in response to ROS. The resulting increase in HIF-1-
regulated cytokine expression enhances endothelial cell radio-
resistance (14).

Following apoptotic death, damage associated molecular
pattern molecules (DAMPs) are released from cells triggering the
recruitment of immune effector cells from the innate immune
system (neutrophils, macrophages, leukocytes, lymphocytes)
that infiltrate into the damaged lung, and contribute to
tissue remodeling (15, 16). Neutrophils are the first to arrive
to the injured site. The increased endothelial expression
of intercellular adhesion molecule 1 (ICAM-1) and platelet
endothelial cell adhesion molecule 1 (PECAM-1) promotes

neutrophil transmigration into the damaged lung followed by
lymphocytic and macrophage transmigration. The inflammatory
cells produce pro-inflammatory cytokines such as interleukins
(IL) IL-3, IL-6, IL-7, TNF-α, TGF-β which results in the
activation of fibroblasts, leading to the initiation of additional
paracrine and autocrine loops between fibroblasts, endothelia,
and macrophages (17, 18). The increased concentration of
macrophages enhances the production of TNF-α, stimulating
IL-6 secretion, and fibroblast proliferation (19, 20). The
consumption of oxygen needed for the activation of the
immune cells leads to tissue hypoxia. Hypoxia promotes the
generation of ROS, upregulates TGF-β, and promotes collagen
formation, which reduces the elasticity of the lung alveolus (13).
Furthermore, hypoxia slows down the degradation of hypoxia-
inducible factors (HIF) 1α and 2α in cells, resulting in the
activation of genes encoding VEGF, erythropoietin and lactate
dehydrogenase 5 (21). VEGF upregulation also occurs through
TGF-β stimulation via SMAD3 signaling (22), which triggers
an autocrine stimulus leading to late toxicity. All these events
lead to radiation pneumonitis which is an acute a reversible
event in RILI. Most patients develop only radiological signs of
pneumonitis without symptoms.

Density changes of the lung parenchyma are a known effect
of radiation therapy that can be monitored by CT. The dose
dependent density change consists of 2 phases: a transient phase
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peaking (3–4 months) and a fibrotic phase (after 9 months).
These coincide with the time points of pneumonitis and fibrosis.
Significantly, pre-treatment (23). Thus, CTmonitoring of density
change is an important factor when symptoms are absent. In
case of symptoms such as cough and dyspnea, other causes
than RILI should be excluded since up to 45% of patients
have these symptoms that are not due to RILI (24). More
severe cases are treated with corticosteroids with mostly fast
improvement and recovery. The optimal corticosteroid schedule
has never been investigated prospectively and in view of the
heterogeneity of RILI, it is conceivable that a one-fits-it-all
approach is suboptimal.

The mechanism of how corticosteroids suppress, or reverse
radiation pneumonitis has beenmostly investigated in preclinical
studies. Administration of dexamethasone 4 weeks after
irradiation reduces inflammatory cell infiltration and cytokine
expression of TNF-α, IL-6, IL-17A, and TGF-β1 in broncho-
alveolar lavage fluid improving survival (p = 0.0323). In the
RT only group, 13 mice (65.0%) died within 180 days after
RT while in the dexamethasone group only 6 mice (30.0%)
died (25). Similar results were obtained with a single dose
administration of dexamethasone (5 mg/kg) after 20Gy thoracic
irradiation in C3H/HeN mice which suppressed expression of
pro-inflammatory cytokines, TNF-α, IL-1α, and IL-1β mRNA
within 6 h after irradiation (26). Expression profiling on the
lungs of 20Gy irradiated mice, showed that CTGF (connective
tissue growth factor) a central mediator of tissue remodeling,
was upregulated after irradiation. Administration of FG-3019,
a human monoclonal antibody that binds human and rodent
CTGF, extended median survival of irradiated mice from 161
days to 300 days. Pneumonitis was reduced within 2 weeks
of FG-3019 treatment and almost completely reversed by 24
weeks. FG-3019, attenuated the lung density increase after RT,
improved lung function, reduced lung wall erosion, collagen
deposition, and leukocyte infiltration (27). In depth analysis of
gene expression changes in mouse lungs treated with and without
FG-3019 and irradiation showed amelioration of RT-associated
expression pattern highly enriched in macrophage, dendritic
cell, mast cell, and mesenchymal transcripts. Furthermore,
the administration of FG-3019, 2 days prior RT for 8 weeks,
reduced RT-induced radiologic, histologic, and functional lung
deficits and attenuated growth factor and matrix remodeling
genes which resulted in an improved lung function and a
prolonged survival (28). In patients who cannot tolerate steroids
or are unresponsive, other immunosuppressive agents such
as azathioprine and cyclosporine can be considered; however,
evidence for their efficacy is limited to case reports (29).

TGF-β produced by inflammatory cells is the primary driver
of late lung toxicity. The increase in TGF-β levels after RT
accompanies elevated collagen IV gene expression (30). This
collagen is associated with basement membranes of endothelial
and epithelial cells, leading to septal thickening, and indicative
of microvascular injury. Pneumocytes and fibroblasts also
contribute to TGF-β production in response to RT (31). TGF-
β exerts its pro-fibrotic role by binding the transmembrane
serine/threonine kinase, TGF-β receptors. Ligand binding
induces activation of SMAD a transcriptional activator of

collagen (32, 33). Through the stimulation of metalloproteinase
inhibitors (TIMPs), TGF-β inhibits collagen catabolism which
results in collagen accumulation and conversion of fibroblasts
into myofibroblasts, leading to lung architecture remodeling. The
differentiation of fibroblast into myofibroblasts as a consequence
of TGF-β production results in increased expression of alpha-
smooth muscle actin (α-SMA) (34). Myofibroblasts may also
derive from circulating bone marrow-derived progenitor cells
known as fibrocytes or from epithelial cells undergoing an
epithelial-mesenchymal transition (EMT) (17). In response
to TGF-β, myofibroblasts secrete excess collagen, fibronectin,
and proteoglycans (35), resulting in increased stiffness, and
thickening of the lung parenchyma. Furthermore, the increased
activity of TIMPs and decreased matrix metalloproteinase
(MMP) activity (MMP2-MMP9) leads to excessive ECM
deposition (36), and excess collagen. These changes lead to
pulmonary fibrosis resulting in fibrotic areas susceptible to
physical trauma (i.e., rupture) and gradual ischemia, which
further leads to loss of respiratory capacity, tissue atrophy, and
necrosis (37, 38).

