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FOREWORD

This report constitutes a part of the work completed during the year
1975-1976 on a research project entitled "Radiation-Induced Precursor
Flow Field Ahead of an Entry Body in the Outer Planetary Atmospheres."
The work was supported by the NASA-Langley Research Center through
Contract NAS1-11707-92. The contract was monitored by Mr. Randolph A.

Graves, Jr. of SSD-Aerothermodynamics Branch.
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RADIATION INDUCED PRECURSOR FLOW FIELD

AHEAD OF A JOVIAN ENTRY BODY

by
S. N. Tiwarf*and K. Y. Szema**
SUMMARY

The change in flow properties ahead of the bow shock of a Jovian entry
body, resulting from absorption of radiation from the shock layer, is inves-
tigated. Ultraviolet radiation is absorbed by the free stream gases, causing
dissociation, ionization, and an increase in enthalpy of flow ahead of the
shock wave. As a result of increased fluid enthalpy, the entire flow field
in the precursor region is perturbed. The variation in flow properties is
determined by employing the small perturbation technique of classical aero-
dynamics as well as the thin layer approximation for the preheating zone.

By employing physically realistic models for radiative transfer, solutioms
are obtained for velocity, pressure, density, temperature, and enthalpy
variations. The results indicate that the precursor flow effects, in gereral,
are greater at higher altitudes. Just ahead of the shock, however, the
effects are larger at lower altitudes. Pre-heating of the gas significantly
increases the static pressure and temperature ahead of the shock for velo-
cities exceeding 36 km/sec. The agreement between the small perturbation

and thin layer approximation results are found to be excellent.

*professor, 0ld Dominion University
**Research Assistant, 0ld Dominion University
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radiative strength of source, ergs [Eq. (3.13)]
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quantity defined in Eq. (3.19)

specific enthalpy, ergs/gm

quantity defined in Eqs. (3), (20)

total enthalpy per unit mass, ergs/gﬁ

total perturbation enthalphy [Eq. (2.12)]

specific irradiance of radiation of frequency Vv, erg/cm?
enthalpy of mixture [Eq. (5.5)], erg/gm

enthalpy of species &, cal/mole

specific perturbation enthalpy [Eq. (2.7d)]

Planck's constant = 6.6256 X 10?7 erg-sec

ionization energy, erg/mole

net rate of production of species H, gm/cm’-sec

net rate of production of species H,+, gm/ca’~sec

net rate of production of species a, gn/ca’-sec

free stream Mach number
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quantity defined in Eq. (2.23b)
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pressure perturbation

free stream pressure, dyne/cm?

divergence of net raﬁiant heat flux, erg/cm’-sec
specific radiative flux density at shock wave, erg/cm2
universal gas constant = 8.3143 x 10’ erg/mole-°K
radius of the radiating gas cap, cm

radius of the bow shock wave, cm

cylindrical radial coordinate, cm

spherical radial coordinate, cm

tempcrature, °K

temperature at the shock front, °K

free-stream temperature, °K

first-order temperature perturbation, °K
second-order temperature perturbation, °K
velocity vector, cm/sec

first-order velocity perturbation, cm/sec

second-order velocity perturbation, cm/sec

velocity component normal to the shock surface, cm/sec
free-stream velocity, cm/sec

velocity perturbation component at the r-direction in cylindrical
coordinate, cm/sec

velocity perturbation component at the x-direction, cm/sec

velocity perturbation component at the y-direction, cm/sec

velocity perturbation component at the z-direction, cm/sec

molecular weight, gm/mole

photodissociation yield

photoionization yield
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altitude of entry, km (Table 5.1)
longitudinal coordinate, cm
quantity defined in Eq. (4.5)
quantity defined in Eq. (2.23a)
specific heat ratio

effective emissivity

optical depth defined in Eq. (3.3)
quantity defined in Eq. (3.14)
inverse of photon mean free path, l/cm
quantity defined in Eq. (3.14)
quantity defined in Eq. (3.14)
density, g/cm®

first-order density perturbation

Stefan-Boltzmann constant = 5.6697 X 10 ° erglcmz-sec-°K“
photodissociation absorption cross section, cm?
photoionization absorption cross section, cm?

potential function defined in Eq. (2.27)

potential function defined in Eq. (2.13)

quantity defined in Eq. (4.5)




1. INTRODUCTION

The word "precursor" gets its name from a Latin word "praecursor"”
(prae = before + currere = run) which means "forerunner." 1n the present
context,‘ precursor region flow (or flow in the precursor zone) means flow
field ahead of a shock layer which is influenced by the conditions of the
shock layer. It is well understood now that at high speed entry conditions
(entry speeds in excess of parabolic speed), radiation plays a very important
role in the analyses of flow phenomena around the body and that the radiative
energy transferred to the body usually overtakes the aerodynamic heat transfer
[1-10].*# Radiative energy transfer from the shock layer of a blunt body into
the free stream reduces the total enthalpy of the shock layer while increasing
the enthalpy of the frée stream gases. Because of this increase in enthalpy
the entire flow field ahead of the shock layer and around the body is influ-
enced significantly. The precursor flow region is considered to be the region
ahead of a shock wave in which the flow field parameters have been changed from
free stream conditions due to absorption of radiation from the incandescent
shock layer. Most of the radiative energy transferred from the shock layer
into the cold region ahead of the shock is lost to infinity unless it is equal
to or greater than the energy required for dissociation of the cold gas. When
the photon energy is greater than the dissociation energy, it 1s strongly ab-
sorbed by the cold gas in the ultraviolet continuum range. The absorbed energy
dissociates and ionizes the gas and this results in change of flow properties
in the precursor region. In particular, the temperature and pressure of the
gas is increased while velocity is decreased. The change in flow properties
of the precursor region, in turn, influences the flow characteristics within
the shock layer itself. The problem, therefore, becomes a coupled one and

iterative methods are required for its solution.

#Numbers in brackets indicate references.
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Only a limited number of analyses on radiation-induced precursor flow are
available in the literature. Works available until 1968 are discussed, in
detail, by Smith [11,12]. By employing the linearized theory of aerodynamics,
Smith [11,12] investigated the flow in the precursor region of a reentry body
in the earth's atmosphere. The cases of plane, spherical, and cylindrical
point sources were considered and solutions were obtained for a range of alti-
tudes and free stream conditions. It was found that for velocities exceeding
18 km/sec, precursor flow effects are greatest at altitudes between 30 and 46 km.
It was further concluded that preheating of air may cause an order of magnitude
increase in the static pressure and temperature ahead of the shock wave for
velocities exceeding 15 km/sec. Lasher and Wilson [13,14] investigated the
level of precursor absorption and its resultant effect on surface radiation
heating for earth's entry conditions. They concluded that, for velocities less
than 18 km/sec, precursor heating effects are rzlatively unimportant in deter-
mining the radiative flux reaching the surface. At velocities greater than
18 km/sec, the amount of energy loss from the shock layer and resultant pre-
cursor heating correction was found to be significantly large. Liu [15,16] also
investigated the influence of upstream absorption by cold air on the stagnation
region shock layer radiation. The thin layer approximation was applied to both
the shock layer and the preheating zone (the precursor region). The problem
was formulated for the inviscid flow over smooth blunt bodies but the detailed
calculations were carried out only for the stagnation region. The general
results were compared with results of two approximate formulations. The first
approximate formulation neglects the upstream influence and the second one
essentially uses the iterative procedure described by Lasher and Wilson [13,14].
The results are compared for different values of a radiation/convection para-

meter. A few other works, related to the effects of upstream absorption by air




on the shock layer radiation, are discussed by Liv [15,16]. Some works on
precursor ionization for air as well as hydrcgen~he .ium atmosphere are pre-
sented in [17-21].

The purpose of this study is to investigate the changes in flow properties
in the preheating zone of a Jovian entry body resulting from absorption of the
radiation from the shock layer. As a first approach, the perturbation tech-
nique adapted by Smith [11,12] for the earth's atmosphere is used here for the
hydrogen-helium atmosphere. By introducing appropriate thermodynamic and
spectral information on hydrogen-helium atmosphere, proper modifications are
made in the governing equations and results are obtained for Jupiter's entry
conditions. Basic formulation of the problem is presented in Sec. 2 and solu-
tions for special cases are obtained in Sec. 3. Perturbation equations are
specialized for the photoabsorption model in Sec. 4, sources of data and solu-
tion procedures are discussed in Sec. 5, and results of flow perturbations are
presented in Sec. 6. Finally, in Sec. 7, an alternate approach of thin pre-
cursor region approximation is adopted for analysis of the entire problem and

the results are compared with the results of small perturbation theory.
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2. BASIC FORMULATION

The physical model and coordinate system for a Jovian entry body is shown
in Fig. 2.1. The flow field ahead of the body can be divided primarily into
two regions, the precursor region and the shock layer. In this study, attention
is directed to the precursor region where flow is assumed to be steady and invis-
cid. The flow properties are considered to be uniform at large distances from

the body. For this region, conservation equations can be written as [22-24]

Mass Continuity: 7 (V) =0 (2.1)

Momentum: p(V « W) = -Vp (2.2)

Energy: p(V -« VH) = Q (2.3)

Species Continuity: p(V - VCG) = Ka (2.4)

State: p = PRTY, (€, /W) (2.5)
a

where the =~tal enthalpy per unit mass is given by

H. = H + V¥/2

T (2.6)

In the above equations, QR = V-qR is the net rate of radiant energy absorbed
per unit volume per unit time, KQ represents the net rate of production of
species & per unit volume per unit time, and WQ is the molecular weight of
species o .

As a result of increased fluid enthalpy, the entire flow field in the
precursor reglion is perturbed. By following the small perturbation technique

of classical aerodynamics, the flow properties can be expressed in perturbation

serie= as [11,12,22,23]
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Physical model and coordinate system
for a Jovian entry body.
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P =, (L+p +p,+ ) (2.7a)
P =P (L+p +py+ ) (2.7b)
Vv (e + 7 +7,+ 1) (2.7¢)
H=H, +Vi(H +H +...) (2.7d)
T=T,+T) +T, + ... (2.7e)
Cy = caw + Cal + Caz + ... (2.76)

In these equations, all the perturbation variables (except temperature)
are expressed in nondimensional form. The unit vector k represents the
direction of unperturbed free-stream velocity.