RISK FACTORS FOR RILI

The guidelines for measuring and reporting radiation toxicity
in relation to dose/volume and clinical outcome have been
described in the QUANTEC report: Quantitative Analysis
of Normal Tissue Effects in the Clinic, that describe the
development of Normal Tissue Complication Probability models
(NTCP) (39). The likelihood of developing adverse lung effects
after radiotherapy and the severity is strongly associated with
patient characteristics and dosimetric parameters (40). Although
the absolute risk of developing radiation-induced lung toxicity
remains difficult to predict (41), the evaluation of the patient’s
clinical conditions and the potential risk factors to lung toxicity
to upgrade the QUANTEC recommendations is setting the basis
for a personalized treatment and setting dose-volume limits for
personalized treatment [Table 1; (103)]. Radiologically abnormal
Interstitial lung abnormalities are predictor for radiation
pneumonitis (106). Clinical studies looking at RILI are often
difficult to interpret because different endpoints are used (e.g.,
dyspnea score, corticoid use), and because only the maximum
dyspnea is scored as an event after RT. Because approximately
50% of lung cancer patients have already some grade of
dyspnea before radiotherapy, scoring dyspnea after RT, without
considering baseline dyspnea, exaggerates the effect of RT on
dyspnea, and proposed. Moreover, about 20% of patients have
less dyspnea after RT, which is not taken into account in most
models (107). Defraene et al. proposed a more accurate model
for predicting radiation pneumonitis by combining dosimetric
parameters with the 1Dyspnea score which is the maximum
dyspnea score after 6 months corrected for baseline-dyspnea
(108). Dyspnea scores are subjective, which hamper detailed
quantitative analyses, including biomarker identification. The
goal is the development of risk models to stratify patients
according to their genetic risk for radiotherapy-induced damage
and hence to more optimal personalized radiotherapy schedules
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TABLE 1 | Dosimetric and biological parameters in radiation-induced lung toxicity.

Parameters Risk increase References

Patients characteristics Age over 65 (41–46)

Gender female (44, 47, 48)

Smoking non-smokers (43, 48–53)

Pre-existing lung diseases ECOG performance 3–4 (45, 46, 54–62)

Genetic predisposition SNPs in various genes (63–74)

Tumor location Base, the upper half of the lung, the region adjacent to the pleura (51, 70, 75–79)

Low KPS Radiation pneumonitis (41, 48, 77, 78)

Dosimetric parameters Chemotherapy Most chemotherapies (41, 46, 48, 56, 61, 79–90)

Chemo-XRT schedule: Sequential > concurrent fraction size >2.67Gy (46, 48, 61, 83, 91)

Targeted therapies TKI monotherapy and with RT (92–96)

Mean Lung Dose (MLD) Higher MLD (97–103)

Dose to the heart Undetermined (104, 105)

Patient’s characteristics (age, gender, smoking status, pulmonary status, genetic predisposition) and dosimetric parameters (chemotherapy, radiotherapy, tumor location, lung volume,

NTCP, MLD) affect the probability of radiation-induced lung toxicity. >, major; NTCP, normal tissue complication probability; MLD, mean lung dose.

(109). The single most important risk factor to develop severe
radiation pneumonitis is interstitial lung disease (ILD) which
can be quantified by the uptake of FDG in the lungs. In a
retrospective study of 101 NSCLC patients a CT (4D-CT) scan
directly followed by an [18F]FDG-PET scan was performed
before radiotherapy treatment. Patients with high [18F]FDG
uptake in 5 to 10% of the lungs before RT were more likely
to develop radiation toxicity than patients with a low uptake.
Furthermore, in patients with RILI the [18F]FDG uptake was
higher in the lower lobe of the lung than in other regions. These
results suggest that identifying patients at high risk for RILI on
the basis of a pretreatment [18F]FDG-PET-CT can be used to
individualize treatment (106, 110).

Patient’s Characteristics
In lung cancer patients, the incidence of adverse effects after
radiotherapy is related to clinical factors and a variety of
dosimetric parameters (111). Age is one of the main factors
associated with radiation-induced lung toxicity (45). Older
patients (>65 years old) have less tolerance to RT and a major
risk of developing adverse effects (41, 77). A multivariate analysis
of 369 patients with an age > 65 years, with stage III non-
small cell lung cancer (NSCLC), revealed how age influence
both grade 2 (OR = 1.99), and grade 3 radiation pneumonitis
(OR = 8.90) (41). Similar results were confirmed by others,
in a prospective study with 96 patients who received three-
dimensional conformal radiotherapy (3D-CRT) for stage IA to
IIIB NSCLC (44). Furthermore, grade 4 + toxicity occurred
in 62% of NSCLC patients <70 years compared with 81% of
elderly patients (P = 0.007) and Grade 4 + toxicity occurred
in 1% of those younger than 70 years, compared with 6% of
those older than 70 (P = 0.02) (112). This is primarily due
to the fact that older patients have more comorbidities that
are a risk factor for RP, than younger patients (46). Despite
age being a strong risk factor, a threshold value has not been
determined due to additional risk factors such as smoking status,
and pulmonary function.

The effect of gender on RILI is still unclear (77). Women have
smaller lung volumes and more often develop an autoimmune
disease which increases their risk of RILI. A univariate analysis of
148 lung cancer patients with good performance status (ECOG
0–1) treated with chemo-radiation confirmed that the risk of
severe pneumonitis was significantly higher in women vs. men
(15% in women vs. 4% in men) (48). Among 214 consecutive
patients with locally advanced NSCLC that received 3D CRT,
gender was a predictor for the grade≥2 group only (OR= 0.32, p
= 0.028) (47). Other studies do not show a significant association
between gender and RP risk, probably due to the contribution
of different factors such as pre-existing diseases, or radiation
schedule (46, 70, 113). Further studies are needed to clarify the
role of gender as a clinical risk factor for RILI.

Pre-existing Disease
In contrast to the causative role of smoking and lung cancer,
tobacco use seems to have a protective role against pneumonitis
in lung cancer patients treated with chemo-radiation (50, 51).
The frequency of Grade 3+ pneumonitis was higher in long
time quitters in comparison to recent quitters or current smokers
(72). In stage I–IV lung cancer patients (n = 182) treated with
radical (chemo) radiotherapy the dyspnea grade was higher
in patients who quit smoking compared to active smokers.
A possible explanation may be that ex-smokers quit smoking
because of the appearance of dyspnea. However, for a correct
interpretation of the results the baseline dyspnea score has to
be taken in to account in order to avoid false positive results.
In 576 patients with stage III, NSCLC treated with radiotherapy
the incidence of radiation-induced pneumonitis was higher
(grade ≥3 pneumonitis) in non-smokers (37% at 1 year) in
comparison to smokers (14% at 1 year). Patients who quit
smoking before diagnosis showed an intermediate incidence of
RP (23% at 1 year) although dosimetric parameters were not
taken into account (52). The long-term exposure of the lung
to chemicals in tobacco smoke destroys the lung tissue due to
the replacement of the elastic walls with a fibrotic structure
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and the attraction of pro-inflammatory mediators. On the other
hand, smoking leads to immunosuppression causing reduced
antibody response against carcinogens compared to non-smokers
(53, 114). The protective role of smoking is therefore probably
related to reduced sensitivity of the damaged lung compared to
a non-smokers healthy lung (48, 49, 53). Furthermore, a carbon
monoxide–induced hypoxia caused by tobacco results in less
ROS generation after radiolysis and therefore less lung DNA and
tissue damage (53).

Significant differences in radio-sensitivity are associated with
single nucleotide polymorphisms (SNP) that affect cell survival,
DNA damage response, and DNA repair genes (71). SNPs in
ATM, IL-1A, IL-8, TNF, TNFRSF1B, MIF rs2868371, rs1800469,
TGF-β, TNF-α, VEGF, XRCC1, APEX1, IL-6 are associated
with a 2.16-fold increased risk of lung injury upon irradiation
(72). SNPs in IL-13 with 2 variant alleles rs20541 or rs180925
were approximately 3-times more likely to develop pneumonitis
compared to those with wild-type genotypes. SNP rs10711,
located in the 3′UTR region of CDK1 (encoding for cyclin-
dependent kinase 1) was significantly associated with a higher
risk of pneumonitis (OR = 2.67, 95% CI = 1.26–5.63, P =

0.010) (115). SNPs, in IL-1A, IL-8, TNFRSF1B, MIF, and NOS3
are also associated with 3.16-fold increased risk of radiation
pneumonitis (72). Including SNPs in RP risk models, improves
the discrimination accuracy especially when including SNPs
with a high allele frequency or larger effect size. Therefore,
stratification based on individual genetic differences in NTCP
models could be an interesting approach to select patients
at lowest risk for radiotherapy complications (74). However,
despite numerous studies (SNP) associations have rarely been
reproduced in independent validation studies. For example initial
studies reported strong associations between TGF-β SNP and
radiation pneumonitis but could not be validated in independent
cohorts (55, 116, 117). Development of robust, standardized and
quantitative endpoints integrating GWAS and gene-expression
are needed before radiogenomics will be useful to predict
radiation sensitivity (118).

TREATMENT RELATED RISK FACTORS

Lung Function
Lung function is evaluated by assessing different parameters
[forced expiratory volume (FEV), forced vital capacity (FVC),
diffusing capacity of the lungs for carbon monoxide, total lung
capacity (TLC), lung volume (LV)], and how they change before
and after radiation. A decreased value of these parameters is
an indicator of decreased pulmonary function and of capillary
alveolar changes (DLCO), bronchial obstruction (FEV) (55),
and lung stiffening (FVC, TLC) (45, 54, 57). Pre-existing lung
disease strongly increases the risk for radiation pneumonitis after
thoracic radiotherapy (58, 59, 106) by exacerbating inflammation
and destruction of the connective tissue scaffold (60). Most
lung cancer patients develop COPD, emphysema and therefore
have poor pulmonary function (ECOG 3–4). In a multivariate
analysis, Rancati et al. showed that lung cancer patients suffering
from COPD receiving fractionated radiotherapy had 24.1%
more lung toxicity compared to patients with no COPD (61).

Similarly Kimura et al. found a strong correlation between
the grade of pulmonary emphysema (PE) (grades 0–3) and
radiation pneumonitis, ranging from 16.5% (grade 0) to 54.0%
(grade 3) (62).

Dose
Dosimetric parameters (irradiated volume, mean lung dose
(MLD), dose delivered, schedule, tumor location) are risk
factors for RILI (119). Irradiating larger volumes of the lung
causes compromises lung function (79, 113). Improvements
in three-dimensional treatment planning systems describe the
relationship between irradiated lung volume and the probability
of tissue complications. Robnett et al. demonstrated that in a
group of 540 patients, the risk for grade 2 pneumonitis strongly
correlated with MLD (48). Other studies underline how V20 and
V30 (lung volume receiving 20 or 30Gy, respectively) are the only
parameters significant in predicting RP (79, 113). One significant
limitation is that most studies determine the DVH (Dose Volume
Histogram) but do not consider lungmovement and deformation
resulting from breathing (43). Hernando and Guerrero et al.
found that an MLD < 10Gy is associated with a 10% radiation
pneumonitis rate but this increases to 16% with an MLD of 11–
20Gy (43, 101). The NTCPmodel describes the probability of RP
as a function of a sigmoidal dose relationship (39). To calculate
the likelihood of lung injury this approach relates the tolerance
dose for lung irradiation and the slope of the dose-response
curve (120, 121). In a study of 42 lung cancer patients treated
with fractionated radiotherapy, with a dose of 67Gy, the NTCP
average values were 73% for the patients with RP, and 25% for
those without lung comorbidities (102). Thus, NTCP could be
used for the optimization of the treatment plan (122).