If QR and Ka can be considered as first-order perturbation terms,
then substitution of Eqs. (2.7) into Eqs. (2.1)-(2.6) results in the first-

order perturbation equations as

Continuity: 7 . ?1 + apllaz = (2.8)
Momentum: 851/82 2 -(l/YM;)Vp (2.9)
Energy: BHTl/az = Qp/(p, v2) (2.10)
Species: acal/az =K,/ (p, V) (2.11)
HTl = Hl + Vlz (2.12)

The boundary conditions are that perturbation quantities vanish at z + «

and that no singularities exist except at the origin.

10



I L R A 2

v cw e e e e e e e . SRS e SR L 4

It can be shown that the flow under consideration is irrotatiomal [11,22].

Thus, there exists a potential ¢ such that

Vl = Vo (2.13)

For z-direction, integration of Eq. (2.9) results in
Py = ~(MD) 3¢/dz = ~(MDV, (2.14)
Equation (2.8) now can be expressed as
V¢ + 3p,/3z = 0 (2.15)

In order to evaluate 391/82 and to relate Hl to other variables, it is
necessary to consider the gas model and radiation.

For the Jupiter's atmosphere, the gas model is taken to be: C,, = 89%

Hy

and C = 117 by mole fraction (or CH2 = 80.82% and CH2 = 19.187 by mass

He
fraction). The radiation effect on the gas ahead of the shock produces H; ,
H, and electrons e~ by photodissociation and photoionization, and also
increases the enthalpy. Any other species which may be produced are neglected.
The contribution of radiation to the gus pressure is neglected. It is further
assumed that the internal degrees of freedom of various species (i.e., vibra-

tional and electronic modes) are not excited. For this gas model, the equation

of state (for the first order perturbation) can be expressed as
P = (400/180.17)[(CH + CH2+)/2] + (Tl/Tm) + P1 (2.16)

By following the procedure described by Smith [11,12], the first-order
perturbation relation for enthalpy is found to be

2
o, = /v {1527 &rp + [s/0me, + 1/2)e,

-

+ [rorr, + n]ca} (2.17)

11
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where 1 and D represent the ionization and dissociation energy respectively.

It should be pointed out here that D in the above equation actually represents
half the energy required for dissociation.

As pointed out earlier, the upstream gas absorbs the energy radiated from
the shock layer in the ultraviolet continuum range. The radiation from the
perturbed gas due to recombination (i.e., emission) is neglected. The amount
of radiative energy absorbed by the perturbed gas per unit volume and time,

QR » 1s given by

Qg = Nsz‘; H, o(v)dv (2.18)

where NHZ is the number density of H,, H, 1is specific irradiance and (V)
is the photon absorption cross section of HZ at frequency v.

In determining the rate of production of species in the precursor region,
only photodissociation and photoionization are considered. Recombination is
assumed to be a second-order effect and, therefore, is neglected in the present

linearized treatment. The net rate of production of species, therefore, is

given by [11,24]

Ky = o, NHZJ:O (H,/hv) op(v)dv (2.19a)

o

KH2+ =m NHZ o (H,/hv) o (v)dv (2.19b)
vhere m; represents the weight of a H, molecule (in grams per molecule),
and op(v) and oy(v) are the absorption cross section for photodissociation
and photoionization, respectively.
Since the problem treated here is linear, it is permissible to obtain a
solution for arbitrary frequency, and then integrate this solution over tne

spectrum to obtain the solution for the problem. Thus, in the development that

12
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follows, flow-field perturbations will be considered for a unit frequency

interval. Equations (2.10) and (2.11) now can be written as

3HT1/82 = NHZ a(v)/(p, Vg) H, (2.20)
3, /oz = [m, Ny Yp 9O/ (o, Y, hv) JH, (2.21a)
2y 192 =[Ny Y oW/ G0, av)] 8, (2.21b)

where YD and Y represent photodissociation and photoionization ylelds,

I
respectively.

In order to express the governing equations in terms of perturbation
potential, p; 1s first eliminated by combining Eqs. (2.14) and (2.16). The

resulting equation is then differentiated with respect to 2z and use is made

of Eqs. (2.21). Next Eqs. (2.12,2.13,2.17,and 2.20) are combined to give

apllaz [ 3°¢/9z Pv Hv (2.22)
where

I =0.727 y M} (2.23a)

Pv =a, + bv/hv (2.23b)

a = NHZ o) /(p, V,, H)) (2.24a)

b, = -(am /2)[(1 - 0.89 RT)Y, + (2D - 1.89 RT_)Y, ] (2.24b)

Upon combining Eqs. (2.15) and (2.22), the governing equation for the flow is

obtained as

2 _ 2 2
Vi 0 - T 3%/32% = B M (2.25)

13
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For axisymmetric case, this is expressed as

r~! 3/3r (rdp/dr) - T 3%¢/3z22 = B, H, (2.26)

Equations (2.25) and (2.26) are seen to be the classical potential
equations for compressible flow with a forcing term proportional to radiation
added. It should be pointed out that the form of Eq. (2.25) and (2.26)
will be retained for any linearized gas model, although the expression for
P, will depend on the gas model used. The potential for the flow induced
by a radiant source with a spectral distribution is obtained by integrating

the contributions of each frequency as

o=f" ¢ av (2.27)

14



3. SOLUTIONS FOR SPECIAL CASES

As discussed by Smith [11,12], solutions of the governing equationms,
presented in the previous section, can be obtained in special cases depending
on the model used for the distribution of spatial radiation. If the radius of
the radiating gas cap, R,, is large compared to the photon mean free path,
then the problem can be treated like radiation from a plane source. On the
other hand, when the radius of the radiating gas cap is small, then the
problem can be treated like a spherical point source for radiation from the
gas cap and a cylindrical point source for radiation from the wake. Note that,
in general, R, may not be the same as the radius of the bow shock, Rg.

3.1 Radiation from a Plane Source

For radiation from a plane source, it is essential to integrate the Hv
contribution over the plane, as attenuated by passage through the absorbing

medium. The relation for H,, , in this case, is given by [24]
Hv = qu(O) Ez(-sz) (3.1)

where q,(0) 1is the spectral radiative flux density at the shock wave, Ky
is the spectral absorption coefficient, and En(t) is the exponential integral
of order n . The expression for Ky (which may also be interpreted as
inverse of the photon mean free path) is given by

Ky = NH o(v) (3.2)

2

In this form «,, represents the absorption coefficient of Hz molecules. 1If
the number density NHZ (and hence KV) can be taken to be independent of z
(which is a good approximation for small ionization and dissociation), then the

optical depth is defined by

15
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For the plane radiating source (where Vé,y ¢ = 0), therefore, a combination

of Eqs. (2.25,3.1-3.3) results in

2 2 .
-3%¢/ag [2 P, q,(0)/(T Ks)]EZ(—C) (3.4)

Integration of this yields the result
= -' 2 -
¢ {2 P, qv(o)/(rKv)]Ea( %) (3.5)

where the boundary condition of (3¢/3Z) - 0 as ¢ + -= has been used.
From Eq. (2.13), the velocity perturbations, ahead of the shock front, now

can be written as
ly 0 (3.6)
v, = =[2 B, q,(0)/(Tk ) IE4(-2) (3.7)
From Eq. (2.14), the expression for pressure perturbation is found to be
Py = [2 ¥ P, q,(0)/x} (:2/TYEL(-D) (3.8a)

For high speed entry, M: >> 1 and (Mi/F) A 1. Thus, Eq. (3.8a) can be

approximated by
Py = [2 Y B, q,(0)/x,]E4(=0) (3.8b)

The expression for density perturbation is obtained by combining Eqs. (2.15) and

(3.4) and integrating the resulting expression such that
py = f22 qv(O)/(TKv)IC3(-C) (3.9)
By combining Eqs. (2.20,3.1-3.3), one obtains

auTl/ac = (2 q,(0)/(p,, V3) IE5(-2)

16
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Intcgration of this over the plane of the shock wave gives the result for the

total enthalpy as
= i 3
HTl (2 q,,(0)/(p, VN)JE3(-C) (3.10)

By employing Eqs. (2.12,3.7, and 3.10), the expression for the static enthalpy

is found to be
H) = 29,00 {[1/(o, V)] + B/ (Tk )| E5(=0) (3.11)
The concentrations of H and H; are given by integration of Eqs. (2.21) as

cy = [2 wH2 m/ (0 Voo BV 1Y) (V) g (0)E,(~0) (3.12a)

CH2+ = [2 Wﬁz m /(P VY V)Y (V) q,,(0)E4(-Z) (3.12b)

By employing £qs. (3.8,3.92, and 3.12), Eq. (2.16) is solved for the temperature
variation. For this case now all the flow properties at any point upstream of

the shock can be determined.

3.2 Radiation from Spherical and Cylindrical Point Sources

The physical model for radiation from spherical and cylindrical point
sources is shown in Fig. 3.1. A spherical point source is a source which
radiates equally in all directions. A cylindrical point source is a source
which radiates as a cylinder of infinitesimal radius and length. For both

cases, the incident radiation at any field point s is given by [11,12]
Hv = (Av/sz) exp(-Kvs)(sin e)j (3.13)

In this equation, Av represents the radiative strength of the source, s is
the distance from the source,and 6 1s the angle between the free stream

velocity vector aud a line from the field point to the center of the source.

17
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The superscript j = 0 for a spherical point source and 1 for a cylin-
drical point source.

Equation (3.13) can be substituted in Eqs. (2.25) and (2.26) to obtain
the corresponding equations for the perturbation potential. Within the con-
fines of the assumptions made in obtaining Eq. (3.13), however, both problems
(spherical as well as cylindrical point source) can be considered to be
axisymmetric. The governing equation for the perturbation potential, there-

fore, can be written as

n™! 3/3n (nd¢'/an) - T 3%'/3z% = A y~2 e (sin 6) (3.14)
where

= = ' = = =
W= K S, n=Kr, ¢ Kv¢, A= A(V) Ky Pv Av

A procedure for general solution of this equation is suggested by
Smith [1l1]. For entry flows, however, Mi >> 1 and Eq. (3.14) can be solved
by expanding ¢' in a series in (1/T') in the vicinity of the body. Thus,

one can express ¢' as

o = ~0c,/D[F G + /D @

(Do + /)2 F ,n) + ...] (3.15)

3 J 3

where Fj’s are functions for perturbation potential. Substitution of this

relation into Eq. (3.14) gives

3P, /307 = uF expl-i) (sin oy (3.16)
and

azyj(“)/acz = -n"! 3/3n(n arj(“'l)/an) (3.17)

The problem, therefore, is reduced to quadratures in the vicinity of the
body. In the present analysis only the term in (1/T') will be retained. By

integrating Eq. (3.16) twice the expression for Fj is obtained as
= -2 - 1 j T - T -
Fyeom = St exptou)) (7t (3 - g ez (3.18)
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where ug - ﬂz + C: . For convenience, let us denote

4
6, (T = 3F, /00 = u* expC-u) (i ag

-0

':ij(c.n) = BFjIBn -j:: u;’ exp(-\-lo){(n/u)j [n +

(3.20)

(/) 2 + 1 = 11E = ¢ )dg
With these definitions of Fj , Gj , and Hj » the perturbation quantities

can be expressed as

¢! = -(M/TIF,(E,M) (3.21)
vip = (W/DH ) (3.22)
v, = ~(MDG,(z,n) (3.23)
Py = YAG,(5,m) (3.24)
P (A/I‘)Gj(c.n) (3.25)
H’l = (ky A,/0, V)6 (5,N) (3.26)
Cy = (@ A k2/p, YV, hV)Yp(V) G, (z,n) {3.27a)
cH2+ = (m) A, K3/0, Vg WY (V) Gy (5,n) (3.27b)

Note that for the case of spherically radiating point source j = 1 1in the
above equations. Also, these equations are obtained for arbitrary frequency.
The expression for total potential, for this case, can be obtained by combining

Eqs. (2.27) and (3.15) as

RNVl AN CIOVENERNOLY (3.28)
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Furthermore, it should be noted that the above solutions are valid in the
region where (™% exp(~u) (sin 6)j] does not vanish. This is the case

of spherically symmetric flow ahead of the entry body and is of primary
concern in the present study. Other cases involving cylindrical point source

are discussed in ([11,12].

3.3 Solutions for the Transition Range (ARc = 0(1))

As mentioned earlier, for Kch << 1, the axisymmetric solutions for
the spherically and cylindrically radiating point source are valid and for
Kch >> 1, the one-dimensional equations apply. The solutions for the spheri-
cally raciating point source apprcach one-dimensional soluticns as K Re »> @ .
Thus, spherically radiating point source solutions are valid for the precursor
flow ahead of a blunt body with kR, >> 1 and KR, << 1 . Since the
KyRe = 0(1) range lies between these two limits, the spherically radiating
point source analysis could be applied (to a good approximation) also in

the transitional range.
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4. PERTURBATION EQUATIONS FOR PHOTOABSORPTION MODEL

In order to obtain specific results for the perturbed quantities, it
is essential to have a realistic model for the spectral absorption coefficient

of the absorbing gas. The photoabsorption model employed in this study is

discussed in this section and the governing perturbation equations are expressed

in special form for this model.

4.1 Photoabsorption Model

Pl.otoionization absorption coefficient is a continuous non-zero function
of photon energy (because of bound-free transition) for all values of photon
energy that exceed the ionization potential of the atom. Similar remarks
apply to the photodissociation and radiative recombination. A critical
review of ultraviolet photoabsorption cross sectics for molecules of astro-
physical and aeronomic interest, available in the literature up to i"71l, is
given by Hudson [25]. Specific information on photoionization and absorption
coefficient of molecular hydrogen is available in [25-31].

Photoionization and absorption cross sectivas of Hy; , as obtained from
references [25-31], are plotted in Fig. 4.1. From this figure it is evident
that the ionization continuum starts at about 804 A and continues towards
lower wave lengths. Between the wave lengths of 600 R and 804 3, the absorp-
tion cross section for ionization continuum are included in the total absorp-
tion (i.e., absorption due to ionization as well as dissociation). For wave-
lengths below 600 Z, however, the ionization continuum absorption is equal to
the total absorption. The total absorption cross section for continuum range
below 304 Z can be closely approximated by the two rectangles (I and II)

shown in the figure with broken lines. The ratio of ionization cross section
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Figure 4.1. Absorption cross section of H2 in ultraviolet region.
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to the total absorption cross-section (i.e., the value of YI) is taken to

be unity for rectangle I and 0.875 for rectangle II. For wavelength greater
than 804 R (where hv is below ionization energy), the value of YI is taken
to be zero. Little information is available in the literature on the absorp-
tion cross-section for dissociation of H, molecules. There is strong evi-
dence, however, that photodissociation starts at about 2600 A and continues
towards lower wavelengths to about 750 A [26~28]. There are also a few
diffuse bands in this spectral range [26,28]. Thus, it becomes difficult

to evaluate the absorption cross section in this spectral range. For this
study, the absorption cross section in the spectral range between 804 A and
2600 R was approximated by the rectangle III. The specific values of 0(V)
for the three rectangles are found to be GI(V) = 4.1 E-18, OII(V) = 8.2 E-18,

and 0Oppp(v) = 2.1 E-18. The value of Y, is taken to be zero for rectangle I

D
and 0.125 for rectangle II.

4.2 Precursor Equations for the Photoabsorption Model

In accordance with the photoabsorption model assumed in the previous
subsection, quantities o(v), A, Yy and YD are taken to be constant within a
given frequency range. Thus, these quantities are assumed to have constant
(but different) values for rectangles I, II, and III in Fig. 4.1. It is
further assumed that the gas cap radiates as a gray body and the effective

emissivity of the gas cap is given by
€ = q(0)/(o T;) (4.1)

where q(0) 1is the radiative flux density from the shock layer and Ts is the
shock temperature.

The spectral radiative flux at the shock front is given by the relation

9,(0) =& 7 B (T) (4.2)

L
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In this equation, Bv(Ts) represents the Planck function which is given by
. B,(D) = (20/e?) (kT/)*{v*/ [exp(v) - 11 (4.3)

where v = hv/kT .

; It now remains to obtain the relation for Av in Eq. (3.13). By noting

that at the shock front H = qv(O) and s = Rc » a rearrangement of

Eq. (3.13) gives
A, = 9,0 R, exp(K,R.) | (4.4)

With the above information, final relations for the total perturbation
quantities now can be obtained. For spherically radiating case, the perturba-

tion quantities can be expressed by an equation of the form [11,12]

v =87 AW G, (Z,Mdv (4.5)

where y represents Vlz ’ p1 , OT Dl , and B represents the factor ahead

of the integral. The radial component of the velocity perturbation takes

Y

this same form but Gj is replaced by H By employing the definition of

j L]
A(v) , and combining Eqs. (2.24) and (4.5) results in

Lot

P = BRéj; K"J[a\) + (b\)/h\))] exp(K\)Rc) q\)(o) Gj cv (4.6)

Since a, » bv , and K, are assumed to be constant over sections of the

wavelength range, Eq. (4.6) can be evpressed as
n

2
Y = BRc igi Ky exp(Ki RC) GJ(Kiz, Kir) x

\Y \Y)

{o, S 2 g+ b m S 2 (g 0 viav) -7
\Y]
1i

v
11
The two integrals in the above equation are evaluated by using Egqs. (4.2) and

25
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(4.3). The first one can be written as

v v
S n q, (v = € T2h/c) (k1w [ [vi/(e” - 1) lav (4.8)
V11 V11
By employing the definition of O and denoting

N (V) =j;°° (vP/(e” - 1)}dv (4.9) \
Eq. (4.8) can be expressed as
Vai
4
J e, = asimy e o1 iny0vy ) - Ny(vy,)] (4.10)

V11

Similarly, the second integral in Eq. (4.7) can be expressed as
Vg,

ﬁl
j:)li [q\)(O)/V]d\) = (15/1*) € o T; (h/kTs) [NZ(vli) - NZ(VZi)] (4.11)

Substitution of Eqs. (4.10 and (4.11) into Eq. (4.7) gives the final relation
for ¢ from which the perturbation quantities can be determined. The

quantities HTl » Cyq » Cy,* have the form of Eq. (4.7) with the «y which

2
appears ahead of the exp(kyR.) squared.
In order to write specific relations for the perturbation quantities,

it would be convenient to define

B, = (15/7") [q(0)/T] (4.12a) }
B, = (15/7*) Y q(0) (4.12b)
By = (15/7*) [a(0)/(p, V2)] (4.12¢)
B, = (15/7*) [q(0) m,/(p, V)] (4.12d)
1(vP) -fv:ii {VP/lexp(v) - 1]} av (4.13)
B(a;,b,) = a; I(v)) + (b /kT ) I(v}) (4.14)
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For the spherically radiating case, the perturbation quantities now can

be expressed as

Vg~ B Rz 121::1 K, exp(k, R)) Gj(c,n) B(a,,b,) (4.15)
Vie =8 Ri 122“,1 Ky exp(k; R) H, (g,n) B(ay,b,) (4.16)
Py = ~(B,/B)V,, (4.17)
Py = -Vy, (4.18)
n
H) = 8, R 12-:1 <] exp(c R ) G (Z,n) 1(v)) (4.19)
Cy = B, Ré 1‘{:1 YDi K; exp(k; R.) 'cj(c,n) 1(v§) (4.20)
cH2+ =8, Rf: ig YIi x; exp(k; R) cj(r,,n) I(vi) (4.21)
Ty =T, [py -~ P ~ (200/180.17)(011‘2+ +Cyl . (4.22)

For the plane radiating source, the perturbation quantities can be

written as

n
vy, = -28, i):_',l k7' Ey(-e;) Bla,,b) (4.23)
n
H) = 28, 15:‘,1 Eq(=Z,) (4.24)
n
Cy = 28, 12;1 Ybi Ey(-2;) (kT)™! 1(v3) (4.25)
n
e ™ 28, 15:‘,1 Y, B3y (kT)™! 1(v) (4.26)

The expressions for Py » °q and T1 in this case are the same as for the
spherically radiating source but care should be taken in using the right
relations for Vip o CH2+ and Cy - |

Depending on the order of optical thickness, either spherical or plane

radiating source relations are employed in actual calculations of the per-

turbation quantities. 27
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5. DATA SOURCE AND SOLUTION PROCEDURE

Jupiter's atmospheric conditions, as obtained from reference [32],
are shown in Fig. 5.1 for different altitudes. The temperature of the atmo-
sphere (i.e., T,) is taken to be constant at 145°K and the enthalpy is given
by H, = 1.527 R Tm . The entry velocity range considered are between
28-45 km/sec. The value of R, = 25 cm was assumed for this study. The

number density of H2 can be computed by using the relation

NHZ = (7.2431172 x 13%%) (Pm/w:w>x32 (5.1

where Xy, is the mole fraction of H, and P, has units of N/m® .
Free stream and shock conditions used in this study are listed in
Table 5.1. Shock temperature and q(0)-values were calculated by employing
the computational procedure developed by Sutton [4] and Moss [9]. Since
viscous effects are pronounced primarily in the vicinity of the body, only
inviscid shock layer formulations were considered in calculating Ts and
q(0). Further details on shock layer solutions and effects of shock precursor
heating on radiative flux to the body are given in a separate report [33].
Before evaluating actual values of the perturbation quantities, it was
considered necessary to investigate the range of different intervening para-
meters of the governing equations. The values of the inverse mean free path

R,. were calculated for the Jovian

(i.e., k= 0(Vv) NHZ) and the product K, R,

\V
entry conditions and these are shown in Fig. 5.2 for the three different
values of the photoabsorption cross section of Fig. 4.1. From this figure it
is evident that the product (Kv Rc) >> 1 1in most cases of interest for the

Jovian entry. Thus, one could employ only the plane radiating source formula-

tions for determining the perturbation quantities in the precuvrsor region.
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Table 5.1 Free-stream and shock conditions
for Jovian entry.