While the mean dose to the lung is a key risk factor for RILI,
the dose to the heart also influences pulmonary toxicity. Using
high energy proton irradiation van Luijk et al. demonstrated
that co-irradiation of the heart and lung significantly increased
breathing rate as surrogate marker for lung function in rats
compared to lung irradiation alone (123). Further work in
preclinical models from the same group showed that that lung
and heart irradiation through different mechanisms enhance
lung toxicity by increasing hypertension and inducing vascular
pulmonary damage and that both need to be avoided that
to reduce lung toxicity after irradiation (124). Indeed using
precision irradiation of the heart limiting dose- to small volumes
in the lung induced lung pneumonitis in a dose-dependent
manner in the absence of heart toxicity in mouse models (125).
Also in patients reduced cardio-pulmonary function further
exacerbates radiation induced lung toxicity (104). In large cohort
studies no significant association between heart dose and RP was
found (105). Quantitative parameters independent of dyspnea
and cough that may result from pre-existing lung disease rather
than a consequence of cardiac damage are needed.

Tumor Location
Tumor location is one of themain predictors for RP development
in preclinical and clinical studies. In C3Hf/KAMmice where 70%
of the lung was irradiated with a fixed dose (22Gy), irradiation
of the midlung was associated with less morbidity from RP than
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radiation of the base, the upper half of the lung, and the region
adjacent to the pleura (75). In a retrospective study of 60 lung
cancer patients that received chemo-radiation, RP was more
frequent after irradiation of the base of the lobe (70%) rather
than after irradiation of the upper lung lobes (20%) (51). In the
study of Seppenwolde et al. the risk of RP has been evaluated
in relation to the regional dose distribution in 106 lung cancer
patients that received fractionated radiotherapy (2 Gy/fraction)
was determined. Dividing the lung into different sub-volumes the
incidence of RP was higher in posterior central and peripheral
regions in comparison to anterior and contralateral zones (76).
Another study of 324 lung cancer patients confirms the higher
incidence of lung injury following the exposure of the lower
region compared to the upper one, suggesting the importance
of superior-to-inferior tumor position as a significant variable
(70). Possible explanations for the different regional radio-
sensitivity might be related to the better oxygenation, perfusion,
and ventilation of the lower pulmonary region (77).

Systemic Treatment
There are conflicting results on the effects of concurrent,
concomitant, or neoadjuvant chemotherapy on radiation
toxicity. Neoadjuvant chemotherapy shrinks the tumor volume
before RT and reduces the PTV (planned treatment volume),
and the risk of RILI. A dosimetric analysis of 23 patients
with stage IV small cell lung cancer receiving platinum-based
chemotherapy as neoadjuvant showed that 30 had a 20%
reduction in tumor volume after induction chemotherapy. This
translated into a 5% reduction in risk for RILI (85), suggesting
that neoadjuvant chemotherapy can reduce RILI (19, 79). In
contrast, a retrospective study of 223 patients treated with
concurrent chemoradiotherapy did not show a significant
effect on RP (<3) among treatments (with and without RT)
(126). The difference might be explained by different patient
selection criteria, radiotherapy dose, chemotherapy doses, and
clinical schedule (concurrent vs. neoadjuvant). Paclitaxel, taxol,
dactinomycin, cyclophosphamide, doxorubicin, mitomycin C,
gemcitabine, and irinotecan have all been reported to increase
the risk of pulmonary toxicity when combined with fractionated
radiation (56). In a phase I/II study of 24 patients with NSCLC
treated with paclitaxel/cisplatin concurrent with radiotherapy,
the incidence of pulmonary toxicity was higher in patients
treated with chemoradiation compared to patients receiving
both monotherapies (80). In a retrospective study of 84 lung
cancer patients who received 3D-CRT, grade >2 RP was 3-fold
higher in patients with mitomycin (31.2%) than those with RT
only (61).

InNSCLC patients, radiation pneumonitis was a dose-limiting
toxicity when gemcitabine was administered at a dose of 50
mg/m2 twice-weekly with concurrent radiotherapy (81) and
the incidence of Grade >2 RP was several fold higher among
patients who received irinotecan (56%) compared with those
who did not (14%) (56, 82). RILI is highly dependent on the
treatment schedule. Sequential chemotherapy is associated with
an increased risk for RP compared with a concomitant regimen
(46, 83). Fraction size is another critical parameter in RILI.

Fractions >2.67Gy enhance the risk of RILI compared to lower
daily fractions (84).

Targeted Therapies
Tyrosine Kinase inhibitors (erlotinib and gefitinib) against EGFR
are first-line treatment for patient with EGFR-mutated non-
small cell lung cancer. A large meta-analysis with more than
15 thousand patients showed it increases the incidence of
pneumonitis with ethnic differences in susceptibility (127). No
differences were found in efficacy or toxicity between Erlotinib
and Gefitinib in randomized phase trials of EGFR mutated
NSCLC (95). Third generation TKI’s such as Osimertinib
are more potent than Erlotinib and Gefitinib and increase
progression free survival and overall survival with comparable
overall toxicity, although interstitial lung disease, and cough
symptoms were elevated in the Osimertinib group (96). Acute
side effects from TKI can be managed by cessation of treatment
or with corticosteroids (128). There are a limited number
of studies with low number of patiens and case reports
describing increases in interstitial lung disease and pneumonitis
with concurrent thoracic radiotherapy and erlotinib in the
curative (73, 93), and palliative setting (94). Larger studies are
needed to understand the understand the full scope of these
adverse effects.