Free stream v, km/sec T, » °K q(0) ', erg/cm?

38 16,610 1.35 E12
Z =95, knm

i 35 15,400 7.75 El11

P = 1.29 E-3, kg/m®

32 14,080 3.52 E11
P_ = 673, N/m’

30 13,550 2.01 E11

40 16,890 1.16 El11
Z = 103

35 15,040 4.70 E11
Py = 8.56 E-4 .

33 14,250 3.28 E11
P, = 448

30 12,810 1.142 E11

45 18,227 1.09 E12
z = 116

39.09 15,886 4.76 E11
P, = 4.65 E~4

35 14,480 2.18 El11
P = 244

30 12,480 4$.87 E10

43.21 16,390 3.86 EI1
Zz = 131

38 15,210 1.61 E11
P, = 2.32 E-4

35 13,880 8.72 E10
P, = 122

30 12,030 1.90 E10

42 15,050 9.60 E10
Z =150

40 14,520 6.96 E10
Pp ™ 9.29 E-5

35 13,140 2.57 E10
Peo = 49

30 11,600 6.20 E9
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Figure 5.2. Inverse mean free path and (2R;) as a function of altitude for the
three regions of photoabsorption model.




Values of the 1ﬁtermediate functions a,, and bv (defined by Eq. (2.24))
were calculated for the photoabsorption model at different altitudes. Since
T, 18 taken to be constant, the values of functions (av v.)) and (bv Vo)
were found to be constant for all altitudes. Another intermediate function,
A(v), 1s defined in Eqs. (3.14) and (4.5). For Ky Rc >> 1 , the expression
for A(V) can be written as
Av)) = (15/7*) q(0)/k,; E,(0) B(a,b,) (5.2)
The values of A(vy) were calculated for the three spectral range of the
photoabsorption model and the results are illustrated in Fig. 5.3. For any
altitude, the value of this function increases with increasing entry velocity.
The set of Eqs.(4.15)-(4.22) for spherically radiating source and
Eqs. (4.23)-(4.26) for plane radiating source can be solved numerically to
obtain the perturbation quantities. As mentioned earlier, for Jovian entry
conditions, it is necessary to solve only the set of equations belonging to
the plane radiating source case.
For multicomponent systems, it is physically realistic (and a general
practice) to define the total enthalpy of the gas entering the shock layer
by the relation
Hy = H  + vi/2 (5.3)
In this equation, V represents the local fluid velocity, and Hy is
referred to as the absolute enthalpy and is equal to the sum of sensible
enthalpy and chemical energy at 0°K [34,35]. In terms of the perturbation

velocity, the local fluid velocity is given by

Vs Vw (1 ~ le) (5.4)

For a multicomponent system, the expression for Hy, 1s given by

Ho - 2: ca 30 (5.5)

a 8
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where cQ is the mass fraction of species o . For any species
relation for Ho is given by [34,35]
: o
- 2 3
Hoa R‘I’[a1 + (aZ/Z)T + (a3/3)T + (34/4)T

+ (aS/S)T“ + a6/T]

where R 1s the universal gas constant (= 1.98726 cal/mole - °K)
T 1is the local fluid temperature in °K. For different species,
constants aj, aj,...ag are given in [35], and for species under
investigation they are listed in Table 5.2.

It should be noted that values of Hy can be calculated by
or neglecting the precursor effects. When precursor effects are
then HT is defined by

H, = (H + v2/2

T Pee = Bolpr

For the case with no precursor effects, HT is given by

Iy = (e = (Hype * Va2

It should be emphasized lere that, for the case with no precursor

the temperature in Eq. (5.6) is the free-stream temperature T_ .

a , the

(5.6)
and
values of

present

considering

considered,

5.7)

(5.8)

effects,

The per cent difference in the total enthalpy with and without the

precursor effects can be expressed by

X =PD = {[(HT)PE - (HT)NPE]/(HT)NPE} x 100

It should be noted that an appropriate value of HT is needed to

(5.9)

determine

R e e s L

o e LR T e SR e

the conditions inside the bow shock by employing the Rankine-Hugoniot relations.
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Table 5.2. Temperature coefficients for thermodynamic functions for hydrogen species.
Coefficients
Substance | Temperature
Interval, °K a, a, ay a, ag ag

1000 < T < 5000 | 3.0436897 6.1187110E-4 -7.3993551E-9 -2.0331907E-11 2.459379E-15 | ~8.5491002E2

H
2 300 < T < 1000 | 2.8460849 4.1932116E-3 | -9.6119332E-6 9.5122662E-9 |-3.309342E-12 | -9.6725372E2
+ 1000 < T < 5000 | 3.3287156 2.5050678E~4 1.4224521E-7 {-4.4590247E-11 | 3,733756E-15{ 1.7997470E5

H
2 300 < T <1000} 2.817375 3.657610E-~3 ~7.9655480E-6 8.2614000E-9 |-3.090228E-12 1.8002739E5
1000 < T <-5000 | 2.500 0 0 0 0 2.5470497E4

H
300 < T < 1000 | 2.500 0 0 0 0 2.5470497E4




! 6. PERTURBATION RESULTS
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The flow perturbation quantities Vlz » P » CH > CH2+ , Tl » and HTl

were calculated numerically and the results are illustrated in Figs. 6.1 -

6.12. In Figs. 6.1 - 6.6, perturbation quantities are shown as a function of

- distance from the shock for different altitudes and a constant entry velocity

of 35 km/sec. The first set of curves (Figs. 6.la - 6.6a) are plotted against

the nondimensional distance z/Rc , while the second set (Figs. 6.1b-6.6b) are

plotted as a function of the physical distance z from the shock. In Figs.

6.7 - 6.12, the perturbation quantities (just ahead of the bow shock) are

; illustrated as a function of the free-stream velocities. Since p; = -V, ,

separate results were not illustrated for the density perturbation. From these

figures it is evident that the magnitude of perturbation quantities, in general,

depend on the distance from the shock, altitude of entry, and entry speeds. -

Figures 6.1 - 6.6 show that at a fixed entry velocity, the perturbation

SRR AR .

effects are greater for lower altitudes and at locations just ahead of the
shock. This, however, would be expected because the number densities of parti-
cipating species are greater at lower altitudes and at these altitudes most
radiative energy from the shock gets absorbed in the immediate vicinity of the
shock front. At higher altitudes, perturbation effects are significant to a

larger distance from the shock front. This is because, at these altitudes, the

number densities of participating species are small and radiation effects are
felt farther into the free-stream.

Specific results presented in Figs. 6.1b - 6.6b indicate that use of the
small perturbation theory is justified in determining the velocity, density,
mass fraction and total enthalpy variations. These variations are small because

at high entry speeds, the gas has not had enough time for expanding.
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Figure 6.2a. Pressure perturbation as a function of distance from
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stream veliocity.

41




w

10
— | I | l =
— Vo = 35 km/sec —
— P/Pp = | + P —
\ -
I\ ALTITUDE (2), km = 150—
— \\\ 13 _
— e -
o (L
0.1 — —
B 103 _
0.0l AL L l J
0 2 4 6 8 0

DISTANCE FROM SHOCK, c¢m

Figure 6.2b. Pressure perturbation as a function of distance from
the shock at different altitudes and a constant free-
stream velocity.

42




10

S O 1 N R 1| I N R::
= =
— Vg = 35 km/sec ]
- \
|02L—— —
= ALTITUDE (2), km =
r S
. F z2:=150 _
Q T —
- 13| i
10 °— —
— Z 295 —
— 03 -
— le —
Sl 1 | AN M AR R
-2 -
10 10 | 10

DISTANCE FROM SHOCK (z/R.)

Figure 6.3a. Mass fraction of H as a function of distance from
the shock at different altitudes and a constant free-
stream velocity.

43




NN B 1 e« 37 513 e S8R 15 e ot e e a3+ ores e e ~ % ot o o+ e e e e . . e - . ‘m'u'mvatu.L-)‘“/‘ P ik

0= l [ | I -
[ ]
— Vo = 35 km/sec —
- —
\ —

ALTITUDE (Z), km = 150

IC;Z \
A\ s /S
— 16— .
B \

_C 77 =
(&) . —-—

153: —
[ —
— —
- _
B 103 |

95

T —

0° | i | |
0 2 4 6 8 10

DISTANCE FROM SHOCK, cm
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For example, just ahead of the shock, the value of (V/V.,) 1is 0.9992 for

Z =95 km and is equal to 0.99975 for Z = 150 km. Similarly, Hp, =

6.8 x 107’ for Z =95 km and Hy = 2.4 x 107 for 2z =150 kn (i.e.,
0.68% increase in total enthalpy at 95 km and 0.24% increase at 150 km). The
static pressure and temperature variations, however, cannot be considered small
This is because for Z = 95 km, I 2 and Ty = 300°K, and for Z = 150 km,

py = 0.64 and Ty = 94°K . For these variations, therefore, one could ques-

RN e < T &

tion the valiuity of the small perturbation theory.