Immunotherapy
Recently, by combining immune checkpoint inhibitors with
chemoradiotherapy significant responses and prolonged survival
are seen in treatment-refractory advanced Stage III NSCLC
(129). There is mounting evidence that radiation may induce
expression of checkpoint receptors on normal tissues as well (130,
131). NSCLC cancer patients often have pre-existing conditions
such as COPD, asthma, and emphysema that are associated
with inflammation and hypoxia that may upregulate PDL-1 in
normal tissue resident cells or in infiltrating immune cells (132).
Autoimmune-related response are strong predictors for outcome
in patients treated with checkpoint inhibitors (133). However,
they are also associated with treatment related side-effects. In
a meta-analysis of serious adverse events of PD-1 and PD-L1
inhibitors in clinical trials, pneumonitis was among the most
frequent common causes of death (134, 135). Stereotactic high
dose radiotherapy is standard of care in inoperable node-negative
NSCLC with manageable lung toxicity (136). Hypofractionated
radiation has been shown to convert “cold’ tumors to” hot
’inflammatory tumors by activating damage associated pathways
and releasing pro-inflammatory factors that boost an anti-tumor
T-cell response (137, 138). Indeed, pre-treatment immunological
status predicts response to stereotactic hypofractionated RT in
patients (139). With the promise of combining immunotherapy
and radiotherapy we may see an increase of stereotactic radiation
in the thorax. Thus, it will be important to monitor for
increases in immune-related side effect as well. To date, immune-
checkpoint inhibitors show objective responses in up to 30%
of patients.
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INTERVENTION AND PREVENTION

Approaches are sought to prevent, dampen, or delay late normal
tissue complication. Conformal radiotherapy, as well as intensity-
modulated radiotherapy (IMRT) and particle (e.g., carbon,
proton) therapy, are used to improve irradiation of tumor
volumes while sparing the healthy tissue. While these approaches
substantially contribute to more precise tumor irradiation dose,
exposure of the healthy tissue is inevitable. The study of a cohort
of 188 NSCLC patients that underwent (chemo-)radiotherapy
with IMRT or VMAT show grade four and grade five late toxicity
only in VMAT (Volumetric Arc Therapy) treated patients when
compared to IMRT. Grade >3 lung pulmonary toxicity nearly
doubled in the VMAT group compared to the IMRT treated
patients. The differences may be related to the different dose
distribution characteristics which may result in differences in
radiation exposure (140). In the study of Jegadesh et al. IMRT
was associated with an improvement in median overall survival
and 5-year survival rate (17.2 vs. 14.6 months; 19.9% vs. 13.4%,
p = 0.021). Different studies demonstrate the ability of IMRT to
reduce mean lung dose, lung V20, maximum dos to the spinal
cord and multiple heart dosimetric parameters and improves
quality of life, dosimetry, and toxicity in comparison to 3D CRT
in the treatment of locally advanced NSCLC (141). Furthermore,
IMRT may improve dosimetric parameters via increased dose
conformity to the target volume. A more detailed description of
technological advances in precision irradiation falls outside of the
scope of this review, and the reader is referred to other studies
(142, 143).

Biological approaches exploit differences in radiation-
sensitivity between tumor and healthy tissue. These include the
use of radiation protectors, modifiers, or mitigators. These drugs
are specific for acute or late responding normal tissues, ideally
without any protective effect on the tumor cells. There are three
types of pharmaceuticals that can be administered at different
stages of treatment. Firstly, radio-protectors are given before
radiation exposure; secondly, radio-mitigators are given during
or immediately after radiotherapy but before the appearance
of toxicity; and thirdly treatments can be administered after
the appearance of toxicity to attenuate progression or reverse
the damage (144, 145). However, multiple approaches are often
used to obtain successful results, due to different factors that
contribute to RP (lung sensitivity, cellular turnover, dosimetric,
and clinical parameters) (40).

Radioprotectors
Amifostine is a thiol prodrug whose damage repair mechanism
acts through a hydrogen atom donation and to date, the only
thiol-drug approved for clinical use (146). It is administered
as an inactive prodrug that after de-phosphorylation by
Alkaline Phosphatase is activated (147). It is relatively specific
for normal cells due to the relatively high expression of
Alkaline Phosphatases in normal tissue vs. tumor cells.
Furthermore, the low pH of the tumor microenvironment
inactivates amifostine contributing to its normal tissue specificity
(148). The thiol group of amifostine plays a key role in

activating redox-sensitive transcription nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB), resulting in
an increased expression of Superoxide Dismutase 2 (SOD2)
(149). Increased SOD enzyme expression further contributes
to ROS neutralization into less reactive products (hydrogen
peroxide and oxygen) (149). Once oxidized amifostine induces
oxygen depletion, by increasing oxygen consumption in normal
cells making them more resistant to permanent radiation-
induced DNA damage. Antonodau et al. reported a significant
reduction in esophagitis > grade 2 and RP (grade 3) (P
<0.001) in lung cancer patients receiving thoracic radiation
post amifostine (340 mg/m2 IV before daily RT) (150).
Hildebrandt et al. showed that both esophagitis > grade
3 (16 vs. 35%), and radiation pneumonitis (0 vs. 16%;
P < 0.02) was significantly lower in 62 patients receiving
neoadjuvant amifostine, concurrent chemotherapy (cisplatin
and oral etoposide), and hypofractionated radiotherapy (1.2Gy
bid to 69.6Gy) (72). Although amifostine is generally well-
tolerated, side-effects include nausea, fever, hypotension and
allergic reactions in a dose-dependent manner. The treatment is
rarely interrupted however, suggesting a safe and tolerable profile
(148, 151).

ROS can also be neutralized by engineered nanoparticles
which have shown radioprotective effects in preclinical models.
For example, the administration of Manganese Superoxide
Dismutase-Plasmid Liposomes (MnSOD-PL) in a single dose,
before RT has been shown to decrease the magnitude and
duration of cytokine production, and thiol and lipid peroxidation
in vivo studies. Intratracheal administration of MnSOD-PL
in C57Bl/6 mice with orthotopic Lewis Lung carcinoma 24 h
before whole thorax irradiation (18Gy) resulted in tumor
radiosensitization but spared the surrounding normal tissue,
prolonging mice survival (152). Similar results were shown by
Carpenter et al. who showed that inhalation of MnSOD-PL 24 h
before radiotherapy increased survival in 20Gy irradiated mice
compared to controls. Furthermore, a decrease in alveolitis, lung
fibrosis, and weight loss was observed (153). Together with SOD
nanoparticles, porphyrins also showed a reduction in radiation
damage. Vujaskovic et al. showed a reduction of RT lung
injury after the supplementation of AEOL 10113 [manganese
(III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-
2-PyP(5+)] in 28Gy irradiated rats. AEOL 10113 significantly
reduces the severity of RT-induced lung injury by reducing
collagen deposition, pro-fibrogenic cytokines and TGF-β in
irradiated rats (154). Inactivation of ROS can be accomplished
by administration of cerium oxide nanoparticles (CNPs) (155).
Intraperitoneal injection of high dose (10µM) CNP-18, and
CNP-ME, 2 h post irradiation for 4 weeks improves 15Gy whole-
thorax irradiated CBA/J mice survival (survival rates of 40%)
compared to irradiation alone (10%). Additionally, a reduction
of vascular damage, collagen deposition, and inflammatory
response was recorded (156).

Genistein is a soy-derivative and isoflavone, which acts
as radical scavenger and protein kinase inhibitor (157).
In irradiated murine lungs, it exerts anti-inflammatory and
antioxidant properties by limiting macrophages infiltration,
reducing micronuclei formation, lowering ROS levels, and
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preventing DNA damage (158). Genistein supplementation
before and immediately after radiotherapy protects from the
onset of pneumonitis and reduces fibrosis in C57Bl/6 mice
(159). Humanetics Corporation is developing BIO300SOD/ a
nanoparticle formulation of Genistein to prevent pneumonitis
and fibrogenesis. The efficacy and the toxicological profile of
BIO300 has been tested in vivomodels while its pharmacokinetic
and safety has been evaluated in a phase I safety and
pharmacokinetic trial (NCT 00504335).

Targeting DNA damage caused by ROS is another promising
strategy to reduce radiation side effects. Intraperitoneal
administration of the catalase mimetic Eukarion (2–30 mg/kg)
post irradiation (10 to 20Gy 60Co γ-rays) reduced micronuclei
induction, when given after irradiation (160). Berberine and
other ROS scavenger at 20 mg/kg once a day for 6 weeks reduces
the incidence of lung injury in NSCLC patients treated with
2Gy to a total of 60–70Gy. Improved pulmonary function
and decreased intercellular adhesion molecule 1 (ICAM-
1), and TGF-β levels were observed (161). Nitroxides are
potent free radical scavengers and Tempol (4-hydroxy-2,2,6,6-
tetramethylpiperidine-1-oxyl), has shown a protective role
against ROS in in vivomodels (148). Preclinical studies showed a
radioprotective effect of systemic administration of Tempol (275
mg/kg) in C3H mice exposed to whole body irradiation without
any effect on tumor growth (162). The paramagnetic property of
the oxidized Tempol permits non-invasive Magnetic Resonance
Imaging (MRI) resulting in image contrast enhancement (40).
Thus, the concentration of its radioprotective state and site of
accumulation in tissue provides essential information about the
compound and the radiation treatment.

Pentoxifylline is a xanthine derivative agent which down-
regulates the production of pro-inflammatory cytokines,
particularly TNF-α, and inhibits platelet aggregation.
Pentoxifylline (400 mg/3 times daily), in patients with lung
and breast cancer receiving a daily dose of 2Gy, 5 days/week,
protects against both early and late lung toxicity (163). In
preclinical studies administration of pentoxifylline (500 mg/l),
1 week before irradiation in C57Bl/6 mice receiving whole
thorax irradiation (12Gy) reduces the RP phase (164). The
radioprotective effects are related to the increase in locoregional
blood flow. Pentoxifylline inhibits cAMP phosphodiesterase
causing a cascade of events reducing leukocyte adherence
to endothelial cells, minimized platelet aggregation and
dilatation of capillaries through enhanced prostacyclin synthesis.
Consequently, blood viscosity, and systemic vascular resistance
are reduced (165). High levels of cAMP reduce the release
of bioactive TNF-α by downregulating the expression of the
TNF-α gene.

Radiomitigators
Targeting inflammation represents an alternative approach
to reduce adverse effects during radiotherapy. In 18Gy
irradiated C57Bl/6 mice, intraperitoneal injection of methyl
prednisone, an immune suppressor (40 mg/kg a day), for 7
days reduces TGF-β1 and TNF-α in lung tissue at 9 weeks
after radiation exposure delaying the development of fibrosis