For dif{f:rent altitudes of entvry, perturbation results (just ahead of the
shock) are illustrated in Figs. 6.7 - 6.12 as a function of entry velocities.
The resulis are shown only for the range of entry velocities for which free-
stream and shock conditions are available (see Table 5.1). These results again
indicate that the perturbation effects are greater for lower altitudes. As
would be expected, for any specific altitude, the effects are larger for higher
entry velocities. This is a direct consequence of greater radiative energy
transfer from the shock to the free~stream at high entry speeds. For the most
part, variations in the velocity, mass fractions, and total enthalpy again are
seen to be small. For example, for an entry body at an altitude of 95 km,
the total enthalpy of the gas (HTI) entering the shock wave is increased from
about 0.68% at V = 35 km/sec to 12 at V = 38 km/sec. For Z = 150 km,
however, HTl increases from 0.24% at 35 km/sec to 0.66% at 42 km/sec. The
variations in the static pressure and temperature, in some cases, are seen to
be several times greater than the ambient values. These large variatioms,
however, occur for conditions where dissociation is high and the validity of

the entire theory is questionable [11,12]. This point is discussed further in

the next section.
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The results of absolute enthalpy (as defined by Eqs. (5.5) and (5.7)) are
plotted in Fig. 6.13 as a function of free-stream velocities. The trend of
results of this figure are essentially the same as for specific total enthalpy
perturbation results shown in Fig. 6.12. This again illustrates that the
increase in enthalpy due to precursor absorption are greater for lower alti-
tudes and higher entry velocities.

The per cent difference in total enthalpy of the gas (with and without
precursor effects) entering the shock wave is illustrated in Fig. 6.14 for
different altitudes. The results indicate that the maximum increase in total
enthalpy is about 1.6%7 for Z = 95 km and entry speeds of 38 km/sec. For other
entry conditions, the changes are seen to be smaller.

A few conclusions can be drawn from the results presented in this section.
Within the limitations of the small perturbation technique used in this study,
the results indicate that variations in velocity, density, species concentra-
tion, and enthalpy are small as compared to perturbations in pressure and temp-
erature. Precursor effects, in general, are greater for lower altitudes and
higher entry velocities. At higher altitudes, however, precursor effects are
felt farther in the free-stream. At any particular altitude, the effects
increase with increasing entry velocities. Specific results indicate *hat for
Jovian entry velocities lower than 28 km/sec and altitudes of entry higher than
95 km, the precursor effects definitely can be neglected. For other entry comn-

ditions, the extent of flow perturbations and its influence on the entire flow

field ahead of the entry body should be investigated.
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7. ALTERNATE APPROACH: THIN-LAYER APPROXIMATION

Another approach to investigate the precursor effects will be to apply
the concept of thin shock layer theory (usually applied to hypersonic shock
layer flows [36,37]) to the precursor region flow field. For this purpose, 3
a curvilinear orthogonal coordinate system, shown in Fig. 7.1, 1is selected. :
In this figure s 1s the distance (measured from the stagnation point)
along a reference surface (body or shock) and n the distance along the
normal to this surface. For convenience, the reference surface is taken to
be the outer edge of the shock layer.

The differential equations for a hypersonic plane or axisymmetric flow

can be written in the present coordinate system as [36]

(3/3s) (pur) + (3/3n) (ovXri) = 0 (7.1a)
plu(3u/3s) + Xv(du/dn) - Kuv] + (3p/3s) = O (7.1b) ;
p[u(3v/3s) + Xv(3v/3n) + Ku’] + X(3p/3n) = 0 (7.1¢)
p[(u/X) (3H/38) + v(3H/3m)] + (X)) [(3/3m) (xedq )] = 0 (7.1d)
o[ (u/X) (3, /35) + v(3C/3n) - K= O (7.1e)

where K = K(8) = 1/Rg , X =1+ Kn, and j = o for plane flows and
1 for axisymmetric flows.
If the precursor region is assumed thin, then one can make the approxi-

mations that (n/Rs) << 1, 93/3s << 3/3n , and rd  is not a function of n .

In this case X = 1 , and Eqs. (7.1) reduce to







ALy

(5/om)(pv) = 0O (7.2a)

pv(du/3n) = 0 (7.2b)

— ov(3v/3n) + (3p/n) = O (7.2¢)
* Pv(3H/3n) + (3qp/3n) = 0 (7.24)
pv(3C,/3n) - K, = O (7.2e)

Direct integration of these results in

v = poo voo (7.33)
Pp Voo (U = uy) =0 (7.3b)
Po Voo (V = V) + (P -p,) =0 (7.3c)
E Py Vo (H - H)) + qg * 0 (7.3d)
P Ve (aca/an) - Ka =0 (7.3e)
where it has been assumed that qp =o .
o
In present application to the hydrogen-helium atmosphere, Eq. (7.3e)
will be written for atomic hydrogen and hydrogen ions. In Eq. (7.3d), H
represents the total enthalpy and is given by the relation
2 2
Ho=Hyo=ht (uF+v )/2 (7.4)
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where 2
h = 1.527 RT + [(5/4)RT + 1/2]C,, ‘
hz+

+ [(3/4)RT + D]cH (7.5)

Note that Eq. (7.5) is slightly different than the relation for perturba-
tion enthalpy given by Eq. (2.17).
For a diffuse nonreflecting shock front, the expression for one-dimen-

sional spectral radiative flux and its spatial derivative is given by [24,38]

T
GRo(Ty) = 2 & &y (T Eg(Ty) + 2_/; vebv(t) E, (T, - t)dt (7.6)

' T
~dqg /dT, = 2 €, e (T) Ey(t) - 2 e, (D +2f Ve (t)E(t-vdt (7.7)

where
1, =) " x, dn' (7.8)
(o]
e, (D) = T B (T) = m(2h/c2){Vv?/[exp(h /KT) - 1]} (7.9)

It should be noted that these equations do not account for any radiation
from the free-stream. As before, if the number density of H, 1is assumed
constant, then in the above equations «,, becomes independent of positionm.

The expression for total radiative flux is given by
o
G (m) ’1/; gy () (7.10)

For a gray shock front, a combination of Eqs. (7.6) and (7.10) results in
qR(o) = £0 T; , which (as would be expected) is the same as q(o) defined
in Eq. (4.1).

If emission from the cold gas in front of the shock is neglected, then

for a gray shock front, one can write
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ag@ =2 f 7 e (1) Ey(z)av = 2f17 ¢ (0) Ey(r)av (7.11)

~dag/dn = 2 & f[7 K, ey (1) Ep(r)dv = 27k q,(0) E,(t )av (7.12)

f s

o TR W

where qv(o) is defined by Eq. (4.2).

~ The general expression for the total radiative flux is obtained by

g AT s

combining Eqs. (7.6) and (7.10) as

qR(n) = 2_]; {q\)(O) E3(Kvn) + ™, _/;n BV(T) EZ[K\)(n - n')]dn’>d\) (7.13)

where K,, 1is assumed to be independent of position. For the spectral model

considered in section 4, Eq. (7.13) can be written as

L vV,
; ag(n) = 2 1§1 {as/m®) q :3(.<in)j;li1 [v*/(e¥ - 1)]dv

Voi

n
P A ACACE n')]j:’u

B,(T) dv dn'} (7.14)

where v = hv/k Tg . The final form of the energy equation now can be
obtained through a combination of Eqs. (7.3d, 7.4, 7.5, and 7.14).
Either by following the information given in Egs. (2.18, 2.19, and 3.1)

or from Ref. [19], the expression for concentration of the species o in

Eq. (7.3e) can be written as
B Vep(3C,/30) = =my fL° [(3qp,,/30) /hv]dv (7.15)

The appropriate expression for (aqu/an) , in this case, is given by

E Eq. (7.12). Thus, Eq. (7.15) can be exnressed as

4y /dn = (m /e, v) [17 ik, 4,(0) E, (< n)/v]dv (7.16)

By noting that «

v NH2 o(v) and following the procedure of section 4 ,
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the relations for individual species are found to be

n
Gy =-28, i;l Y, Ey(T) &)™ 1w (7.17)
S 1
T - .- 2
; e ™ 2 By 12331 Yy, Byt RT)" 1(v]) (7.19)

where 84 , I(viz), and T, are defined by Egqs. (4.12d, 4.13, and 7.8)
respectively. It should be noted that Eqs. (7.17) and (7.18) are exactly

the same as Eqs. (4.25) and (4.26).

By employing the governing equations presented in this section and the
spectral information of section 4, numerical results were obtained for
velocity, pressure and temperature variations for different values of n
at s =0 . Specific results for an altitude of Z = 116 km are compared
in Figs. 7.2-7.4 with corresponding results of the small perturbation theory.
As indicated earlier, the equations for species concentration in this case
are found to be exactly the same as for the small perturbation case. For
the range of parameters considered, the results for velocity, pressure and
temperature obtained by the two procedures are seen to be in excellent agree-
ment. It is obvious from these results that either approach could be utilized
in the investigation of the precursor region flow field. It was noted in
section 5 that for the Jupiter's entry conditions, the general governing
equations of the small perturbation theory reduced to the case of simple
plane source. As such, use of this method to Jupiter's entry case is restricted
to one-dimensional analyses. The advantage of thin layer approximation pro-
cedure is that it is physically more convincing and it can be extended easily
to three-dimensional and axisymmetric cases. Furthermore, in more realistic

situations, the thin layer approximation can be relaxed and the analysis can

Y RIS S S it

be extended easily to general cases.
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8. CONCLUSIONS

Governing equations have been presented for investigating the
precursor region flow by employing the small perturbation theory of
classical aerodynamics and thin-layer approximations of hypersonic flows.
In small perturbation method, the perturbation velocity potential is
found to be governed by the wave equation with a driving term due to radi-
ation absorptfon, ionization and dissociation. The thin layer approxima-
tion reduces the general hypersonic flow equations to simpler forms for
which solutions are obtained by employing an iterative procedure.

By employing appropriate thermodynamic and spectral data for the
hydrogen~helium atmosphere, variations in precursor region flow quantities
were calculated by the two entirely different methods. For Jovian entry
conditions, one-dimensional results obtained by the two methods were
found to be in good agreement for the range of parameters considered. The
results, in general, indicate that for certain combinations of entry speeds
and altitudes of entry, the precursor effects cannot be ignored while
analyzing flows around Jovian entry bodies. Specifically, it is seen that
at an altitude of 95 km, the precursor effects are important for entry
velocities greater than 35 km/sec.

The usefulness of the thin-layer approximation in analyzing the pre~
cursor region flow is demonstrated. The main advantage of this method is
that it is physically more convincing and its use can be extended easily
to axisymmetric and three-dimensjonal cases. It 1is suggested that precursor
region flow phenomena be investigated in general without making assumption
of the thin layer approximation. It might even be advisable to modify the
radiation model for the precursor region absorption. The extent of pre-
cursor effects on the entire shock layer flow phenomena should be investi-

gated thoroughly. It might even be essential to include two-dimensional




model for radiative flux and a detailed spectral model for radiation

absorption and emission.
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APPENDIX Al

EXPLANATION OF SYMBOLS USED IN THE COMPUTER PROGRAM "PERC"

A0, Al}
Exponential integral constants
A2, A3
BO, Bl}
Exponential integral constants
B2, B3
CH Mass fraction of H
CHE Mass fraction of He
CHH Mass fraction of H2
CH2 Mass fraction of H2+
DEN Perturbation density
DEN2 Free-stream density, g/cm’
ETH Sum of sensible and chemical enthalpy of mixture gas, cal/g
ETHP1 Sum of sensible and chemical enthalpy of Hz, cal/g
ETHP2 Sum of sensible and chemical enthalpy of H,+, cal/g
ETHP3 Sum of sensible and chemical enthalpy of H, cal/g
ETHP4 Sum of sensible and chemical enthalpy of H_, call/g
EX Exponential integral
: GARM Specific heat ratio
% GD Dissociation energy, erg/mole
% Gl Ionization energy, erg/mole
g\ GMARC Mach number
§ GNH2 Number density of H,, molecule/cm?
! P Boltzmann constant, erg/°K

PRE Perturbation pressure




PRI
Qo
RCAP

ROE

TF1
TF11l1
TH
TO

TS

VINF
vZ

Wl

Free-stream pressure, dyne/cm’
Radiative heat flux at shock front, erg/cm’-sec
Shock radius, cm

Absorption cross section, cm?

Absorption coefficient, cm"r
Perturbation temperature, °K
Temperature, °K

Planck's constant, erg-sec
Free-stream temperature, °K
Temperature at shock, °K

Universal gas constant, erg/mole-°K
Frequency, sec—!

Free-stream velocity, cm/sec

Perturbation velocity component normal to the shock surface

Molecular weight, g/molecule

Distance from the shock



APPENDIX A2

EXPLANATION OF SYMBOLS USED IN THE COMPUTER PROGRAM 'THIN"

A0, Al
} Exponential integral constants
A2, A3
ARF Absorption coefficient, cm™'
BO, Bl
} Exponential integral constants
B2, B3
CH Mass fraction of H
CHE Mass fraction of He
CHH Mass fraction of H2
CH2 Mass fraction of H2+
CK Boltzmann constant, erg/°K
DEN DENSITY, g/cm®
DENI Free-stream density, g/cm’
DH Planck's constant, erg-sec
El, E2, E3 Exponential integrals of order 1, 2, and 3
ETH, ETH1
ETH2, ETH3 Defined in Appendix Al
ETH4
GR Euler's constant
MH Mole fraction of H
MHE Mole fraction of He
MHH Mole fraction of H2
MH2 Mole fraction of H2+
NA Number density of HZ’ molecule/em’

A=3



NAl
PH

PHT

PREI
Qo
Qr
ROH

TS

Ul

VELO

VI

YD

YI

ZETA

LGy e 0 %

TR R T

e i

o ARE < S

Number density of H,+, molecule/cm®

Pressure, dyne/cm?

Sensible enthalpy, erg/g

Total sensible enthalpy, erg/g

Free-stream pressure

Radiative heat flux at shock front, erg/cm’-sec
Radiative heat flux at any field point, erg/cmz-sec
Absorption cross section, cm?

Nondimensional coordinate measured along the shock surface
Temperature, °K

Shock temperature, °K

Velocity component tangent to the shock surface, cm/sec

Free-stream velocity component tangent to the shock surface,
cm/sec

Velocity component normal to the shock surface, cm/sec
Free-stream velocity, cm/sec
1

Frequency, sec”™

Free~stream velocity compouent normal to the shock surface,
ca/sec

Coordinate measured normal to the shock surface, cm
Photodissociation yield

Photoionization yield

Altitude, km

Shock angle
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APPENDIX Bl

PROGRAM "PERC" - TO COMPUTE PRECURSOR EFFECTS

IJSING PERTURBATION METHOD

PROGRAM PERC (INPUTs QUTRUT «TARPZS=INPUT TARES=QUTRPUT)
DIMENSICN 3ATA(G4)s Dla)s AAL4)s AT(4)s ACL4)Ye AD(4) e E2(a¢2)eRP2(4
12)e V(8a2)s V1(4s2)s PCIN(G)s DLl (&) GOtg)Ye CGY{GYe TNL4ays T1(4Y
PT(a)a S(8 ) YI(41e ¥YD(a)e POE(aYy Al(a)s BI(4ys Clla)«71(4) c2(
'a)-31(a)-a?(a).01(43.A=(a).ﬁf(a)oNC(J).\H(a)-AV(A)-AIO(a).EX(?.O).
1SUMIBI IERR(BI D11 (%) 21 01O

REAL VHH«MHZ ¢ MHE ¢ MH

EXT=RNAL FX1 e« FX2

21(011=TeC0 Y

Z1(2)=Ce0202

Z1(31=CaC0%

Z1 (4)=0e01

21 (512002

Z1(8)=Ce08

21 (71=C ol

Z1(8)y=Ca2

Z1(9yY=0Qe5

Z1(12)=1 0

1J=8e3143E7

TH=/ e6256F-27

GARM=1 6422

ROE(1)=4e1E-18

RCF(2)=8Be-2-18

RCE(3)=2e1E~18

DC 4 K=1+27

READ (Se15) CEN2s VINFe T3e PRI Q0

FORMAT (3E11e62)

GNF2=T7e2633112%PR1I /145 *# | Do * ¥ 6% A9

T(1)=RCE (] ) *5MH2

TIAY=ROE (P Y *ANE2

T " )1=ROE(3)*GNKH2

RCAP=25.

AT =0 626777343

Al =8,6347628525

L2=1HBelOSN169720

A2=85e¢3722287401

=1 ,4758469220

R1=21099A330C L

R2=256329%614

R3=3,57323223454

D KA Ml=1e! 7

Z'—'Zl(r"})*P:.o*(-l.)

17 (A3S{Z2)elLE el eR2F ==y 50 TO S5=

TGO 1Y N=EL 3
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L AR A I

e

g

mm@ DA T B TR A M o L

X==Z%T (N)
IF (XelTele) GO TO 13

St A A A

.wwwdﬂwﬁﬂ

E(1)=EXP{=X)*(AUFAI#XFL2EX KX +AZHXRRTEX#H4 )/ (X*(ROLR] RXFR2*X* %D 437

] #XRRTEXH*G ) )
EXINe1)I=E(1)
GO TO 14

13 E(1)==0e577215664-ALIOGIX)+X=X*¥2 4 /8 ¢+XH%Tq /1B e=X*¥%#8¢/068e+X**¥54/6NN
1] e =X¥#%#60/432C e+ X¥%T ¢/ 35280V e=X¥%B ¢/ 2A22CE0 ¢+ X+ %3 g /32D N q=X%*]1 Ny /262

14
28
11

555

501

2880n0Ce
EX(Ne1I=E(L)

DO 28 I=1.+6
E(I+1)=(ZXP(-X)=X*E(1))/1
EX(NsI+1)=E(]I+]1)
CONTINUE
CONT INUE
GO To =01
EX(142)=1,
EX(2:2)=1,
EX(342)=1,
EX(1+43)=0,65
EX(243)=20C45
ZX(343)=065

GMARC=EVINF/(70e#(1454%¥%#045)%1004)

P=1438%E~-16

V(141 )=502E+15
V(1+2)=28e70E+15
VI2e1)1=23e75F+15
VI2+¢2)1=Se02F+1 5
V(Z2+1)=1e15E+15
V{(2¢2)=3e¢735E+15
V1(1e1)2V(1e]l ) #6,6256F-27/(1
VI(1 4215V (1 e2)%646256E<-27/(1
VI241)ZV (24 ] 1 %666256E-27/ (1
VIIZeZ)ZV (2021 #6e6286E-27/(1
VI(Z341)3V(3e1)#6e6256E-27/(1
VI(342)13V(242)#6e6256E-27/ (1
X1=0,

x2=Ce

X3="e

Xa4=Ne

X5=0

X &z

X7=N

X8=C

e 3B805F =1 A%TS)
¢ 3BNBF=16%TS)
e 3BNTE -1 H*¥TS)
e32N5E-16*TS)
e IBNCE-16*TS)
¢ 3805E~16*TS)

B-2
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‘J
]

a1

X9=n

X1C=C

DO SJ00 N=143

ERS =0.001

CALL ROMBS (VI (Ne1)eVI(Ne2)eFX1eEPSISUMIN)JIERRIN))
CALL ROMBS (VI (Nel13eVI(Ne2)eFX2eEPSHSUMIN+TI)« [ERR(N+3Y)
WRITE (H5¢32) SUNMINS «SUM(NSET)

FORMAT (X ¢ ¥PZ2=# 4T 1 Te 343X« ¥P2=%y Z1Ne3)

TO=145e

GHO=1eZ27%U*T0

W1 =3.280E~-224

Gl=14.868E€12

GD=4 e5E12/2

YI(1)3)y=1.C .