at 12 weeks after irradiation (166). Statins (HMG-co-reductase
inhibitors) ameliorate endothelial function by increasing the
concentration of endothelial nitric oxide synthase (eNOS),
which promotes anti-inflammatory signaling, prevents apoptosis,
increases vasodilatation, and reduces platelet adhesion (157).
Treatment with Ulinastatin for 3 days pre- and 4 days post-
irradiation in 20Gy irradiated Sprague Dawley rats attenuated
pulmonary injury compared to the control group which
developed severe fibrosis (167). Although the mechanism of
action of Ulinastatin is not fully understood, it caused the
downregulation of pro-inflammatory chemokines and alleviated
pulmonary edema and inflammation of the alveoli (168).
Lovastatin shows similar results. Statins have also been shown to
reduce O2 consumption, which could counteract the protective
effect of statins by reducing inflammation. In C57Bl/6 mice
exposed to a single dose, 15Gy whole thorax irradiation
Lovastatin reduced radiation-induced pneumonitis by exerting
anti-inflammatory, anti-apoptotic and antifibrotic effects (169).
A recent study shows how Ethyl Pyruvate (EP), an effective
inflammatory injury ameliorator, alleviates radiation injury
in C57Bl/6 mice exposed to whole lung irradiation (16Gy).
Intraperitoneal injection of EP once every day for 1 month
after RT was associated with a lower histological grade of
inflammation and reduced pro-inflammatory cytokines, IL-
1β, IL-6, and GM-CSF in irradiated mice. Furthermore, EP
suppresses the production of TGF-β1 showing anti-fibrotic
effects (54).

ACE (angiotensin-converting enzyme) inhibitors and
angiotensin-2 antagonists, normally used to regulate blood
pressure and prevent cardiovascular diseases, have been shown
to diminish radiation-induced tissue damage in preclinical
models. Robbins reviewed the use of the renin-angiotensin-
system agents (RAS agents) for mitigating late radiation effects
(144, 170). Angiotensin II Receptor Antagonist (AT2RA 158,
809) and the ACE inhibitors (Captopril and Enalapril) attenuate
the effects of radiation damage by targeting the oxidant,
inflammatory and fibrogenic pathways. Angiotensin II regulates
TGF-β and α-smooth muscle actin (SMA), two proteins with a
critical role in the pathogenesis of pulmonary fibrosis (171, 172).
Enalapril reduces vascular remodeling and decreases levels of
TGF-β (173). Supplementing RAS agents (ACEIs Captopril,
CL 24817, Enalapril, and CGS 13945) in irradiated Sprague
Dawley rats has been shown to reduce expression of endothelial
dysfunction markers (chemokine secretion and leukocyte
adherence, cell permeability, enhanced low-density lipoprotein
oxidation, platelet activation). The AT2RA 158,809, Captopril
and Enalapril, significantly delay radiation-induced lung injury.
The incidence of Grade > 2 pneumonitis was significantly
lower in 62 patients with stage I or III treated with ACEIs
during thoracic irradiation compared to 100 non-users (2 vs.
11%) (174).

Curcumin (diferuloylmethane), a natural compound
extracted from Curcuma longa, inhibits NSCLC metastasis by
blocking the Adiponectin/NF-κB/MMPs Signaling Pathway
(175), and reducing cell viability, invasion, and migration.
This was shown in the metastatic 95D NSCLC cell line (176).
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Curcumin attenuates radiation-induced lung inflammation and
fibrosis in 18Gy irradiated rats by exerting anti-inflammatory
effects, reducing macrophage infiltration and attenuating the
increase of alveolar septal thickness after radiation. Furthermore,
collagen accumulation, TGF-β content, and CTGF and NF-κB
expression levels were significant reduced in curcumin treated
rats (177).

Several growth factors act as radiation damage mitigators
when supplemented close to the time of irradiation. Among
these compounds Keratinocyte Growth Factor (KGF) is the
most common. KGF is a paracrine growth factor which
stimulates the proliferation and differentiation of alveolar
type 2 cell and protects the lung from radiation injury. Liu
et al. showed, in Sprague–Dawley rat models (20Gy), how
radiation-induced fibrosis is delayed after KGF administration,
stimulating cell proliferation, inhibiting inflammatory response
and decreasing lipid peroxidation as a direct result of ROS.
KGF also promotes alveolar fluid clearance, decreases lung
edema after pulmonary damage and reduces the reactive oxygen
species (161). KGF protects against increases in endothelium
permeability, decreasing lung edema driven by hydrogen
peroxide in human airway epithelial cells (178). Despite its
safety profile and efficacy in treating RILI, its instability, cost
and inability to enter the distal lung have limited its use.
Better results are reported with Palifermin a recombinant human
KGF which showed promising results in clinical trials where it
decreased the incidence and duration of dysphagia in patients
with an unresectable stage III NSCLC treated with concurrent
CT/RT (179).

Cell Based Therapies
Stem cell therapy has the potential to repair and restore tissue
function from the adverse effects of radiotherapy in multiple
tissues (180). However, there are limited preclinical studies and
no clinical experience yet that guide the optimal timing of
transplantation of stem cells and application to early or late
radiation toxicity in lung.

Bone marrow derived mesenchymal stem cells (MSCs) have
demonstrated great promise in regenerative medicine including
in the lung. Due to their anti-inflammatory properties and
enhanced repair capacity, MSCs are used for the treatment of
inflammatory diseases and COPD, resulting in improved lung
architecture, decreased apoptosis and increased cell proliferation
and could be a promising therapeutic approach to mitigate
radiation-induced pneumonitis. MSCs have been shown to
successfully migrate toward the injury site in the lung after
irradiation and adopt lung cell phenotypes (181, 182). In C57Bl/6
at 25 weeks after 15Gy whole thorax irradiation, MSC infusion
at 24 h and 14 days after RT protected the irradiated lung from
severe radiation-induced vascular endothelial cell (EC) damage
and delayed EC loss. Radiation-induced increase in infiltration
of myeloid cells was also significantly reduced in MSC-treated
animals at 25 weeks after whole thorax irradiation, which might
be due to the protection of lung EC. Furthermore, MSC-
derived cell culture efficiently rescued cultured lung EC from
the radiation-induced side effects in short-term and long-term