YI(2)=0875

YI1(3)=0.0

Yo(1)=0ae

¥YD(21=Cel125

YD(31=1 40

AT (N)I=GNHZ2¥RCEZ(NY/Z (DENZ#*YINMNF #GH0)

BI(N)==(GNH2¥ROFE (N)# WL )/ (NENSH*VINFX¥GHOY* ( (G =0 e BGH#UXTN ) RY T (NMI+( 2%

1GD=1 ¢89¥U¥TO)IRYD(N)) /2
G2=15/(2414159%#4)%Q0

DIN)=EX(Ne3I* (AT (NIY*¥SUV(NI+BI(N)/Z(P*TS)I*SUMIN+3)Y)Y/T(N)
D1 (NYSEX (N3 )¥SUM(N)

D2 (N)ISYD(N)*EX (Ne3)*CSUMINF3 )/ (2#*TSH
D2INISYT(NYI¥EX IN«Z)*SUM N+ / (P#*TS)
DI1(NI=Q2%D(N)

X1 =D (N)+X]1

X2=D1 (N)+Xx2

X3= x3+D2 (N)

X4=X4+D3(N)

CONT INUE

BAT=2e/ (Qe727*CARMREGMARC*%#2=14)
VZ==-Q2*%BAT*X

PRFE =2« *GARM*®C2% X

NEN==-VZ

GHT=2e¢/ (DEN2*VINF*X*3 ) #52¥X2

CH2z ] a* W] %24 *%G2%* X4/ (VVINFENFENZ)

CH=Z o ¥4 | #G2# X3/ (VINF#OEND)

R=Co,

VR=" o

TF1=140 e # (PRE-DEN~(CH2+CH)1 %20 e/ 18Ce17)
THH=. «RO19-CHzZ=-CH
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TS

CHE=Cel198]
TE1I111=TF1+145,

RT=TE1111%1,98726

IF (TF1111eGTe100uUe) GO TO 999

IF (TF1111eGTe30Ce) GO TO 998

ETHPR2=CHZ* ((TF1111=170Ce)/P0Ce*(12326)1+3583754) /2,
ETHRI=CHH*¥{((TF1111=1NCa)/200e* (1 2AUeB)=12PR0eBY /7%

ETHR3I=CH®* ((TF1111=10C4)/2C0e%(36€4)+S11344)
ETHP4=CHE*((TF1111-100e)/2CCe%(I84,4)-984e4)/44

GO To 1301 -

293 ETHOI=CHH¥RT* (28460849448 61932116E-2#TF1111/2¢=-9¢A1192332E-6%TF1 111

1#%2/34=0e35152F74F-9#TF 1111 %¥%3/4e4+43, 100 402F~[2¥TF 1] ##4/Fe—Q,A72R
QRTIPED/TFILILIL1)I/ 2

ETHE2=CH2#RT*# (2 eB1 7375+ 665 7AIE-3%#TF 1111 /2¢-7eQACR4RE -8 #TF] ] 11 #%#2/
13048 e26140E~O*TF 111 %#%3/44~3s09CR28E~12%TF1111#¥%4/54+1.80C273E/TF
211113172 '

GO T2 1C0C
SG9 ETHPI=CHH#*RT* (36043689 7+86 11871 170E~4*¥TE1111/2e=7e3092851F=9%T=T1111
1##2,/ 4 =2eC331OB0TT =1 1#TF 111 %%#3/44+244%337QIE-1SH#TE]]11¥¥4/Se-ReB49
213.2Z2/TF11L1Y /2
ST-F2=CH2*¥RTH# (3622871542 S50SCETE-2X¥TF1111/2e+] 64224520 =7%TF1111%*
12/ 20e~4e40QC24E=11%#TF 1111 %%#3/4e+3e7337S6C-1G%¥TF11]11#*#44/F 4417997470
REB/TFILILILI Y/ 2
1Vl ETHRI=CH*RT R (24S+2eT4723437E4a/TFTIT111)Y
ETHRL=CHEAITH (245 =7 e adS3T4FZ2/TFIII 1V /4
1001 ETH=TTHPI +ETHR2+=THR 3+ETHRG
ETHK=ETH®*44184%10CCe D
WRITT (S+16)VINFs DENZWTS
16 FORMAT (//4X e *VINF=% ¢ 11630 4Xe *#DEN=H 4T 11 ¢33 e3Xe*¥TS=%#4511] e4)
WRITE(S5452)
S22 FORWATIBX «*R¥ 4 UXe¥Z4e BXe*YZ*e BXe#PREF, BX e #DEN# ¢ BX o *TF ¥, bx ¢ *C
1 H2 4%y TX o ¥CH¥ 4 TX o #CHT# 4 QX ¢ #ET =+
WRITE (H037IReZIWIPRECENITE ] s CH2+CHIGHT o= THK o Z1 (M])
37 FORMAT (/2XeZ2F1Uel4GF11e3)
GC TS =8
Z2=7+e 10
IF (ZeGTeMNe™1Y &N TN 4
an TR 77
A8 COoNTINUE
4 CONTINUE
a8 STCR
END
FinCTIAN EX] (V)
A1 =X *RED/(EXPX)~1)

~ETURN

) FND

: FIINCTION FX2(X)

) EAP=x®¥2/(EXP (X )=1)
—=E TN

FND
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APPENDIX B2

PROGRAM "THIN" - TO COMPUTE PRECURSOR EFFECTS

USING THIN-LAYER APPROXIMATION

PROGRAM THIN (INPUT s OUTRUT « TAPES=INPUT « TAPE6=0UTRPUT)
COMMON ARF(3)eSUMII12)s J1eT(50)eTSeY]I(3)1eYN(3)e NAROH(3) S IERR(12)
¢VF(3¢2)e CHeZKsC o< eQCeYaSeZ3(3) e JeVELOLIWDENT
DIVMENSION VISO)IeUISC) e (S0) «PHT(SO ) sPHIISO) s ZTH2(S50 )+ LHIS0) «DENISN)
REAL NAGNBoNAL ¢ ¥MH2 o T HH ¢ MH o VHE

CO 21 ™M=1,.20

READ (S5e1) YeSeTSPREI «ZTAZ«QUVELOI ¢DENI
FCRMAT (4F842+2FSe39510e3¢FBa0+¢3510432)
VELQI==VELOI

ZTA=SZTA*341415926535/(26%904)

ROM(1Y=4e1E~18

ROH(2)=8e25~18

ROH(3)=2e¢1E-18

DH=6K 4 6256E-27

CK=]438l54E-16

C=3.CELD

VF(141)1=867E15

VE(2421=3e73E12

VF(3e1)=3e75E15

VF(3+2)=1e15E15

VF(14+2)=5a4P2E15

VF(24¢1)=25,02E15

VI=VELOI*SIN(IZTA)

UlsvFLOD I #CDS(ZTA

vity=Vvli

uli=ul

P(1)y=PREI

DEN(1)=DENI

CH2(11=00

CH(11=0o.

Az14.8E12

D=4 ¢5E12/2

Y1(1)=1e0

Y1(2)=0875

YI(A)y="e

YO(1y1=Cell

YD(2y1=" 6125

B~5

SR BT
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YD(3)=1.

R=8+3413E7

PHT(1)=(VELOI#%#2)/2¢+1 ¢527%¥R#145
Pr(115] e3527%145 %R

T(11=145.

0N 111 I=1443

I1=1]

NAZ (72431 122FE22%° 801 *#P (1) /(T(1)*#1C4)
NA1=NA*] .CE-6

ARF(1)1=RCH( 1 )*NA]
ARF(2)1=ROH(2)*NA |

ARF (3)=ROH(3)*NA]
DEN(I+1)=DENI*VI VD)

VII+1 )= (DENI®(VI*%¥2)-P(1)+P (1)) /7 (DENI*VI)

Utl+1)r=ul

CALL CRACTIA(Ys+S«TR)

PHTI=1 e S27#R¥ [ 4S ¢+ (VFLCI *¥%2) /2
PHT(1+1 )= (DENI*®VI*PHT! =QR)/ (DENI*VI])

OH(T+])=PHTII+1)=(V(I+1)1*#24+U(I+1)*%*2) /2

ey
»ka‘”

T(l+1)=(DH(I+1)-(R./A.*Q*T(I)+A/2.)*CH2(I)—(3./&.*P*T(l)+D)*CH(I))

1/7(1e327%R)

CALL PCH2(PCHI «PCHD)
NR=1.
CHT+1)=NR#DCHD

CHZ2 (141 )=NS*DCH]

D(r+1>=DEN<I+1)*Q*T(I+1)*(180.17/acc.+u.5*(CH2(x+1)+CH<!+1)))

IF (ABS{(VII+1)=VIIYI/VI]))aLrewew] ) LU
I (AES((T(I+I)=T(III/T(1)1)eGTa"eMN1) G0
IF (ABS((E(I+1)=2(1)Y)/P(1))e3TeNe™1) 37
IE (ASS((PHI{I+1 )= (1)) /8] )1)elT el el
IF (ASS(PAT(I+])=PHT (1)) /P~T(l1)a%7 0
IF (ABS((CHUI+] =CHI(I)1)/CH(11)eGTeNel]

GO T 13
GO T 111
CONT INUE
WRITE (He11) SaY

-4 4 -
C

O 00

(AN

® \.
)

15 (ARS((ZHA([+1)1~CH2 ()11 /CHZ(1)) e Tele?
IF (ABSUIDEN(TI#1)-NENIIYN ) /Z0SMII) ) e Teliald

- - O -

=

=6
T
cQ

o7

TS

FORMAT (4X e #S3# 1F ] CeJoXe# ME 4o X e ¥ /=% 4F1Je3eXe*CV¥)

WRITE (6012) ZeVELOTWCT

FORVAT (eXe*ATTIT UNFz%e7 1 e 30 aXKe*#yELTTITY

100y s # e T 1 o3 v #ERZ/CVI-LET R0 /)
CHHz. ¢80 3=CH2([+1)y=CH T+
CHE="e17381

!VF:*QE]?.?.*CV/bC*nQYQ+



ADD=CHH/2e+CH2 (141172 +CH(1+1)+CHE/4 0 -

MHH= (CHH/2 e ) Z7ADD

MH22 (CH2 (1 +]11/2¢)/7ADD

MH=(CH({1+1))/7ADD

MHE= (CHE/4 )/7ADD
RT=198726%T(1+1)

IF (TUI+1)eGTe10004) GO TO 999

IF (T(I+1)eGTe300e) GG TO 998

TF1111=T(I+1)

ETHRP2aMH2# ((TF1111-100e)/20Ce¥#(12324)+35837°5)

ETHPI=MHH®* ((TF1111=-1006)/200e%(1264¢8)-1264¢8)

ETHP3aMH®* ((TF1111~-1006)/7200e%#(9664)+51134,)

ETHPA=MHE*® ((TF1111=1C0Ce)/7200.# (G844 )-9BG,,4)

GO TO 1001

908 ETHPISMHH#RT* (2846088944 41G32116E~32*#T(1+1)/2e¢=9e6119332FE-6*T([+1)
I**2/30-90512297QE-§*T(1+1)**3/4.+303090Q925-12*T(l+l)**a/?0°9o6725
2372E2/T(141)) “

ETHP2MHZ2E¥RTH# (281 737S+3e657ECIE=#T ([ +]1)/2e=T7e96SSABE-E6*¥T (4] )% %2/
13048¢26140E~O#T (4] )#%#3/4¢=3¢09FC228E-12%T ([+])#¥4/Fe+]e8U0273ES/T(
21+1 )

GO TO 1900

999 ETHRISVMHHA*RT* (36043629 7+6e¢11ET7]1I10E=G*¥T([4+1)/2e=T7e¢3G93ISTIE=-O*T(I+1)
i**2/30'2003319075‘lI*T(l+l)**3/ko+2045937915‘lﬁ*T(l+1)**0/50-80569
21002€2/T(I+1))

ETHRP2=MH2#RT*# (3e3287154+2e¢S0S08T7E-3#T([+1)/2e+1 04224S20E=T*T ([ +1 )**
12/3e¢=8e350024F =11 #T([+] )¥%3/8e+3e7337SEE=1S¥T( I+ 1 ##4/Te+1e¢7997470
2ES/T(l+1)y)

1000 ETHPI=MH#RTH(2:5+2e5470497E4/T(I+1))

ETHPGSMHE#RTH* (2e3=7e45374F2/T(1+1 )

1001 ETH=(ETHP] +ETHP2+ETHRPI+ETHP G 1 %44 184%#100004/2e314

WRITE (£+28) ETH

28 FORMAT (4Xe*#ENTHOPY (ABSOL)=*eE11eae/)

WRITE (6+13)

13 FORMAT (X o ¥V ¥ a1 1 X o #UAe 22X e ¥ THeIOX e APH el X e *¥DENR eOX ¢ ¥H*¥ o ] CXo#HT* o1 1

IXoe#CH®GICXo#CH2*)

WRITE (8¢14) VII+1)eUCTI+1)eT(I+]1)ePUI+1)eDENII+I Y ePHII+1)ePHT(I+1)
] oCH(I+1)eCH2(1I+]1)eQR W1

18 FORMAT (X eE1000e¢2Y iEGe302X e2XeETe 42X eFETe 42X eElNe2e2XeF1me3 42X 1
1003¢2XeE100342XeE10e30¢3XeE110303XeF3elor///)

IF (YeGTe0eS) GO TO 185

Y2Y+loel

GO Tn 20

15 Y=vY+led
IF (YeGTe2e) 50 TO 21
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GO TO 20
21 CONTINUE
sTOoP
END
SUBROUTINE QRADIA(Y«S«QGR)
COMMON ARF(3)eSUMII12)e1eT(S0)eTSeYI(3)sYD(3)eNAIROH(3IIERRI(12)VF
(302)eDHeCKoC oK1 0QO oYY eSSk 3(3)
COMMON /FFF/ 2
DIMENSION E2(3)0ARY(2)+Z1(3)eV1(342)
EXTERNAL FX1 sFXZ¢FX3
Fls6e256E=27/(138B0SE-16%TS)
VI(1e1)SVF(1e]l)¥F]
VI (142)2VF (1 e2)1%F]
VI(241)2VF(24] )%F ]
V1(2¢2)SVF(2+:2)%F 1
V1(3e1)1=VF (3]l )¥F ]
V1 (3¢2)=VF (342 )%F ] '
EPS=04002
DO 87 K=14+3
K1l=K
CALL RONMBS (VF(Ke2)eVF (Ke1)eFX]1eEPSeSUMIK) e IERR(K) )
IF (JERR(K)eEQeV) GO TO 30
PRINT 31 K4 IERR(K)
30 CALL ROMBS (VI (Ke2)e VI (Kel)sFXZeEPSeHUMIK+TI) e IERK(K+3)Y)
IF (IERR(K+3)eEQeC)y 30 TO 4O
K3=<+3
PRINT 31le¢ K3+ 1ERPR(K+])
40 A=0,0001
Z2=Y+0e0001
B=Y
IF (ReEGeQe) GO TO 32
CALL RCMBS (A+BeFXIEPSeSUMIK+6) ¢ [ERR(K+6))
IF (IERR(K+6)eEGeV) GO TC &O
K6=K+6
PRINT 3le¢ K6¢]JERR(K+6)
31 FORMAT (#K=#,4[2# [ERR=%,413)
GO TO SO
32 SUM(K+6)=0e
50 CONTINUE
QOR1 =0
NO 100 K=1423
GR=2NeS772
ARY(K)Y=ARF (K ) #*Y
IF (Yol TeCelO1lY GC TO 33

-
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GO TO 20
21 CONTINUE
sTOoP
END
SUBROUTINE QRADIA(Y«S«QGR)
COMMON ARF(3)eSUMII12)e1eT(S0)eTSeYI(3)sYD(3)eNAIROH(3IIERRI(12)VF
(302)eDHeCKoC oK1 0QO oYY eSSk 3(3)
COMMON /FFF/ 2
DIMENSION E2(3)0ARY(2)+Z1(3)eV1(342)
EXTERNAL FX1 sFXZ¢FX3
Fls6e256E=27/(138B0SE-16%TS)
VI(1e1)SVF(1e]l)¥F]
VI (142)2VF (1 e2)1%F]
VI(241)2VF(24] )%F ]
V1(2¢2)SVF(2+:2)%F 1
V1(3e1)1=VF (3]l )¥F ]
V1 (3¢2)=VF (342 )%F ] '
EPS=04002
DO 87 K=14+3
K1l=K
CALL RONMBS (VF(Ke2)eVF (Ke1)eFX]1eEPSeSUMIK) e IERR(K) )
IF (JERR(K)eEQeV) GO TO 30
PRINT 31 K4 IERR(K)
30 CALL ROMBS (VI (Ke2)e VI (Kel)sFXZeEPSeHUMIK+TI) e IERK(K+3)Y)
IF (IERR(K+3)eEQeC)y 30 TO 4O
K3=<+3
PRINT 31le¢ K3+ 1ERPR(K+])
40 A=0,0001
Z2=Y+0e0001
B=Y
IF (ReEGeQe) GO TO 32
CALL RCMBS (A+BeFXIEPSeSUMIK+6) ¢ [ERR(K+6))
IF (IERR(K+6)eEGeV) GO TC &O
K6=K+6
PRINT 3le¢ K6¢]JERR(K+6)
31 FORMAT (#K=#,4[2# [ERR=%,413)
GO TO SO
32 SUM(K+6)=0e
50 CONTINUE
QOR1 =0
NO 100 K=1423
GR=2NeS772
ARY(K)Y=ARF (K ) #*Y
IF (Yol TeCelO1lY GC TO 33

-

B-8




AO=Q 26777343
A1328,6347608%25
A231800590169730
£328.5733287401
80=23,958469228
B1=21.09965308
B222%463295614
B329.5733223454
IF (ARY(K)elL.Tele) GO TC 200
X=ARY (K)
E1(K)SEXP (=X )# (AD+A I #X+A2#X ¥ H2+AJHX# R J$X##4 )/ IXF (DU ] X+ Pt X**2 40
JIARXH#ILX#%G))
GO TO 22¢C
200 X=ARY(K)
El1(K)==0eS7721566=AL0GIX )+ X=X tHL o /40 tAN R 50/ 18 0e=A*Hde/Ybe+ ARG 4/00U
1oe=X%%#5e/8320 ¢+ X#%# 7 ¢/3528C ¢ =XH#8 ¢/322560 e+ X# % 4 /32653206 =X*%*]10e/362
288000+
225 E2(K)I=Z(EXP(=X)=X*E] (K))
EI(KIZ(EXP{=X)=XYE2(K))/2e
GO TO 35
33 E2(K)=1.
E3(K)1=0e5
35 CR232e% ARF (K )NDH/(CH#D 4 ) ¥SUM(K+6)
QRAZEJI(KIHSUMK+I I *#1Se#UI/(3e141359%%#3)
QR1=0R2+QR4+QR1
100 CONTINUE
QR=QRI #2¢#3414159
RETURN
END
FUNCTION FX1 (X)
COMMON ARF(3)eSUMCIZ2) e[ oT(SO)eTSeYI(3)eYD()eNAIROH(3)IFRR(12) 4eVF
1(3¢2)eDHeCK e eK o0
FXl=X#RIREXP (~ (DH*X/ (CX*#T(]))))
RETURN
END
FUNCTION FX2(X)
COMMON ARF (3)eSUMIII2)1e] oT(SO)eTSeYI(3)eYD(2)eNARCH(3)eICRkI(12)aVF
1(3¢2)eDHeCKeC oK oGO
DAT=25e6697E~5
FX2aX®% 3/ (EXP(X)=10)
RETURN
END
FUNCTION FX3(X)
COVMON ARF(2)1eSUMILI2)1e] eT(S0G)eTSeYI(3)eYD(3)eNAKCHIIYGIFRR(]12)VF
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1(342)eDHeCKeCox Q0

COMMON /FFF/ 2Z .
FX32(1e+(e577=1¢+ALOGIARF (K )#(Z=X) )} I *#(ARF (<) * (Z=X))=(ARF (K )* (=X
1)) #%2/2e+(ARF (K )R (Z=X) ) #%#3/12e)*3UM(K)

RETURN

END

SUBROUTINE PCH2 (PCHI] «PCHD)

COMMON ARF(3)eSUMI12)0 o1 (DU DY I 1IJeYULI)INAIROMIS)e [ERRLLZ) oVF
(3¢2)eDHeCKeC oK sQTsY eSeEI(3) e Jl «VELOILI «DENT

DIMENSION V1 (342)¢CHL(3),CrH2(3)

EXTERNAL FXa&

F126e2%56E~27-"(1¢38035E~-16%TS)

VI(1e]1)=SVF(] el )*F1

V1(142)=VF(]e2)¥*F ]

V1(2¢1)=VF (241 )*F 1

V1 (242)=VF(2¢2)%*F 1

VI(3.1)SVF(3el %71}

V1(3:2)=VF(2e2) %]

EPS=0e0C1

DO S9 J=1.+3

Ji=J

CALL ROMBS (V1 (Je2)eV1(Jel)s FX4s EPSe SUMIJ+9)e (ERR(J+3))
CHI(JIZYT(JIREI(YI*SUMN(J+9)/ (1 e3BNSE=1H4%T3)
CH2(J)Y=SYD(JUI#TEI(UI#SUIM(J+D)/ (1 e IBNTE=16*T3)

CONT INUE

POHEI=CH] (1 )+CH] (2)1+CHI1 (3}

PDHD=CH2 (1 )+CH2 (2)+CH2 (3)
XISGTH1Se#2%3,28E-24/ (DFNI*¥VELG [ #2,14]59%#4)*(~1,)
PCHI=PDH] *X1

PCHMN=POHO*X |

RETURN

END

FUNCTION FXai(X)

COMMON ARF(3)eSUMII12)e]eT(SO)eTSeYI(3)e¥YDI(R)eNAROHIZ)$ITRRI12) ¢VF
(342)eCHeCKeCoKeQleYeSeEII(I)eJ

FXasx**2/(EXP(X)=1)

RETURN

END

—

—

B-10