survival assays, indicating the protective contribution of MSC-
secreted factors. Administration of MSCs after RT restores SOD1
levels in irradiated murine lung tissue, likely contributing to their
protective effect. Improved vascular function and normalization
of immune cell infiltration, favors both prevention and recovery
from radiation injury to vascular and other resident lung cells.
However, further studies are required to better understand
the effects of MSCs on bronchial-alveolar and epithelial cells
in order to develop MSC based therapeutic strategies (183).
Adipose-derived mesenchymal stromal cells (Ad-MSCs) also
have significant potential for clinical application. The delivery of
Ad-MSC through the tail veins 2 h after irradiation (15Gy) in
Sprague-Dawley rats attenuates radiation-induced lung toxicity
by blocking inflammatory, apoptotic, and fibrotic responses.
Ad-MSc were associated with decreased serum IL-1, IL-6 and
TNF-α expression within the first 28 days after irradiation
and decreased fibrotic markers (TGF-β, CTGF, α-SMA, and
Col1a1). Hydroxyproline content was a direct index reflecting
lung fibrosis, suggesting that stem cell therapy delayed fibrosis.
Thus, Ad-MSCs have therapeutic potential in RILI management
as well (184).

Induced pluripotent stem cells (iPS) are a useful tool
in regenerative medicine (185). The pathways that play a
leading role during lung embryogenesis and morphogenesis
may also be involved in the regeneration of lung tissue after
injury (186). The murine lung developmental process has been
elucidated through technologically advanced techniques such
as whole transcriptome analysis (187, 188). Recapitulating the
sequence of the developmental stages during lung development
represents a promising approach to differentiate pluripotent
stem cells into lung lineages. The differentiation of induced
pluripotent stem cells into endodermal progenitors occurs
throughout the stimulation of the Nodal signaling pathway (189).
Consequently, the dual inhibition of TGF-β and BMP4 pathways
and the supplementation of WNT, RA, and BMP leads to
NKX2+progenitors, which further differentiate toward bronchial
(Sox2+) and alveolar (Sox9+) lung lineages (185, 190). This
process is known as “directed differentiation” and culminates
with NKX2+ progenitors, from which all lung epithelia derived.
These derived progenitors can re-populate decellularized whole
lung scaffolds (186). Furthermore, the generation of ESC from
patients with cystic fibrosis allows their use for lung pathologies
(191) although their clinical use has not yet been documented.
An understanding of the iPS mechanism of action and the
molecular mechanisms of lung repair may promote their use
in the irradiated lung to facilitate stem cells spreading over the
damaged tissue.

Although several cell biology studies are based on submerged
culture procedure, they are far from mimicking the in vivo lung
microenvironment. 3D models such as lung organoids are a
useful tool to answer several questions about lung regeneration.
Broncosphere culture assays have been performed using both
iPS and lung basal cells (192). Fluorescence-activated cell sorting
allows the isolation of P63, NGFR, K5 positive stem, and
progenitor lung epithelial cells that can be cultured in Matrigel
which provides a three-dimensional structure to study the
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mechanisms involved in basal cell renewal. The same model can
be used to investigate the mechanism of lung regeneration after
irradiation in an experimental condition closer to reality (193).
Three-dimensional scaffolds have been generated from synthetic
or biomimetic materials to develop ex vivo lung parenchyma and
vascular system and could be exploited for transplantation to
produce functioning lung tissue in animal models (194).

Translation From Preclinical Models
With the diversity of preclinical models and differential
sensitivity, breadth and penetrance of radiation-induced lung
toxicity, there is a need for a consensus on preclinical models
that best resemble aspects of human disease phenotypes
(195). Most models use single dose irradiation rather than
clinically relevant fractionated irradiation, and there are
significant strain-differences in the sensitivity to pneumonitis
and fibrosis (196, 197). Treatment toxicity should also be
measured in immune-tolerant orthotopic tumor bearing models
using clinically relevant combination-treatment schedules and
(surrogate) endpoints. Furthermore, the dose to other organs
at risk in the irradiation field such as the heart influence
pulmonary function and indirectly contribute to adverse effects
and should be appropriately modeled as well (198). In this
respect dose calculations on human tissues irradiation studies
with MeV beams cannot be directly translated to mouse
preclinical irradiation studies using KeV beams (199). The use
of preclinical micro-irradiators with integrated CT imaging are a
new tool to evaluate radiation-induced toxicity closer to clinical
irradiation set-up. These small animal iGRT systems enable
precision irradiation to lung subvolumes and demonstrate that
CT density correlates with histopathological factors of lung
remodeling (200, 201) although this may not be sensitive enough
to measure small reductions in lung remodeling when using anti-
fibrotics (202). These studies are important in parallel to the
development of treatment planning and delivery for orthotopic
lung tumor models (203) Standardization of these preclinical
irradiation platforms is crucial and guidelines have recently been
proposed (204).

CONCLUDING REMARKS

Modern precision radiotherapy techniques may reduce normal
tissue exposure to radiation, but many patients still experience
adverse effects. Radiation-induced toxicity is dependent on many
parameters, such as the tissue location, the functional status of
an organ, the dose and irradiated volume and other factors. In
most cancers, radiotherapy is combined with systemic treatment
concurrently or concomitantly, and in many cases, they sensitize
to radiation-induced lung injury or worsen pre-existing co-
morbidities. There is a high need for biomarkers that can
predict responders and select those patients that will only suffer
from side effects. In patients individual radiation sensitivity is a
quantitative and tissue-specific trait and large patient numbers
and standardized outcome measures are essential as well as
independent validation cohorts to identify QT-loci and the
inclusion of ‘real world’ data (205). While such studies provide
hypothesis for future mechanistic investigation it is not yet
evident how this can be translated into radiotherapy practice.
One potential application is that such ‘sensitive’ signatures may
be used for patient selection to receivemore precise but alsomore
expensive proton therapy while keeping the maximum dose to
the tumor (206). More research is therefore needed to understand
which preclinical models should be exploited to identify crucial
parameters that contribute to radiation toxicity and how these
can be used to inform the design of clinical studies were
radiation therapy is combined with other treatments to minimize
radiotherapy induced toxicity at optimal tumor control.
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